
 

Identification of Cultural Artifacts using Deep Learning 

Huajian Liu, Xiaoying Yang, Raphael Antonius Frick, Martin Steinebach 

Fraunhofer Institute for Secure Information Technology (SIT), Darmstadt, Germany  

 
Abstract 

This work addresses the challenge of identifying the 

provenance of illicit cultural artifacts, a task often hindered by the 

lack of specialized expertise among law enforcement and customs 
officials. To facilitate immediate assessments, we propose an 

improved deep learning model based on a pre-trained ResNet 

model, fine-tuned for archaeological artifact recognition through 
transfer learning. Our model uniquely integrates multi-level 

feature extraction, capturing both textural and structural features 

of artifacts, and incorporates self-attention mechanisms to enhance 

contextual understanding. In addition, we developed two different 
artifact datasets: a dataset with mixed types of earthenware and a 

dataset for coins. Both datasets are categorized according to the 

age and region of artifacts. Evaluations of the proposed model on 
these datasets demonstrate improved recognition accuracy thanks 

to the enhanced feature representation. 

Introduction 
Cultural assets have enormous cultural, historical, artistic and 

scientific significance. From ancient artifacts to contemporary 
artworks, cultural assets are like mirrors reflecting different facets 

of human history, artistic innovations and the evolution of social 

norms [1]. Therefore, the protection of these cultural properties is 

of paramount importance. However, illicit trafficking of cultural 
property poses a direct threat to heritage preservation and has 

become an increasingly pressing issue [2-5]. 

In combating the trafficking of illicit cultural artifacts, it is a 
challenge task for law enforcement and customs and other 

involved authorities to identify the provenance of cultural artifacts. 

Since identifying the origin of cultural objects requires strong 
specialized expertise, and law enforcement and customs officials 

do not have the relevant know-how, they often need the help and 

support of relevant experts. However, experts are not readily 

available to provide professional support and do not have sufficient 
capacity to identify all suspicious objects in a professional manner.  

AI-based artifact identification technologies can bridge this 

knowledge gap and provide immediate on-site assistance, allowing 
the law enforcement agencies and customs to make initial 

assessments of the provenance of artifacts immediately. 

Identifying the geographical and temporal origins of cultural 
assets is an important step in the protection of cultural heritage. 

Such knowledge not only facilitates the academic study and 

interpretation of cultural objects, but also allows customs and law 

enforcement officials to make informed preliminary assessments of 
the cultural goods they encounter. Therefore, this step is essential 

to combating illicit trafficking in cultural property. 

The goal of this work is to develop a deep learning model to 
identify the provenance of unknown cultural goods, including the 

chronological and geographical origin. The identification of 

archaeological artifacts poses new challenges because of their 
unique characteristics. Especially for those illegally excavated 

artifacts, they cannot be identified by image matching because they 

have never been documented. 

Unlike general object recognition, identifying artifacts cannot 

be done by considering only their appearance features, such as 
shape and color, because similar-looking artifacts may be vastly 

different in age and geographic origin, and are unrelated to each 

other. On the contrary, even different types of cultural artifacts, if 
they come from the same age and the same cultural region, will 

often share similar cultural imprints and characteristics. Therefore, 

in order to correctly identify cultural artifacts, it is essential to take 

into account their age, geographic origin and their cultural 
background, etc., and to extract the features that are closely related 

to their age and cultural background, including shape, decoration, 

symbols, and so on. 
Therefore, firstly, it is necessary to establish a targeted and 

appropriate network model for the identification of cultural 

artifacts. Most existing deep learning models are developed and 
trained for general image recognition and not specialized for 

identification of archaeological objects. Secondly, it is also 

required to create dedicated datasets of cultural artifacts for 

training and testing the model. To the best of our knowledge, there 
are no publicly available datasets of this type that can be used 

directly for model training and testing. Available data from 

museums are neither fully labeled nor uniformly tagged. 
In our previous work [6], we created an artifact dataset, 

named SMB dataset, in which the artifact types were not 

categorized and all types of objects were mixed in each class. This 
means that each class contains a variety of artifacts from the same 

era and cultural context, including pottery, coins, sculptures, print 

material, portrait, clothes, and so on. However, due to the lack of 

comprehensive metadata, SMB dataset had to rely on museum 
collections as a proxy for actual geographic provenance, resulting 

in an underrepresentation of this key attribute. This also limited the 

predictive accuracy of models trained on this dataset for the 
geographic origin of cultural goods. 

