
VotingNet: Adaptive Hough Voting Based Compositional Model
for X-Ray Prohibited Item Detection Under Occlusion
Kaitao Huang, Yan Yan∗

Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University, Xiamen, China

Abstract
Recently, X-ray prohibited item detection has been widely

used for security inspection. In practical applications, the items
in the luggage are severely overlapped, leading to the problem
of occlusion. In this paper, we address prohibited item detection
under occlusion from the perspective of the compositional model.
To this end, we propose a novel VotingNet for occluded prohib-
ited item detection. VotingNet incorporates an Adaptive Hough
Voting Module (AHVM) based on the generalized Hough trans-
form into the widely-used detector. AHVM consists of an Atten-
tion Block (AB) and a Voting Block (VB). AB divides the voting
area into multiple regions and leverages an extended Convolu-
tional Block Attention Module (CBAM) to learn adaptive weights
for inter-region features and intra-region features. In this way, the
information from unoccluded areas of the prohibited items is fully
exploited. VB collects votes from the feature maps of different re-
gions given by AB. To improve the performance in the presence
of occlusion, we combine AHVM with the original convolutional
branches, taking full advantage of the robustness of the compo-
sitional model and the powerful representation capability of con-
volution. Experimental results on OPIXray and PIDray datasets
show the superiority of VotingNet on widely used detectors (in-
cluding representative anchor-based and anchor-free detectors).

Introduction
With the population growth in cities and increasing crowd

density at public transportation hubs, security inspection has be-
come very important in protecting public safety. X-ray scanners,
which can generate X-ray images to determine the existence of
prohibited items in passengers’ luggage, are widely used for se-
curity inspection. In many cases, the items in the luggage are
randomly stacked. As a result, it is challenging for security per-
sonnel to accurately identify all prohibited items after prolonged
observation of complex X-ray images. Although frequent shift
changes can somewhat alleviate this problem, they consume sig-
nificant manpower, which is undesirable in real-world applica-
tions.

Fortunately, with recent advances in deep learning, auto-
matic X-ray prohibited item detection has become possible. How-
ever, different from traditional object detection tasks, X-ray pro-
hibited item detection often suffers from heavy occlusion, since
the items in the luggage are severely overlapped. Therefore, how
to effectively detect prohibited items under occlusion needs fur-
ther study.
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To address the occlusion, a common solution is to use a
data-driven strategy, which trains a model based on a large-scale
dataset containing diverse samples captured under different oc-
clusion conditions. In this way, the model can learn occlusion-
invariant features from these samples. Nevertheless, collecting
the dataset covering diverse occlusion patterns in quantity, appear-
ance, and position is not trivial.

Recently, compositional models (such as [1, 2, 3]), which
represent a whole object by the spatial composition of parts, have
shown great robustness for natural object detection under occlu-
sion. These models often adopt two stages to identify objects (i.e.,
the parts are first detected, and then the spatial relationship be-
tween the detected parts is modeled to detect objects by aggregat-
ing the information from different parts). Both stages are designed
to achieve robustness to occlusion. Thus, these models can detect
the object under occlusion as long as visible parts satisfy reason-
able spatial constraints.

The prohibited items in X-ray images significantly differ
from objects in natural images. X-ray possesses remarkable pen-
etrating power, where different materials within an object exhibit
varying degrees of absorption, showing distinct colors in X-ray
images. Moreover, the contours of prohibited items and safety
items are usually mixed. In this way, conventional compositional
models are difficult to directly apply for prohibited item detection
because these models are required to not only detect parts but also
learn the spatial constraints among parts.

To address X-ray prohibited item detection under occlu-
sion, in this paper, we develop VotingNet by adaptively collecting
the votes from different pre-defined regions in a log-polar vote
field [4]. In this way, the spatial constraints between parts can be
explicitly modeled, where part detection can be performed in each
region. As a result, the learning capability of the model to detect
occluded prohibited items is greatly improved, benefiting the final
detection performance.

Specifically, VotingNet performs prohibited item detection
by designing an Adaptive Hough Voting Module (AHVM) based
on the widely-used detector. AHVM consists of two blocks: an
Attention Block (AB) and a Voting Block (VB). On the one hand,
AB first divides the voting area into multiple regions, correspond-
ing to different parts of a prohibited item. Then, it leverages
an extended Convolutional Block Attention Module (extended
CBAM) to obtain adaptive weights for inter-region features and
intra-region features. On the other hand, based on the general-
ized Hough transform [5], VB takes the weighted feature maps
obtained from AB as the input and performs voting. Unlike ex-
isting methods (which directly perform detection by using the
output of compositional models), we combine the output of the
compositional model with the original convolutional structure of
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the detection head in a parallel way. Such a way combines the
advantages of the convolution neural network and compositional
model for improving the robustness against occlusion, allowing
us to achieve a model with strong discriminative capability and
robustness to occlusion.

In summary, the contributions of this paper are as follows:

• We propose VotingNet, which involves a novel AHVM, for
X-ray prohibited item detection under occlusion. To the best
of our knowledge, we are the first to introduce generalized
Hough transform to the compositional model for handling
occlusion in X-ray images.

• We develop an extended CBAM to adaptively learn weights
for both inter-region and inter-region features, explicitly
considering the influence of different regions for voting.

• We validate the effectiveness of VotingNet on two types
of object detectors (including anchor-based and anchor-free
object detectors). Experiments on the OPIXray [6] and
PIDray [7] datasets show the superiority of our proposed
method for addressing occlusion in X-ray prohibited item
detection.

