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Abstract
In this paper, we propose a new solution for synthesizing

frontal human images in video conferencing, aimed at enhancing
immersive communication. Traditional methods such as center
staging, gaze correction, and background replacement improve
the user experience, but they do not fully address the issue of off-
center camera placement. We introduce a system that utilizes two
arbitrary cameras positioned on the top bezel of a display mon-
itor to capture left and right images of the video participant. A
facial landmark detection algorithm identifies key points on the
participant’s face, from which we estimate the head pose. A seg-
mentation model is employed to remove the background, isolating
the user. The core component of our method is a video frame inter-
polation technique that synthesizes a realistic frontal view of the
participant by leveraging the two captured angles. This method
not only enhances visual alignment between users but also main-
tains natural facial expressions and gaze direction, resulting in a
more engaging and life-like video conferencing experience.

Introduction
In recent years, video communication has become an integral

part of daily life, facilitating everything from personal interactions
to professional teleconferencing. However, despite its widespread
adoption, the experience of face-to-face communication remains
elusive in most video-based interactions. This limitation stems
primarily from the design of existing devices, which typically
rely on a single camera. Such setups restrict the viewing angle
to a fixed perspective, preventing participants from seeing each
other in a natural, multi-dimensional way. As a result, the lack
of spatial depth and dynamic visual engagement undermines the
sense of presence and connection central to in-person communi-
cation. To improve the telecommunication experience, numerous
efforts have been made to develop engaging video systems so that
remote users across the internet could feel like they meet in the
same physical space. The viewers are enabled to view the other
participants at desired viewing angles other than the captured po-
sition.

Various 3D reconstruction based methods have proposed the
utilization of depth sensors to generate the geometry of the video
participants and rerender the model for the viewer at the required
viewing angle [1]. These methods, however, largely depend on
the expensive hardware to perform high-resolution captures and
reconstructions, resulting in difficulty in popularizing. With the
improvement of artificial intelligence, some methods propose to
leverage the flexibility of machine learning models to remap the
low-dimensional 2D information from a monocular RGB cam-

Figure 1: Illustration of our camera setup and frontal view synthesis
method.

era to 3D latent space [2], [3]. These methods are successful in
reducing the cost of capture devices, but due to the heavy cost
of computation, they require top-end graphics cards to perform
real-time inference. A third group of methods looks for a middle
ground, where they design to use multiple RGB cameras for the
capture and perform novel view synthesis directly on the 2D im-
age space to maintain a reasonable low computation cost [4], [5].
These methods, however, are prone to background distractions of
large motions, which distorts the edges of synthesized faces.

In this work, we introduce a frontal view synthesis method
for immersive video conferencing based on video frame interpo-
lation methods as illustrated in Figure 1. In our proposed setup,
we place a pair of RGB cameras on the top corner of the moni-
tor to capture a left and right view of the video participant. The
baseline of the cameras is flexible and can be determined based
on the size of the monitor. Then, a facial landmark detection al-
gorithm is applied to the captured image for the facial landmark
detection, which is used to estimate the angle of head rotation and
align the image pairs. Using the detected landmarks for image
alignment also makes our proposed method calibration-free. To
solve the problem of distractions from the background, we pro-
pose performing background removal before video frame inter-
polation. We also designed a light-weight CNN-ViT hybrid video
frame interpolation model that performs real-time frame interpo-
lation of high-resolution images.

In summary, our contributions are:

• We propose a new calibration-free frontal view synthesis
method that only requires two RGB cameras and a con-
sumer graphics card, which is affordable compared to ex-
isting methods.

• Our proposed methods solve the challenges of sophisticated
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Figure 2: The overall pipeline of our proposed frontal view synthesis method. Our pipeline consists of three major components: alignment and cropping,
background removal, and video frame interpolation.

calibration and distraction from the background by introduc-
ing facial landmark detection and background segmentation
into the pipeline.

• We propose a novel CNN-ViT hybrid model architecture
for video frame interpolation, capable of performing high-
quality video frame interpolation in real-time.

Related Works
Frontal View Synthesis aims to generate a forward-facing

view of a subject from non-frontal or arbitrary angles, playing
a crucial role in applications such as face recognition, virtual
avatars, and photorealistic reenactment. Traditional approaches
rely on 3D Morphable Models (3DMMs) [6], [7], which fit
a parametric face model to the input and re-render it from a
frontal perspective. However, these methods often struggle with
the preservation of texture and identity consistency [8]. Deep
learning-based techniques have significantly improved frontaliza-
tion quality, with Generative Adversarial Networks (GANs) [9]–
[11] learning to synthesize realistic frontal views while maintain-
ing identity features. More recent neural rendering methods, such
as NeRF-based and implicit function [12], [13] approaches, fur-
ther enhance synthesis by leveraging multi-view consistency and
view-dependent effects. Additionally, self-supervised and few-
shot learning strategies [14] enable robust synthesis even under
extreme poses and occlusions. Despite these advancements, chal-
lenges remain in handling occlusions, extreme lighting variations,
and preserving fine details, motivating research into hybrid tech-
niques that combine explicit geometry priors with neural synthe-
sis.