In this work, we created two new datasets of archaeological 

objects by collecting, cleansing and processing publicly available 
museum data, because a large amount of accurately labeled data is 

essential to train and fine-tune a model for recognition of cultural 

artifacts. The two datasets are both type-specific but are of two 

different kinds. One contains different types of objects belonging 
to earthenware, while the other includes only coins. All objects in 

both datasets are labeled and classified based on the geographical 

origin and age of the object. In the Earthenware dataset, the 
geographical origin is fine-grained to modern countries, while in 

the Coin dataset, it is fine-grained to ancient empires or kingdoms 

such as the Western Roman Empire. 
 In addition, because archaeological artifacts often carry both 

textural and structural features and convolutional operations has 

limited ability to capture long-distance dependencies across image 

regions corresponding to structural features, the CNN model 
proposed in [6] has been improved by introducing a self-attention 

mechanism in the feature extraction at each level. Thus, the local 

features in the feature maps at each level are enriched with 
extensive contextual information and long-range dependencies, 
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which improvs their representational quality in terms of the 
characteristics of archaeological artifacts. 

This paper is organized as follows. Section 2 presents the new 

datasets. Section 3 proposes the improved deep learning model. 
Section 4 presents the evaluation results. The paper is concluded in 

Section 5.  

 

 
 

Figure 1. Objects samples from the earthenware dataset 

New Datasets of Cultural Artifacts 
The issues with the SMB dataset used in [6] centered on two 

main aspects: the first is that due to the lack of explicit geodata 
tagging in the artifacts' metadata, the taxonomy of museum 

collections is used to approximate the geographic origin of the 

artifacts belonging to each collection. The second is that each 

museum's collection covers a wide variety of artifacts, and there is 
too much variation in characteristics between different types of 

artifacts.  

These deficiencies largely obscure the unique geographical 
characteristics of each class of artifacts that are critical to 

accurately identifying and predicting the geographic origin of 

different artifacts. As a result, models trained on these data are 
likely to tend to confuse artifacts from different geographic origins 

that happen to belong to the same museum collection, thereby 

undermining the ability of the model to make fine-grained 

predictions of geographic origin based on artifact characteristics 
alone. 

To address this issue, we propose two new datasets in this 

work: Earthenware dataset and Coin dataset. All objects in both 
datasets are labeled and categorized according to the geographical 

and chronological origin of the object. Both datasets are type-

specific, but the earthenware dataset contains a rich variety of 

different earthenware artifact types, while the coin dataset contains 
only one type of artifact, coins. 

The earthenware dataset combines data crawled from 

museum-digital.de1 and metmuseum.org2 , while the coin dataset 
gets its data only from meseum-digital.de. In order to create fully 

and accurately labeled datasets, the crawled data are first pre-

processed and cleansed to eliminate incompletely labeled data, 

harmonize terminology used in different museums and collections.  

Earthenware Dataset 
The earthenware dataset represents a broad spectrum of 

antique artifact types made from earth, collectively referred to as 

earthenware. The artifact types include, for example, plate, 
ceramic, vase, pot, porcelain, vessel, cup, bowl, ostracon, bottle, 

jug, dish, pottery, fragment, tile, glass, sculpture, jade, lacquer, 

gems, etc. Figure 1 shows some randomly chosen object samples 
from the earthenware dataset. Data from museum-digital.de and 

metmuseum.org are mixed according to the geographical 

distribution and chronological origin of the artifacts.  

