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Abstract
With the widespread use of video conferencing technology

for remote communication in the workforce, there is an increas-
ing demand for face-to-face communication between the two par-
ties. To solve the problem of difficulty in acquiring frontal face
images, multiple RGB-D cameras have been used to capture and
render the frontal faces of target objects. However, the noise of
depth cameras can lead to geometry and color errors in the recon-
structed 3D surfaces. In this paper, we proposed RGBD Routed
Blending, a novel two-stage pipeline for video conferencing that
fuses multiple noisy RGB-D images in 3D space and renders vir-
tual color and depth output images from a new camera viewpoint.
The first stage is the geometry fusion stage consisting of an RGBD
Routing Network followed by a Depth Integrating Network to fuse
the RGB-D input images to a 3D volumetric geometry. As an
intermediate product, this fused geometry is sent to the second
stage, the color blending stage, along with the input color im-
ages to render a new color image from the target viewpoint. We
quantitatively evaluate our method on two datasets, a synthetic
dataset (DeformingThings4D) and a newly collected real dataset,
and show that our proposed method outperforms the state-of-the-
art baseline methods in both geometry accuracy and color quality.

Introduction
Since the Covid-19 pandemic, video conferencing has seen

a rise in usage for remote communication in the workforce. Typi-
cally, participants use electronic devices with a single RGB cam-
era, which, ideally, captures a frontal view of the user’s face when
positioned directly in front. However, due to disparities in cam-
era and screen positions, the visual quality is often compromised.
Instances where users look away from the screen or their body
postures face away from the camera hinder face-to-face interac-
tion between participants [1].

Some image processing techniques have been developed to
adjust the viewing angle based on RGB camera inputs [2, 3, 4, 5,
6]. This approach requires only commercial RGB cameras, but it
either incurs high computational costs or lacks consistent frontal
views across video frames.

Other researchers use RGB-D cameras to track and fuse the
3D surface of target objects dynamically [7, 8, 9, 10, 11, 12,
11, 13, 14]. These algorithms update a canonical model to re-
tain temporal information, which is a time-consuming matching
process for dynamic objects and thus hinder their application in
high-quality real-time video conferencing.

Another solution is to use multiple RGB-D cameras and fuse
their inputs in 3D space [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
This type of approach treats the object being rendered as a static

object and captures the RGB-D data from multiple camera per-
spectives at the same time. As an output, a color image is rendered
from the target camera viewpoint. Such a scheme requires fewer
computational resources but is usually affected by noise from the
depth inputs, leading to 3D geometry errors.

To help reduce such errors, we propose RGBD Routed
Blending, a novel two-stage pipeline that fuses multiple noisy
RGB-D images in 3D space and renders virtual color and depth
output images from a new camera viewpoint. We envision our
work leading toward a real-time solution to 3D fusion and render-
ing tasks where the depth sensor contains various types of noise,
and the camera locations are not free to move. The primary con-
tributions of our work are summarized as follows:

• We propose a novel deep-learning-based end-to-end two-
stage pipeline that reads RGB-D images from multiple cam-
eras as input and renders an RGB-D image pair from a target
viewpoint as output.

• We propose RGBD Routing Network, an RGBD-image-
based depth map denoising approach inspired by [22], to
predict a denoised depth image and its associated confidence
map for each RGB-D input. This improves the robustness of
the denoising performance under various types of depth sen-
sor noise.

• We quantitatively evaluate our method on a synthetic dataset
[25] with 3D humanoid animations and a self-collected real
dataset using four RGB-D cameras for video conferencing
image quality evaluation.

• We utilize blending weights in the color rendering process
to fill in the vacant pixels that the cameras cannot cover, im-
proving the overall visual quality of the output color image.

Related Works
Facial Synthesis

Some methods work from the original camera viewpoint and
synthesize facial images directly from color inputs and unable to
convert side face images to frontal face images [4, 26, 3]. Others
are subject-dependent and require pre-training for specific sub-
jects [5, 27]. While some algorithms don’t require prior training
of target subjects [28, 29, 30, 31, 32, 33, 34, 35, 36, 37], they
face challenges in balancing rendering quality and flexible cam-
era viewpoints.