Facial Landmark Detection is a fundamental task in com-
puter vision, aiming to localize key facial points for applications
in face recognition, expression analysis, and 3D face reconstruc-
tion. The advent of deep learning significantly improved land-
mark detection, with Convolutional Neural Networks (CNNs)
[15] and Heatmap-based Regression [16] achieving robust and
accurate predictions. More recent works leverage Graph Neural
Networks (GNNs) [17] and Vision Transformers (ViTs) [18] to
model spatial relationships between landmarks and enhance gen-
eralization across diverse datasets. Additionally, self-supervised
and multi-task learning approaches [19] enable landmark detec-
tion under extreme conditions, such as profile views and occlu-
sions.

Portrait Segmentation is a key task in computer vision,
aiming to separate a subject from the background for applica-
tions such as virtual backgrounds, augmented reality (AR), and
computational photography [20]. Traditional approaches relied

on color-based segmentation and graph-cut methods, which strug-
gled with complex backgrounds and varying lighting conditions.
The advent of deep learning led to significant improvements, with
Fully Convolutional Networks (FCNs) and U-Net architectures
[21] enabling accurate pixel-wise segmentation. More recent ap-
proaches leverage wide receptive field and self-attention mecha-
nisms [22], [23], improving boundary refinement and robustness
to occlusions. Additionally, lightweight models [24], [25] opti-
mized for mobile devices enable real-time portrait segmentation
for AR applications.

Video Frame Interpolation (VFI) aims to synthesize inter-
mediate frames between existing ones, enhancing temporal reso-
lution for applications such as slow motion generation, frame rate
upscaling, and novel view synthesis. Early methods relied on op-
tical flow estimation [26] to model motion between consecutive
frames, followed by motion compensation and warping. How-
ever, forward warping optical flow-based methods often struggled
with occlusions and complex motion [27]. Deep learning sig-
nificantly advanced VFI, with learnable backward warping flow
prediction and deep recurrent architectures [28] learning motion
priors for more accurate interpolation. Recent methods, such as
Transformer-based [29], further improve performance by consid-
ering long-range dependencies and scene geometry. Despite these
advancements, challenges remain in handling large motions, es-
pecially in the areas where there is no correspondence in the input
image pairs [4].

Method

Overall Pipeline

We propose a frontal view synthesis pipeline composed of
three key modules: Alignment and Head Pose Estimation, Back-
ground Removal, and Video Frame Interpolation, as illustrated in
Figure 2. When input images, denoted as im1, im2 are captured
using two cameras positioned at the left and right corners of the
screen, facial landmark detection is first applied to both images.
The detected landmarks facilitate aligned cropping and head pose
estimation. The relative spatial position of the novel view de-
noted as t ∈ (0,1), is determined based on the yaw angle of the
head poses. To eliminate background distractions, a portrait seg-
mentation model is applied to the cropped image pairs. Finally,
the cleaned image pairs are processed by the video frame interpo-
lation module to generate the synthesized novel view. Since our
model is designed for real-time applications, each component is
carefully selected to balance both accuracy and efficiency.
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Figure 3: The architecture of our video frame interpolation model.

Alignment
The alignment and head pose estimation module is con-

structed around a facial landmark detection model PFLD [30],
which is accurate and efficient. The input of the PFLD is an RGB
image of size 112× 112 and we extract five points: the left cor-
ner of the left eye, the right corner of the right eye, the nose, and
left and right mouth corners, from the predicted landmarks. The
pixel coordinates of the points are denoted as (xn,yn),n ∈ {1..5}.
To support image pairs taken from webcams with different focal
lengths, we first resize the image with a smaller focal length. The
scaling factor fs is calculated using:

fs =
y1

1 + y1
2 − y1

4 − y1
5

y2
1 + y2

2 − y2
4 − y2

5
(1)

We adapt the ROI crop algorithm [25] to work with our detected
nose points {x3,y3}. We calculate the size, {x′,y′} of the bound-
ing box using:

up = min(y1
3,y

2
3)

bottom = H −max(y1
3,y

2
3)

le f t = min(x1
3,x

2
3)

right =W −max(x1
3,x

2
3)

x′ = min(le f t,right)×2

y′ = up+bottom

(2)

where H and W denote the height and width of the target image
after cropping. The left and right images after alignment are de-
noted as {cp1,cp2}.