 
 

Figure 2. KDE of mean object chronological time 

Artifacts from various countries are very unevenly distributed 

across the timeline. For most countries, the KDE (Kernel Density 

Estimation) of the mean object chronological time has unimodal or 
bimodal distribution. Figure 2 shows the KDE of Germany and 

Egypt, where Germany has a unimodal distribution with a total of 

15,708 data points and Egypt has a bimodal distribution with 3,897 
data points. These two countries have the largest number of data 

 

 
 
1 https://www.museum-digital.de/ 
2 https://www.metmuseum.org/ 
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points and therefore their data points are divided into multiple 
classes. For the remaining countries, the data points from each 

country constitute a single class.  

With class balance in mind, the data points are first divided 
according to country, and then the data points within the same 

country are further divided according to chronology. We use qcut 

(quantile cut) to divide the dataset into classes, with each class 

containing approximately the same number of data points. 
The earthenware dataset contains a total of 39,576 objects, 

which are divided into 18 classes as listed in Table 1. 

Geographically, the earthenware dataset covers 10 modern 
countries, and chronologically, the dataset spans the period from 

1315 B.C. to 1400 A.D. 

Table 1: Class Labels for Earthenware Dataset 

Index Label Number of Objects 

0 Germany1 [-1315, 1600) 1747 

1 Germany2 [1600, 1735) 1876 

2 Germany3 [1735, 1775) 2421 

3 Germany4 [1775, 1825) 1825 

4 Germany5 [1825, 1905) 2965 

5 Germany6 [1905, 1914) 1681 

6 Germany7 [1914, 1969) 2193 

7 China [1500, 1900) 3304 

8 Egypt1 [-1000, 550) 1636 

9 Egypt2 [550, 2020) 2261 

10 France [1000, 2000) 2528 

11 Italy [-200, 500) 2562 

12 UK [1700, 1920) 1527 

13 Japan [1600, 1900) 2145 

14 Peru [300, 400) 1695 

15 Iraq [500, 1100) 1932 

16 Iran [700, 1900) 3407 

17 Syria [600, 1400) 1871 

 

Coin Dataset 
The coin dataset consists of coins of various types. The term 

coin is used to refer to a collection of different metal currency 

types issued throughout history, which include coin, didrachm, as, 
sestertius, dime, denarius, cruiser, antoninianus, bullion, aureus, 

batzen, pegione, and drachma. Figure 3 shows some randomly 

chosen sample coins from the coin dataset. 

The classification of ancient coins should be based on an 
understanding of historical periods and the interconnection of 

geographical and historical dimensions. Historically, coins have 

had important political attributes in addition to their economic role. 
Notably, coins were used as propaganda instruments, often bearing 

the image of the ruler. This practice was particularly prevalent in 

making new emperors known or recognized by the population over 
a wide area. Thus, coins were widely disseminated throughout an 

empire or kingdom and, in addition to their economic use, 

contained a political message. 

The dual role of coins as economic and political instruments 
is crucial for understanding their geographical and historical 

distribution. When classifying ancient coins, it is important to 

consider the historical context in which they circulated and not rely 
solely on contemporary geopolitical boundaries. Modern state 

territories are much more finely delineated than in previous 

historical periods. Applying modern geographic divisions to the 

identification of ancient or medieval coins will lead to inaccuracies 
and confusion in the classification of their geographic origins. 

 

 
 

Figure 3. Coin samples from the coin dataset 

For example, a coin from a specific period of the Western 

Roman Empire found in today's Italy may be identical to another 
coin from the same period found in today's Egypt. This is because 

even though both regions are currently independent states, they 

were both part of the same empire during that historical period. 
The geographical classification of the dataset is therefore based on 

the historical territories of the empire or kingdom, rather than the 

modern state. This approach ensures a more accurate and 
historically contextualized analysis. 

Figure 4 illustrates the distribution of the coins based on their 

countries of origin. The main countries of origin include Italy, 

Germany, Turkey, Greece, France, Egypt, Bulgaria and Poland. 
The four largest origin countries are Italy, Germany, Turkey and 

Greece. The analysis indicates that coins from Italy are mainly 

centered between 400 B.C. and 400 A.D., which roughly coincides 
with the period of the Roman Republic and the Western Roman 

Empire. Coins from Germany are mainly focused on two periods: 

100 to 500 A.D. and 1100 to 2000 A.D. Coins from Turkey and 
Greece are concentrated between 500 BC and 500 AD. 