In contrast, 3D model-based approaches capture target faces
with RGB or RGB-D cameras to generate 3D models [38, 39,
40, 41, 42]. These models allow rendering faces from any view-
point, even in real-time applications. However, recent solutions
aim to avoid pre-building 3D models. They correspond 2D fea-
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ture points to 3D space and locate these points within the pipeline
[6, 31, 43, 44, 45]. Nevertheless, these approaches often produce
distorted images of clothing, glasses, and hair. While a few so-
lutions achieve better image quality, they lack consistency across
sequential video frames or fail to meet real-time requirements for
video conferencing.

Single-camera Dynamic Reconstruction
A series of solutions employ RGB-D cameras as input de-

vices. Since a single RGB-D frame still lacks 3D information
from multiple views. DynamicFusion [12] proposed a pipeline
that tracks the target object using the temporal information from
the RGB-D camera and inpainting the invisible parts when render-
ing the image output. Many studies [7, 8, 9, 10, 11, 12, 11, 13, 14]
have leveraged similar schemes in which RGB-D cameras con-
tinuously collect data to maintain a 3D canonical model in the
back-end related to the geometry of the dynamic object.

This solution offers the advantage of requiring less hardware.
However, it comes with a drawback of high computational com-
plexity due to maintaining a canonical model with 3D grids or
feature points in the back-end. As a result, current dynamic re-
construction methods are not yet suitable for real-time video con-
ferencing applications.

Multi-camera Static Reconstruction
As mentioned in previous sections, acquiring information

from a single camera is limited, and manipulating temporal in-
formation increases computational complexity. Researchers have
addressed these challenges by obtaining 3D surface information
from multiple camera angles [46, 47]. Various approaches have
been used, such as customized hardware setups with mirrors and
projectors [48], or using multiple depth cameras for simultaneous
RGB-D data collection [49, 18, 24]. These methods leverage syn-
chronized cameras to measure the video conferencing participant
as a static object, eliminating the need for processing temporal
signals.

Before rendering the output color image, depth information
of the target object is fused using multi-view 3D reconstruction
algorithms. Traditional techniques merge point clouds or trans-
fer depth maps into 3D volumes for fusion [15, 50, 51, 19], with
Truncated Signed-Distance Function (TSDF) being a commonly
used method [15].

However, these algorithms are prone to noise and outliers,
leading to 3D errors in the fused geometry. To improve accu-
racy, online optimization [52, 53, 54] and deep neural networks
[55, 56, 23, 22] have been employed. For example, 3DMV [23]
uses TSDF fusion and a 3D neural network for segmentation. Oct-
net [57] and OctnetFusion [58] employ octree structures and deep
3D convolutional networks. RayNet [59] incorporates perspec-
tive projection and occlusion physics. SurfaceNet [60] converts
stereo images to 3D voxels and uses a computationally expen-
sive deep neural network for fusion. RoutedFusion [22] acceler-
ates processing with two sub-networks, Depth Routing Network
and Depth Fusion Network. It takes the depth maps as input and
leverages the Depth Routing Network for denoising, followed by
the Depth Fusion Network to fuse a TSDF volume without color
information.

Another series of 3D reconstruction algorithms is repre-
sented by NeRF [61], which uses a deep Multi-Layer Perceptron

(MLP) to represent the scene’s geometry and appearance by fitting
a neural radiance field to RGB images. After the training, it can
synthesize novel views of a 3D scene with high quality. The pri-
mary drawbacks of NeRF [61] are its long training and rendering
times. Rendering must happen in real-time for interactive appli-
cations, making its slow rendering speed a significant limitation.
Many subsequent studies have attempted to accelerate the train-
ing and rendering processes. KiloNeRF [62] divides the scene
into thousands of smaller MLPs and significantly speeds up the
rendering process and can render an image in approximately 22
milliseconds. InstantNGP [63] introduces multiresolution hash
table that allows the use of a smaller network without sacrific-
ing quality, and achieves training of high-quality neural graphics
primitives in a matter of seconds. However these algorithms are
designed for static objects, making them ill-suited for dynamic en-
vironments like video conferences where each moment introduces
a new scene. Even if each scene only requires a few seconds for
training, it’s still challenging to achieve real-time 3D reconstruc-
tion and rendering. By the time of submission, some studies, such
as Tensor4D [64], HumanRF [65], and HexPlane [66] attempt to
decompose voxels with temporal information from 4D to 2D to
enhance the algorithm’s computational speed in dynamic scenes.
Although achieving real-time performance and high resolution si-
multaneously remains a challenge with this approach, it still rep-
resents a promising research direction for the future.