Relative Camera Pose Estimation
To interpolate the left and right camera view of the video

participant to a frontal camera view, it is essential to estimate the
camera poses. Since we have the facial landmark points, we can

fit the landmarks from the left and right images to a pre-defined
3D head to solve for the poses. We apply the algorithm described
in [31] to the left and right images {cp1,cp2} to estimate the yaw
angles of the left and right camera with respect to the video par-
ticipant, denoted as {yaw1,yaw2}, in degrees. Finally, we es-
timate the target camera position t at yawt = 0 by normalizing
{yaw1,yaw2} to zero to one:

t =
−yaw1

yaw2 − yaw1 (3)

Background Removal
Video frame interpolation models work by finding the fea-

ture correspondence in the input image pairs and synthesis the
intermediate novel image. This process, however, is prone to er-
ror where foreground objects occlude backgrounds [27]. Previous
works have found that such artifacts greatly undermine the visual
fidelity of human portraits by ruining the clarity and complete-
ness of face boundaries [4]. To mitigate this problem, we propose
to perform background removal prior to performing view inter-
polation. We incorporated the portrait segmentation and matting
model GRIB [23] into our frontal view synthesis pipeline due to
its lightweight and robustness. The background removal mod-
ule takes {cp1,cp2} as input and outputs the foreground pairs
{ f g1, f g2}.

Video Frame Interpolation
To achieve real-time frame interpolation at HD (1280×720)

and FHD (1920×1080) resolutions, we design a lightweight op-
tical flow base frame interpolation model illustrated in Figure 3.
Our model features a 3-block iterative design (base block, refine-
ment block, refinement block) to estimate the optical flow from
coarse to fine on a scale of 1/4, 1/2, and full input resolution. The
input to the model is the channel-wise concatenation of image pair
{ f g1, f g2} and step t. In each block, our model predicts a pair of
backward flows from the novel view at t to { f g1, f g2} and a con-
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Figure 4: A visual example of the interpolation result from our VFI model. The left and right most images in the red bounding box are the input image
pairs. The three intermediate frames in the middle are interpolated by our model.

fidence mask M which is the predicted probability of { f g1, f g2}’s
pixel contribution to the synthesized result. The final output im-
age is produced by merging the warped left and right images using
the predicted mask.

Base Block has a CNN-ViT hybrid architecture, which con-
sists of two stride convolution layers for downsampling, two
cross-attention motion extractors, six convolution layers for back-
ward flow prediction, and two deconvolution layers for upsam-
pling. We choose to use a kernel size of 3×3 for all the convolu-
tion layers following [28] for efficient feature extraction. After the
downsampling layers, the features are separated into { f e1, f e2}
evenly by channel. Each feature patch in the query (Q) is attended
with all keys (K) extracted from the other feature, denoted as QK.
The value (V) is constructed from an evenly spaced mesh grid
ranging from 0 to 1 on the columns and rows subtracting the rel-
ative position of each patch in Q. The matrix multiplication of
QK and V results in the relative motion map. The two motion
maps are concatenated channel-wise before feeding into the con-
secutive convolution layers. We divide the base block into groups
of two and incorporate skip connections to preserve information
from previous layers around the feature extractor and flow predic-
tion groups.

Refinement Block operates on higher spatial resolutions,
thus, we select a full convolution architecture for efficiency. Sim-
ilar to the base block, each refinement block contains a group of
downsampling layers, two groups of inverted bottleneck layers
for motion extraction, two groups of convolution layers for flow
prediction, and a group of upsampling layers. To extract motion
from wider ranges, we set the kernel size of the inverted bottle-
neck groups to 7×7 and 5×5.

Experiments
Dataset

We use 4 datasets in total for training and evaluation.
1) Vimeo90K [32] consists of two subsets, Triplet and Sep-

tuplet, and contains video sequences at a fixed resolution of
448 × 256. The Triplet subset includes 51,313 sequences with
three consecutive video frames, while the 64,612 video sequences
in the Septuplet subset each contain seven frames. We crop the
image pairs to 256×256 during training.

2) X4K1000FPS [33] consists of 2160p video samples cap-
tured at high frame rate. The original dataset contains 4,408 train-
ing clips of resolution 768×768 and 15 testing clips of resolution
2048×1024. We crop the image pairs to 512×512 during train-
ing.

3) ZJU-MoCap [34] includes 8,843 clips of human body

movement videos at a fixed resolution of 512×512 when divided
into lengths of 20 frames.