 

 
Figure 4. Distribution of coins in the coin dataset based on origin countries 

Based on historical geography, the 126,218 objects in the coin 

dataset, covering the period from 500 B.C. to 2020 A.D., are 
divided into the following 6 empires and kingdoms: Ancient Greek 

(3 classes), Roman Republic and Western Roman Empire, (16 

classes), Byzantine Empire (1 class), Islamic Iran and Iraq (1 
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class), Germanic Kingdoms (5 classes) and Poland (1 class). 
Ancient Greek includes Classical Period and Hellenic Period. 

Germanic Kingdoms include Merovingian and Carolingian 

Dynasties, House of Habsburg (Habsburg Monarchy), House of 
Habsburg (Holy Roman Empire), House of Habsburg-Lorraine 

(Holy Roman Empire) and various periods including Napoleonic 

and post-Napoleonic periods and the modern German states. 

Detailed class labels and the number of objects in each class are 
listed in Table 2. 

Table 2: Class Labels for Coin Dataset 

Index Label Number of Objects 

0 Greek, Classical period [-480, -323) 6379 

1 Greek, Hellenic period [-323, -281) 3496 

2 Greek, Hellenic period [-281, -133) 6298 

3 Roman, [-500, -146) 6145 

4 Roman, [-146, -79) 5122 

5 Roman, [-79, -27) 5227 

6 Roman, [-27, 14) 3711 

7 Roman, [14, 69) 5156 

8 Roman, [69, 96) 5654 

9 Roman, [96, 117) 2419 

10 Roman, [117, 138) 5925 

11 Roman, [138, 180) 4839 

12 Roman, [180, 211) 4834 

13 Roman, [211, 235) 4233 

14 Roman, [235, 253) 4798 

15 Roman, [253, 270) 4266 

16 Roman, [270, 306) 5841 

17 Roman, [306, 337) 7281 

18 Roman, [337, 476) 5527 

19 Byzantine Empire, [476, 1435) 2422 

20 Islamic Iran and Iraq, [636, 1000) 2175 

21 Germanic Kingdoms, [476, 1438) 6718 

22 Germanic Kingdoms, [1438, 1640) 4774 

23 Germanic Kingdoms, [1640, 1741) 3492 

24 Germanic Kingdoms, [1741, 1806) 5433 

25 Germanic Kingdoms, [1806, 2020) 2909 

26 Poland, [1650, 1786) 2101 

 

Proposed Scheme 
Based on our previous work in [6], we propose an improved 

deep learning model to optimize the feature extraction and artifact 

recognition.  

Because high-level features alone are not expressive enough 
to describe the characteristics of artifacts, the CNN model in [6], 

named MaxAvgCat, extracts multi-level features for classification 

of artifacts, which combine high-level, intermediate-level and low-
level features. As a CNN model, MaxAvgCat is more capable of 

capturing textural features than structural features. 

However, it is observed in our work that cultural artifacts 

often have both textural and structural features and contain 
elements of different scales, viewpoints, and colors, such as 

decorative patterns and motifs. Figure 5 shows eight representative 

objects from our dataset. They all show varying degrees of mixed 
textural and structural characteristics. For example, in image a, the 

branches and flowers of the Chinese plum blossom represent a 

form of structure, and the ice floe-like blue motifs represent a 
homogeneous texture. The white branches and blossoms do not 

share the characteristics of typical monotone textures, such as grass 

or sky. Instead, they embody a unique pattern that contributes to 
the overall composition of the pot in a more structured manner. 

Nevertheless, CNN networks have an inductive bias of 

locality, and convolutional operations capture only local 

information due to local receptive fields, which limits their ability 
to capture long-distance dependencies across image regions 

corresponding to structural features. This leads to a lack of rich 

contextual information and dependencies between locations in the 
feature maps, which produces inconsistent features for objects 

belong to the same class that in turn negatively impact the 

classification accuracy. 
 