Method
As described in Section , the present state-of-the-art 3D fu-

sion algorithms take into account one or two of the following three
technical requirements: real-time performance, anti-noise robust-
ness, and color quality. To achieve all three credentials described
above in video conferencing applications, we propose an end-to-
end two-stage 3D surface fusion and coloring algorithm called
RGBD Routed Blending. Fig. 1 shows the overall flowchart of
our proposed method.

The input of our method is the RGB-D images of a video
conferencing participant from multiple pre-calibrated and pre-
synchronized cameras. Therefore, the target participant can be
treated as a static object during the processing. In the first stage,
the geometry fusion stage, we propose an RGBD Routing Net-
work followed by a Depth Integrating Network to fuse the RGB-
D input images to a 3D volumetric geometry. As an intermediate
product, this fused geometry is sent to the second stage, the color
blending stage, along with the input color images to render a new
color image from the target viewpoint. Sections and describe
the two stages in detail. In a real-world videoconferencing envi-
ronment, a depth image is not necessary, but generating a depth
image can help us better measure the geometric accuracy of the
algorithm. Consequently, we choose to render an RGB-D image
pair with a frontal view of the video conferencing participant as
the final output of our algorithm.

Geometry Fusion
The goal of geometry fusion is to construct the 3D informa-

tion of an object by fusing the RGB-D camera inputs. Inspired
by RoutedFusion [22], our geometry fusion stage consists of two
connected deep neural networks to better deal with the noise car-
ried in the depth images. We name our geometry fusion stage as
RGBDRoutedFusion. The first neural network is the RGBD Rout-
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Figure 1. The overall flowchart of our proposed RGBD Routed Blending algorithm based on RGB-D camera images.

ing Network, followed by the second neural network the Depth
Integrating Network as shown in Fig. 2.

For the RoutedFusion [22] algorithm, it focuses solely on
depth images, omitting color information. Employing the origi-
nal Depth Routing Network from the RoutedFusion [22] approach
would segregate depth and color processing, resulting in discrep-
ancies between color and object contours in the final renderings.
Such mismatches often manifest in noisy regions of depth images
and along object boundaries. In Section , we expanded the input
format to RGB-D image pairs, thereby integrating both depth and
RGB data. By leveraging the inherent clarity of color images, we
aim to mitigate the noise present in depth images.

RGBD Routing Network
In Fig. 2, the RGBD Routing Network reduces input im-

age depth noise by processing color and depth information. It
generates a noise-reduced depth map and confidence map using
a U-Net [67] encoder-decoder model. The network includes con-
volutional layers, activation functions, max-pooling layers, and
upsampling layers. We removed normalization layers to mitigate
depth-dependent bias, following RoutedFusion [22].

For all K source cameras, K = 3 in our experiment, each
RGB-D image from the kth camera is processed by the RGBD
Routing Network separately. The input tenor DRGBD

k=1,2,...,K ∈
Rwidth×height×4 is a 4-channel RGB-D image, and the two out-
put tensors are the denoised depth map D̂k and the corresponding
confidence map Ck. Both output tensors have a channel size of 1
and will be used in the later Depth Integrating Network for geom-
etry fusion.

During training, the RGBD Routing Network and the Depth
Integrating Network are trained separately. The loss function of
the RGBD Routing Network consists of depth prediction loss and
confidence loss [22]. The depth prediction loss can be obtained
by adding the L1 loss of the predicted depth value and the ground-
truth depth value, and the L1 loss of the predicted depth map gra-
dient and the ground-truth depth map gradient [68]. The confi-
dence value plays a weighting role in the loss function so that it
can be trained in an unsupervised manner [69]. We expect that the
higher the confidence, the lower the overall loss. Therefore, the
final loss function LRouting for the RGBD Routing Network is:

LRouting = ∑
i

{
ciL1(yi, ŷi)+ ciL1(▽yi,▽ŷi)+λ logci

}
(1)

where i is the index of pixels, y is the predicted denoised depth

map, ŷ is the ground-truth no-noise depth map, c is the confidence
map, ▽ is the gradient, and λ is an empirical hyperparameter,
which we set to 0.015, following [22].