4) EG3D-syn contains 75,000 clips of portrait images gen-
erated at 9 different camera positions. We follow [4] to generate
all the clips using EG3D [35].

Training
We train our video frame interpolation method via a two-

stage method. In the first stage, we train the model on the dataset
Vimeo90K and X4K1000FPS, where a wide variety of scenes ap-
pear. We train the model for 200 epochs interleaved on 4 GPUs
with a total batch size of 64. The model is trained using a co-
sine learning rate scheduler with an initial rate of 4×10−4. In the
second stage, we finetune the model on ZJU-MoCap and EG3D-
syn dataset for 10 epochs interleaved with a fixed learning rate of
4×10−5.

Evaluation
We evaluate our VFI model against other recent real-time

frame interpolation models including RIFE [28], M2M [36],
and IFRNet[37] on Vimeo90K Triplet and 4K1000FPS. Figure 4
shows an example of video interpolation results generated by our
VFI model.

Fixed time step interpolation refers to synthesizing the
middle frame between two input images. We evaluate the ac-
curacy of VFI methods’ fixed time step interpolation on the
Vimeo90K Triplet dataset. We follow the testing procedure de-
scribed in [28] to perform a quantitative evaluation of the inter-
polation results. To achieve a fair comparison and demonstrate
our model’s capability, the evaluation is performed after the first
training stage. We report the Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and frames per sec-
ond (FPS) evaluated on a Nvidia RTX 3090. As shown in Table 1,
our method achieves the highest PSNR and SSIM. Our model also
achieves the second-highest FPS, indicating our model is efficient
and fast on low-resolution image pairs.

Methods PSNR SSIM FPS
RIFE [28] 35.61 0.9779 379.7
M2M [36] 35.47 0.9778 223.1

IFRNet [37] 35.80 0.9794 339.6
Ours 35.94 0.9795 365.1

Table 1: The fix time step interpolation evaluation on Vimeo90K Triplet
dataset. The best and second-best results are marked in bold and
underline.

Arbitrary time step interpolation refers to synthesizing in-
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Figure 5: Examples of visual comparison to show the effectiveness of alignment and cropping. Please zoom in for a better viewing experience

termediate frames at arbitrary steps between the two input images.
We evaluate the accuracy of VFI models’s arbitrary time step in-
terpolation on the X4K1000FPS dataset. We follow the testing
procedure proposed by [33] to assess the interpolation accuracy
at every eighth interval in each testing clip. We perform the in-
terpolation results on the resolution of 2K and 4K and report the
PSNR and FPS of both resolutions. As shown in Table 2, our
model achieves the second-best performance in terms of both ac-
curacy and efficiency.

Methods PSNR-2K FPS-2K PSNR-4K FPS-4K
RIFE 31.43 22.5 30.58 5.49
M2M 32.13 15.8 30.88 4.33

IFRNet 31.53 19.2 30.46 4.27
Ours 31.88 19.9 30.80 4.79

Table 2: The arbitrary time step interpolation evaluation on
X4KF1000FPS dataset. The best and second-best results are marked in
bold and underline.

Ablation Study
In this section, we perform ablation studies on the other two

major components of our proposed method: The alignment mod-
ule and the Background removal module.

Alignment Module
In this experiment, we interpolate a six-frame test video to

illustrate the contribution of the alignment module. To eliminate
the possible distortion caused by complex background geome-
tries, we record this video in front of a clean white background.
Figure 5 shows that the interpolation model fails to produce good-
quality results due to the large motion in the original frames.
However, with alignment and cropping, the model is capable of
producing high-quality interpolated results.

Background Removal Module
In this experiment, we use the IFNet [28] model as a base-

line to demonstrate the effectiveness of the background removal
module. We record a pair of input videos of a person in front of
a complex background and perform frame interpolation using the

baseline model on the aligned input images. Figure 6 shows the
case where the edge of the participant’s face in the prediction is
distorted due to the distraction from background objects. How-
ever, when we apply background removal to the input image pairs
before interpolation, we are able to produce better results.

Figure 6: Example of the effectiveness of the background removal module
when the frame interpolation model fails to predict good-quality results.

Conclusion
In this paper, we propose a frontal view synthesis method

for immersive video conferencing using dual-camera capture and
frame interpolation. Our method eliminates the drawbacks of be-
ing 1) difficult to calibrate, 2) prone to complex backgrounds, and
3) computationally expensive to run, as found in existing frontal
view synthesis methods. We also architecture a lightweight video
frame interpolation model capable of generating high quality
novel views. Our proposed method exhibits the potential to be
further expanded to other applications including 3D telepresence
and virtual reality.
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