 

 

 
Figure 5. Objects from our datasets that embody a mixture of texture and 
structure 

Therefore, we propose an improved model, named SA-
MaxAvgCat, in which self-attention mechanisms are introduced 

into the feature extraction of each level as shown in Figure 6. After 

extracting the feature maps from the four ResNet blocks, the self-

attention mechanisms are applied on each of the four feature maps. 
The global information captured by the self-attention modules 

helps the model to establish relationships between each pixel and 

other pixels. The local features in the feature maps of each level 
are enriched with extensive contextual information and long-range 

dependencies, thus improving their representational quality in 

terms of the characteristics of artifacts. 
 

 

 

 
 
Figure 6. SA-MaxAvgCat: MaxAvgCat model with self-attention 
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Evaluation 
The proposed new model is trained and evaluated on the two 

new datasets created in this work as well as the SMB dataset in [6]. 
Each dataset is split into train, validate and test sets in 8:1:1 ratio. 

The test results are compared with the original model in [6].  

Data augmentation increases the variability and diversity of 
the training data and reduces overfitting. In contrast to [6] where 

Mixup[9] is used, in this work we propose to use CutMix[8] and 

random rotation (RR) instead. 

Test Setup 
The pretrained ResNet model BiT-M-R50x1 in [7] is used as 

backbone in the proposed model. The optimization used is SGD 

with a momentum of 0.9 and a batch size of 512. The learning rate 

is initially set at 0.003 and is reduced by a factor of 10 after 30%, 
60%, and 90% of the whole 10000 training steps with 500 steps 

warmup.  

In our tests, the following data augmentation techniques, 
CutMix[8], Mixup[9], random rotation (RR) and horizontal flip are 

evaluated. In the training phase, the input images are first rescaled 

to 512x512, then randomly cropped to 480x480. After that, random 

horizontal flipping with a probability of 0.5 and random rotation 
with a range of degrees (-90, +90) are applied. 

Test Results 
Table 3 lists the test results of our model and the original 

model in [6] on the earthenware dataset, which include the top1 
and top5 accuracy, F1, precision and recall. Both models are 

evaluated with different combinations of data augmentation 

techniques, respectively, where NRR stands for No Random 
Rotation. For each case, two checkpoints are evaluated: the one 

with the lowest validation loss and the one with the highest top1 

accuracy. 

As seen in Table 3, the model SA-MaxAvgCat achieves the 
best result with the checkpoint saved at the highest top 1 accuracy. 

For the different data enhancement techniques, the SA-

MaxAvgCat model obtains better results in all metrics when using 
CutMix than when using Mixup, which demonstrates CutMix 

regularized the model better than Mixup. The last two models in 

Table 3 compare the results with and without random rotation. For 
the checkpoint saved at the lowest validation loss, the NRR version 

outperforms the RR version in all metrics, while for the checkpoint 

saved at the highest top 1 accuracy, the RR version performs better 

in all metrics. 
 

Table 3: Comparison of results on Earthenware dataset 

lowest loss ckpt 
highest top1 ckpt top1 top5 f1 precision recall 

MaxAvgCat  
w/ Mixup_NRR 

0.7816 0.9654 0.7379 0.7590 0.7374 

0.8060 0.9570 0.7609 0.7860 0.7558 

MaxAvgCat 

w/ CutMix_RR 

0.7903 0.9603 0.7448 0.7445 0.7472 

0.7972 0.9633 0.7715 0.7470 0.7372 

SA-MaxAvgCat 
w/ Mixup_RR 

0.7623 0.9633 0.7182 0.7543 0.7113 

0.7999 0.9540 0.7557 0.7773 0.7510 

SA-MaxAvgCat 

w/ CutMix_RR 

0.7858 0.9639 0.7391 0.7649 0.7328 

0.8111 0.9678 0.7662 0.7928 0.7605 

SA-MaxAvgCat 
w/ CutMix_NRR 

0.7873 0.9681 0.7438 0.7659 0.7392 

0.7900 0.9666 0.7476 0.7692 0.7428 

 

 

Table 4 shows the evaluation results of different models on 
the coin dataset. Our model SA-MaxAvgCat with CutMix achieves 

better results than the model MaxAvgCat in all metrics, especially 

in top1 accuracy. As in the case of the earthenware dataset, the 
results of SA-MaxAvgCat are always better when using CutMix 

than when using Mixup. However, the results of the last two 

models in Table 4 are very similar, which indicates that random 

rotation has little impact on the coin dataset. 