Depth Integrating Network
In Fig. 2, the Depth Integrating Network fuses denoised

depth images to create a 3D TSDF volume with preserved TSDF
values V and weights W . We leverage the same architecture
as RoutedFusion [22]. For detailed information on the network
structure and hyper-parameters, please refer to Appendix ??. We
confirmed that joint training doesn’t enhance overall performance,
as claimed in RoutedFusion [22]. Hence, the Depth Integrat-
ing Network is independently trained without the RGBD Routing
Network. A distinction between our method and RoutedFusion
lies in the optimal setting for the hyper-parameter S. While Rout-
edFusion suggests that S is best set to 5, our findings indicate that
its optimal value fluctuates depending on the dataset. As detailed
in Section , we adopt S = 9 for DeformingThings4D [25] dataset
and S = 5 for our real dataset.

Color Blending
Weighted Color Blending

As described in Section , our proposed algorithm has ob-
tained a TSDF volume based on the RGB-D image inputs
DRGBD

k=1,2,...,K from all the K source cameras. The fused surface can
be calculated by searching for the zero level set [70] among the
final TSDF values V ∗

K .
To take advantage of the high-resolution color images from

each camera, we, inspired by Buehler [71], executed a Weighted
Color Blending scheme that projects color pixels onto the fused
3D surface and then combines them according to their blending
weights ws,k. More details are introduced in Appendix ??. When
pixels from multiple cameras fall at the same point p, the final
color Ω∗

p is the weighted average of these pixel colors Ωp,k:

Ω
∗
p =

∑k Ωp,k ·wp,k

∑k wp,k
(2)

Fig. 3 shows an example of the contribution of the three
different source cameras to the final rendered image result. Fig.
3 (a, c, e) are the results of projecting the color pixels from each
camera onto the 3D surface. Fig. 3 (b, d, f) shows the weights
corresponding to each pixel of the images in Fig. 3 (a, c, e), with
brighter colors representing higher weights and vice versa. Fig.
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Figure 2. The flowchart of the RGBDRoutedFusion network that we propose in the geometry fusion stage.

3 (g) is the weighted average RGB image Ω∗ produced by the
example color pixels and their blending weights. There will still
be some tiny spots on the 3D surface that are not covered by any
source cameras. From the perspective of the target camera, these
tiny spots look like blank holes, as shown in Fig. 3 (g).

Hole Filling
Denote Ω∗ as the weighted average RGB image produced

by the Weighted Color Blending module, as shown in Fig. 3 (g).
If a pixel with index h in the image Ω∗ is not covered by the
color pixels from any of the source cameras, then the pixel Ω∗

h
will appear as a black cavity.

Define M∗ as the valid mask of image Ω∗, where colors are
assigned by the Weighted Color Blending module. Define M∗

not
as the negative of the mask M∗. Then, M∗

not contains all the back-
ground pixels and the black cavities. To localize these blank pix-
els more accurately, we dilate the valid mask M∗ of image Ω∗

with a step size of 1, and then erode it with a step size of 1. After
the erosion, we calculate the intersection of M∗

not and the eroded
mask, i.e.:

MH = Erode(Dilate(M∗))
⋂

M∗
not (3)

In this way, we localize MH , the mask of the black holes,
without destroying the contour of M∗ so that they can be filled
with colors in the next step.

Given the mask of the holes MH , we fill each pixel h of these
cavities H by the weighted average of the colors Ω∗

δh and blending
weights W ∗

δh of their neighboring pixels δh, i.e.:

Ω
∗
h =

∑ j∈δh Ω∗
δh ·w

∗
δh

∑ j∈δh w∗
δh

(4)

where h is the index of each blank pixel within the cavities mask
MH , δh ∈ M∗ is the indices of the valid neighboring pixels of
h, W ∗

δh is the blending weights of pixels δh provided by the
Weighted Color Blending module, and the Ω∗

h is the output color
of the holes filled by the Hole Filling module. An example of
the final RGB image produced by the Color Blending module is
shown in Fig. 3 (h).

Datasets and Setup
Training Datasets
Datasets for the RGBD Routing Network

For the RGBD Routing Network, its training input is re-
quired to contain paired RGB-D images, and it is also necessary
to include noise-free depth images as ground-truth when calculat-
ing the routing loss in Eq. 1. A possible training approach is to
adopt a synthetic dataset, such as the SceneNet [72], which pro-
vides RGB-D images of various virtual indoor scenes. We sim-
ulate noisy depth images input by overlaying depth noise on the
ground-truth depth images. In this paper, three different types of
noises are created to simulate the possible depth noise produced
by various depth sensors. The three types of noise are (1) Depth
Value noise; (2) Salt-and-pepper noise that simulates outliers; and
(3) Gaussian blur that mimics the sticky pixels caused by miscal-
ibration between camera color and depth sensors.

Datasets for the Depth Integrating Network
The Depth Integrating Network is trained using a dataset

containing complete 3D models of various objects. This network
is capable of generating TSDF volumes and corresponding depth
images from any camera viewpoint. For training purposes, we
utilize ShapeNet [73] following the methodology of RoutedFu-
sion [22]. While the Depth Integrating Network does not require
color images, the depth images used as input may still contain
noise. Therefore, similar to the RGBD Routing Network, we ran-
domly apply one of three simulated noise types to the noise-free
ground-truth depth images.

Test Datasets
The test set is crucial for evaluating the rendering quality of

the videoconferencing algorithm. It should include RGB-D im-
ages of humanoid models from various viewpoints relevant to the
videoconferencing environment. Ground-truth images are neces-
sary for accurate numerical computations. To achieve this, we uti-
lize both a synthetic dataset (add our simulated noises), Deform-
ingThings4D [25], and our self-collected real dataset for quanti-
tative evaluation. Figure 4 provides an overview of the camera
locations used in these datasets, with additional details provided
in Appendix ??. We believe that the experimental results pre-
sented in this paper should also be verifiable in similar datasets,
such as the commercial RenderPeople dataset [74].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 3. Example of our proposed Color Blending module. (a, c, e): The

projected color pixels from different source cameras; (b, d, f): The blending

weights of each pixel with respect to (a), (c), and (e); (g) The weighted aver-

age result; (h) The final output color image after hole filling.

Experiments
Baseline Methods

Based on their generality and novelty, we have selected these
three representative algorithms, Truncated Signed-Distance Func-
tion (TSDF) [15], Starline [24], and RoutedFusion [22], as bench-
mark algorithms. For a fair comparison in the Experiments Sec-
tion , we choose the voxel size = 1

128 meter when implementing
these algorithms.

For the TSDF and the Starline algorithms, the truncated dis-
tance = 1

32 meter. When comparing RoutedFusion with other
methods, since RoutedFusion only utilizes depth images and not
color images, we treat it as a substitute for the geometry fusion
stage. Unlike TSDF, RoutedFusion has no concept of truncated
distance, but a similar term S is used to determine the range of the
influence of each pixel on the depth images, and we followed such
an idea in our algorithm (Section ). The network framework and
the pre-trained weights of RoutedFusion are provided by Weder
et al. [22], with the voxel size = 1

128 meter and S = 9.
For ablation studies, the Geometry Fusion stage has four

options: TSDF, Starline-TSDF (modified TSDF), RoutedFusion,
and RGBDRoutedFusion (ours). The Color Blending stage can
be divided into two sub-modules: Coloring and Hole Filling. We
combine different choices for each submodule to permute nine
candidate ablation pipelines.

Figure 4. Sketch of the camera locations when generating synthetic data

and collecting real data.

Method 1 is the original TSDF algorithm [15], which per-
forms geometry fusion without color information. Method 2 adds
colors to Method 1 by averaging the colors in each 3D voxel.
Method 3 replicates the Starline algorithm [24], incorporating
the Starline-modified TSDF module [24] and the Weighted Color
Blending module. Method 4 improves Method 3 by adding the
Hole Filling module to compare its contribution to the pipeline.
Method 5 is RoutedFusion [22], utilizing their pre-trained weights
for experimental results, which is also a geometry fusion algo-
rithm based solely on depth images without color information.
Method 6 adds the Weighted Color Blending module to Method
5 for coloring the fused surface. Method 7 further incorporates
the Hole Filling module to Method 6 to assess its influence on
the final results. Method 8 is our experimental method, compris-
ing a geometry fusion stage (RGBDRoutedFusion) and a coloring
stage (Weighted Color Blending module), without the Hole Fill-
ing module. Method 9 is our proposed final algorithm, which adds
the Hole Filling module to Method 8.

Evaluation Metrics
Both the geometry quality and the coloring quality affect the

overall quality of the test algorithms. In practical applications, we
tend to filter out the background to save computational resources.
Therefore, we quantitatively measure the geometry and the col-
oring quality of pixels related to the foreground portrait. More
details are attached in Appendix ?? and ??.