Table 4: Comparison of results on Coin dataset 

lowest loss ckpt 

highest top1 ckpt top1 top5 f1 precision recall 

MaxAvgCat  
w/ Mixup_NRR 

0.8124 0.9789 0.8104 0.8163 0.8068 

0.8164 0.9772 0.8149 0.8211 0.8112 

MaxAvgCat 
w/ CutMix_RR 

0.7983 0.9789 0.7997 0.8052 0.7966 

0.7977 0.9797 0.7989 0.8042 0.7960 

SA-MaxAvgCat 
w/ Mixup_RR 

0.7965 0.9788 0.7958 0.8015 0.7929 

0.7975 0.9789 0.7960 0.8025 0.7930 

SA-MaxAvgCat 
w/ CutMix_RR 

0.8268 0.9821 0.8264 0.8293 0.8245 

0.8267 0.9819 0.8262 0.8292 0.8242 

SA-MaxAvgCat 

w/ CutMix_NRR 

0.8263 0.9819 0.8261 0.8299 0.8235 

0.8269 0.9819 0.8264 0.8300 0.8240 

 

 

Table 5 gives the test results on the SMB dataset used in [6]. 
Similar results can be observed as for the earthenware and coin 

datasets. Our model SA-MaxAvgCat with CutMix but without 

random rotation outperforms all other combinations except in top5 

accuracy. When random rotation is applied, the CutMix version of 
SA-MaxAvgCat always performs better than the Mixup version. 

The NRR version of SA-MaxAvgCat outperforms the RR version 

in all metrics, implying that random rotation has a negative effect 
on the SMB dataset. 

Table 5: Comparison of results on SMB dataset 

lowest loss ckpt 
highest top1 ckpt top1 top5 f1 precision recall 

MaxAvgCat  
w/ Mixup_NRR 

0.8224 0.9873 0.7692 0.7789 0.7628 

- - - - - 

MaxAvgCat 

w/ CutMix_RR 

0.8191 0.9863 0.7670 0.7836 0.7574 

0.8191 0.9863 0.7670 0.7836 0.7574 

SA-MaxAvgCat 
w/ Mixup_RR 

0.8148 0.9833 0.7612 0.7764 0.7532 

0.8182 0.9835 0.7648 0.7775 0.7567 

SA-MaxAvgCat 

w/ CutMix_RR 

0.8253 0.9837 0.7756 0.7884 0.7679 

0.8247 0.9837 0.7737 0.7860 0.7665 

SA-MaxAvgCat 
w/ CutMix_NRR 

0.8323 0.9865 0.7833 0.7923 0.7780 

0.8335 0.9863 0.7819 0.7910 0.7763 

 

Conclusion 
In this work, we first developed two new artifact datasets for 

training and testing of deep learning models specifically for 

identification of cultural artifacts, including a dataset with mixed 
types of earthenware and a dataset with various coins. In addition, 

we proposed an improved deep learning model, which used a 

pretrained ResNet model as backbone and was fine-tuned for 
artifact identification using the created datasets through transfer 

learning. The proposed model combines different levels of features 

in the new model head. Based on the fact that cultural artifacts 
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often have both textural and structural characteristics, self-attention 
mechanisms are introduced into the extraction of the feature maps 

of each level so as to enrich local features with extensive 

contextual and long-range dependencies, thus improving their 
representational quality. In the evaluation using different datasets, 

the proposed model with self-attention achieved higher accuracy 

rate in recognition of cultural artifacts compared to the previous 

work. 
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