Results on the Synthetic Dataset
We compare our proposed algorithm with baseline methods

on the simulated noisy test dataset using the introduced measures.
The input depth images are generated according to Section , while
the RGB images remain unchanged.

We select the TSDF [15] (Method 2), the Starline [24]
(Method 3), the RoutedFusion [22] + WeightedColorBlending
(Method 6), and our proposed pipeline (Method 9) as the four
representative methods and show two representative visual sam-
ple results in Figs. 5 and Appendix ??.

When the input depth image has significant noise or outliers,
as shown in Tables 1, our algorithm outperforms the other bench-
mark algorithms in geometry accuracy.

We then analyze each algorithm from a holistic perspective
regarding the color quality of their output RGB images. Regard-
less of the noise scale, the results presented in all Tables are con-
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(a) ground-truth RGB (b) ground-truth depth (c) ground-truth IoU mask

(d) TSDF (Method 2) (e) TSDF (Method 2) (f) TSDF (Method 2)

(g) Starline (Method 3)(h) Starline (Method 3) (i) Starline (Method 3)

(j) Method 6 (k) Method 6 (l) Method 6

(m) Ours (Method 9) (n) Ours (Method 9) (o) Ours (Method 9)
Figure 5. Results of our method and the baseline methods on the synthetic

dataset where the input depth images contain depth and outliers noise.

The left column is the output RGB image of each method. The middle column

is the output depth image of each method. The right column is the IoU of

each method, where the intersection areas, the missing areas, and the false

prediction areas are colored in cyan, yellow, and magenta, respectively.

sistent, i.e., Starline [24] (Method 3) performs the best within the
intersection mask, and our solution performs best within the union
mask. Considering a video conference scenario, despite the fact
that one can remove the background, the final RGB image pre-
sented to the user by each pipeline is directly related to the union
mask. Therefore, the measurement result within the union mask
is more noteworthy than the measurement within the intersection
mask, which indicates that our proposed algorithm outperforms
the other algorithms in terms of the rendering result of the output
color image.

The conclusions are evident when comparing algorithm re-
sults in Fig 5. The figures have three columns: output RGB im-
ages, depth images, and predicted masks versus ground-truths.
Intersection masks (in cyan) show correct predictions. Pixels
in the intersection mask belong to both the ground-truth mask
and the predicted mask. Missing pixels (in yellow) are those in
the ground-truth mask but missed by the prediction, while false
predictions (in magenta) are pixels in the predicted mask but
not in the ground-truth mask. From the result images, we ob-
serve that depth image noise indeed leads to geometry errors, and
deep-learning-based methods generally exhibit better resilience to
depth noise compared to traditional computer vision algorithms.
By comparing the performance of our algorithm (Method 9) hor-
izontally across all visual results generated by different types

Pipeline Modules Geometry Error

Stage1 Stage2
Intersection
over Union

Intersection
Mask

Union Mask IoU punished
Method
Index Geometry

Fusion
Coloring

Hole
Filling

Segmentation
IoU ↑

Depth RMSE
(mm) ↓

Depth RMSE
(mm) ↓

Depth RMSE
(mm) ↓

1 TSDF [15] × × 0.7655 99.3956 1259.5125 129.8512

2 TSDF [15]
Color

Averaging
× 0.7655 99.3956 1259.5125 129.8512

3 Starline-TSDF [24]
Weighted

Color
Blending

× 0.8771 101.2050 867.2225 115.3856

4 Starline-TSDF [24]
Weighted

Color
Blending

√ 0.9015 101.4389 777.1757 112.5272

5 RoutedFusion [22] × × 0.8654 32.6371 910.0795 37.7122

6 RoutedFusion [22]
Weighted

Color
Blending

× 0.8939 32.5036 804.2666 36.3623

7 RoutedFusion [22]
Weighted

Color
Blending

√ 0.8974 32.5272 792.6656 36.2452

8
RGBDRoutedFusion

(ours)

Weighted
Color

Blending
× 0.9249 27.8211 682.0188 30.0805

9 RGBDRoutedFusion
(ours)

Weighted
Color

Blending

√ 0.9331 27.8302 644.6320 29.8270

Geometry quality evaluation on the synthetic dataset where
the input depth images contain depth and outliers noise fol-
lowing Eq. ??.

Color Quality (Intersection Mask) Color Quality (Union Mask)
Y channel of YCrCb All RGB channels Y channel of YCrCb All RGB channels

Method Index
PSNR ↑ SSIM ↑ LPIPS Alex

Loss ↓
LPIPS VGG

Loss ↓ PSNR ↑ SSIM ↑ LPIPS Alex
Loss ↓

LPIPS VGG
Loss ↓

1 N/A N/A N/A N/A N/A N/A N/A N/A
2 19.7613 0.9661 0.0310 0.0465 13.0263 0.9141 0.1275 0.0893
3 23.1388 0.9902 0.0073 0.0146 13.9261 0.9346 0.1408 0.0842
4 22.9929 0.9838 0.0134 0.0321 16.5174 0.9613 0.0988 0.0723
5 N/A N/A N/A N/A N/A N/A N/A N/A
6 23.2471 0.9867 0.0103 0.0207 16.0785 0.9561 0.0654 0.0575
7 23.2190 0.9847 0.0125 0.0266 16.9943 0.9653 0.0495 0.0497
8 23.3847 0.9871 0.0092 0.0196 16.6647 0.9611 0.0552 0.0549
9 23.3432 0.9852 0.0112 0.0252 18.5115 0.9737 0.0345 0.0410

Color quality evaluation on the synthetic dataset where the in-
put depth images contain depth and outliers noise. Method
Index is the same as Table 1.

of noise, we can observe consistent performance across various
noise types.

For ablation studies, we investigate the contribution of each
sub-module to the overall pipeline. In the geometric fusion stage,
our proposed deep-learning-based algorithm RGBDRoutedFui-
sion shows strong robustness among different types of noise.
In the coloring stage, since Weighted Color Blending takes full
advantage of the fact that the resolution of the color image is
higher than the resolution of the 3D geometry, the Weighted Color
Blending module outperforms the Color Averaging module in
terms of both the geometric accuracy and the color quality. In the
Color Blending stage, both Weighted Color Blending and Hole
Filling enhance the geometry accuracy and the color quality of
the overall pipeline. Detailed comparisons are listed in Appendix
??.

Results on the Real Dataset
The real dataset was collected with four RGB-D cameras, as

stated in Section . Unlike the synthetic dataset, the data collected
by the real cameras are not perfect. There are mainly two types of
errors in the real camera data. One is the synchronization errors
from each camera’s color and depth sensors (Appendix Fig. ??),
and the other is the calibration errors of the extrinsic and intrinsic
matrices between all camera sensors. The lack of synchronization
between the two camera sensors impacts the edge contours, sub-
sequently influencing our IoU calculations. Therefore, the data
collected from the target camera position is not strictly accurate
and can only be interpreted as reference images, not as ground-
truth images.

We present each algorithm’s geometry accuracy and color
quality on the real dataset in Tables 3 and 4. Similar to Fig. 5, we
show the final rendering results in Fig 6.

By comparing Table 3 with Table 1, the geometric accuracy
of each method on the real dataset slightly differs from their eval-
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uation results on the synthetic dataset. The real dataset is neither
noise-free nor heavy-noise but a light-noise dataset. In this case,
Method 4 and Method 9 jointly obtained the best performance.
Considering that the scores of these two schemes are close, it is
challenging to strictly deduce which of these two methods has the
absolute advantage in geometric accuracy. Each of them has its
own merits. Note that the dataset reference images are subject
to data-collecting errors. Therefore, the evaluation of the geom-
etry quality should only serve as a reference rather than a strict
groundtruth.

The color quality of each method is evaluated in Table 4.
Starline [24] (Method 3) outperforms other methods within the
intersection mask, and ours (Method 9) tops within the union
mask, which agrees with the conclusion in Table 2 for the syn-
thetic dataset. Given that when presenting final results to users,
the color quality over the union mask is of greater importance
than the color quality over the intersection mask, our algorithm
performs relatively better in this regard.

(a) reference RGB (b) reference depth (c) reference IoU mask

(d) TSDF (Method 2) (e) TSDF(Method 2) (f) TSDF(Method 2)

(g) Starline (Method 3)(h) Starline (Method 3)(i) Starline (Method 3)

(j) Method 6 (k) Method 6 (l) Method 6

(m) Ours (Method 9) (n) Ours (Method 9) (o) Ours (Method 9)
Figure 6. Results of our method and the baseline methods on our collected

real dataset. The left column is the output RGB image of each method. The

middle column is the output depth image of each method. The right column

is the IoU of each method, where the intersection areas, the missing areas,

and the false prediction areas are colored in cyan, yellow, and magenta,

respectively.

Conclusion
We propose RGBD Routed Blending, a novel two-stage

pipeline for video conferencing. It fuses multiple noisy RGB-D
images in 3D space and renders virtual color and depth output im-
ages from a new camera viewpoint. We evaluate our method on
both synthetic and real datasets, demonstrating its superior per-
formance compared to state-of-the-art baseline methods in terms
of geometry accuracy and color quality. By proposing the RGB-
DRoutedFusion network (Section ), a subnet in the geometry fu-
sion stage of our pipeline, we demonstrate that our deep neu-

Pipeline Modules Geometry Error

Stage1 Stage2
Intersection
over Union

Intersection
Mask

Union Mask IoU punished
Method
Index Geometry

Fusion
Coloring

Hole
Filling

Segmentation
IoU ↑

Depth RMSE
(mm) ↓

Depth RMSE
(mm) ↓

Depth RMSE
(mm) ↓

1 TSDF [15] × × 0.8848 20.0414 402.5280 22.6507

2 TSDF [15]
Color

Averaging
× 0.8848 20.0414 402.5280 22.6507

3 Starline-TSDF [24]
Weighted

Color
Blending

× 0.9163 20.0808 335.0653 21.9140

4 Starline-TSDF [24]
Weighted

Color
Blending

√ 0.9304 20.1618 304.8974 21.6697

5 RoutedFusion [22] × × 0.8406 31.9583 457.5653 38.0165

6 RoutedFusion [22]
Weighted

Color
Blending

× 0.8936 31.8170 369.9614 35.6039

7 RoutedFusion [22]
Weighted

Color
Blending

√ 0.9033 31.8051 352.1910 35.2106

8
RGBDRoutedFusion

(ours)

Weighted
Color

Blending
× 0.9144 19.8470 338.3810 21.7048

9 RGBDRoutedFusion
(ours)

Weighted
Color

Blending

√ 0.9285 19.8294 309.8048 21.3560

Geometry quality evaluation on our collected real dataset.
Color Quality (Intersection Mask) Color Quality (Union Mask)

Y channel of YCrCb All RGB channels Y channel of YCrCb All RGB channels
Method Index

PSNR ↑ SSIM ↑ LPIPS Alex
Loss ↓

LPIPS VGG
Loss ↓ PSNR ↑ SSIM ↑ LPIPS Alex

Loss ↓
LPIPS VGG

Loss ↓
1 N/A N/A N/A N/A N/A N/A N/A N/A
2 23.2661 0.9732 0.0294 0.0511 21.7625 0.9629 0.0479 0.0632
3 24.2709 0.9780 0.0179 0.0236 21.9541 0.9482 0.0727 0.0632
4 24.2625 0.9722 0.0285 0.0405 22.8712 0.9616 0.0476 0.0576
5 N/A N/A N/A N/A N/A N/A N/A N/A
6 23.9192 0.9757 0.0206 0.0270 21.1359 0.9472 0.0726 0.0634
7 23.9174 0.9707 0.0329 0.0427 21.9806 0.9612 0.0448 0.0521
8 24.0535 0.9758 0.0209 0.0275 21.4448 0.9489 0.0710 0.0624
9 24.0524 0.9711 0.0322 0.0426 22.4581 0.9633 0.0435 0.0504

Color quality evaluation on our collected real dataset. Method
Index is the same as Table 3.

ral network with RGB-D input has better 3D reconstruction per-
formance than the network leveraging depth images only. Our
method also improves the color quality of the overall rendering
results by filling the cavity pixels with their neighboring informa-
tion.

One drawback we observed in all benchmark algorithms, in-
cluding ours, is that alignment errors of RGB-D sensors, caused
by the high-speed motion, reduce the quality of the output im-
age. For example, the RGBD camera we use to collect our real
dataset is equipped with an RGB sensor and a depth sensor, and
there is a < 0.01s difference between their data collection times.
Accordingly, we observe a mismatch between the edges of the
color image and the depth image. Future work should improve
sensor synchronization or investigate new methods to align the
unmatched pixels.
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