Related Work
Object Detection. Existing object detection methods can be di-
vided into two categories: anchor-based and anchor-free methods.
Anchor-based methods include two-stage and one-stage methods.
The representative two-stage methods are RCNN series, including
Faster-RCNN [8], Cascade R-CNN [9], etc. The representative
one-stage methods are SSD [10], RetinaNet [11], etc. Anchor-
free methods include dense prediction-based methods (such as
YOLOv1 [12], DenseBox [13], FCOS [14]) and keypoint-based
methods (such as CornerNet [15], ExtremeNet [16], OAP [17],
CenterNet [18]).
Object Detection under Occlusion. Yan et al. [19] propose a
boosted cascade framework to detect partially visible objects. Re-
cently, several deep learning methods [20, 21] have been proposed
for detecting occluded objects. Note that these methods require
detailed part-level annotations to reconstruct the occluded objects.
Xiang et al. [22] propose to use 3D models and formulate ob-
ject detection under occlusion as a multi-label classification task.
However, in the X-ray prohibited item detection, the classes of
occluders are hardly modeled in 3D and are often not known as
a priori. The most related methods to our work are part-based
voting methods, which have been proven to work reliably for ob-
ject detection under occlusion. However, some methods [2, 23]
adopt a fixed-size bounding box, limiting their applicability to
real-world object detection. Wang et al. [1] develop a method to
robustly estimate the bounding box of the object even under very
strong partial occlusion. But such a method requires pre-training.
In this paper, we propose VotingNet, which introduces AHVM as
the compositional model. VotingNet collects the votes from dif-
ferent pre-defined regions, then the occluded prohibited items can
be detected based on votes from unoccluded regions.
Prohibited Item Detection in X-Ray Images. Existing X-ray
prohibited item detection methods are extended from conven-
tional object detectors considering the characteristics of X-ray im-
ages. DOAM [6] leverages the different appearance information
of the prohibited items to generate the attention maps, which can
be used to refine feature maps for the detectors. LIM [24] sup-

presses the noisy information while activating the most identifi-
able features from the four directions. SDANet [7] consists of
a dense attention module and a dependency refinement module
to learn discriminative features and exploit the dependencies of
multi-scale features, respectively. In this paper, we perform pro-
hibited item detection from the perspective of the compositional
model.
Attention Mechanism. Recently, attention mechanisms have
been widely used for various computer vision tasks, such as
image classification, object detection, and image segmentation.
SENet [25] proposes a squeeze-and-excitation module to increase
the weights of important channels and decrease the weights of
unimportant channels. CBAM [26] models the inter-channel re-
lation and the inter-spatial relation of features. Non-local net-
work [27] captures long-range dependencies of any two locations.

Methodology
Overview

In VotingNet, a novel AHVM is designed based on widely-
used detectors. We use a representative anchor-based method
ATSS [28] and an anchor-free method FCOS [14], both of which
have three prediction branches (a classification branch, a bound-
ing box branch, and a centerness branch) and use FPN [29], as
base detectors.

An overview of our proposed VotingNet is given in Fig. 1.
First, the input image is fed into the backbone and FPN to ob-
tain multi-scale feature maps (denoted as {Fl ∈ RD×Hl×Wl}L

l=1,
where L is the number of feature maps; D, Hl and Wl are the
channel number, height and width of Fl , respectively). Each fea-
ture map is sent to a classification branch and a regression branch,
where the regression branch involves a bounding box branch and
a centerness branch.

For the centerness branch, AHVM converts the input feature
map with the size of D×Hl ×Wl to 1×Hl ×Wl and predicts the
centerness of each location on the feature map. For the classifica-
tion branch, the convolutional sub-branch and AHVM sub-branch
generate two feature maps with the size C × Hl ×Wl (C is the
number of categories), where these feature maps are combined
to give the output (with the size of C ×Hl ×Wl) of the branch,
predicting the category scores at each position. For the bounding
box branch, the convolutional sub-branch and AHVM sub-branch
give two feature maps with the size 4×Hl ×Wl , where the two
feature maps are combined to give the regression result (with the
size of 4×Hl ×Wl).

Adaptive Hough Voting Module (AHVM)
AHVM contains an Attention Block and a Voting Block.

Attention Block
Existing object detection methods [2, 4] leverage either the

average votes as the voting result or a large convolutional layer
to collect visual concepts. As a result, if an item is heavily oc-
cluded, most of the votes at a point come from occluders, while
the votes from the unoccluded parts are insignificant, resulting in
inaccurate detection of the occluded item. Therefore, although
existing methods achieve good results in natural object detection,
they have difficulty alleviating the negative influence of occluded
areas of X-ray prohibited items.

To address the above problem, we introduce the Attention
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Figure 1. Overview of VotingNet.

Block to assign adaptive weights to the votes from different re-
gions so that the voting result can be mainly determined by the
unoccluded regions. Specifically, we first adopt a convolutional
layer to transform the channel number of the input feature map
to N ×R, where N is the number of predicted values (N = C for
the classification branch, N = 4 for the bounding box branch and
N = 1 for the centerness branch) and R is the number of regions
in the vote field. Then, we divide the transformed feature map
into N part feature maps {P1,P2, . . . ,PN}, where Pi ∈ RR×H×W ,
i = 1,2, . . . ,N. Next, an extended CBAM is introduced to adap-
tively generate weights for inter-region and intra-region features
for N tensors. In the extended CBAM, we use the channel atten-
tion module to calculate the weights at different channels of the
feature map, which correspond to different voting regions. Mean-
while, we use the spatial attention module to calculate weights at
different positions of the feature map which correspond to spatial
positions within the same voting region. Note that we average the
N tensors to obtain P ∈ RR×H×W , where the weights are calcu-
lated using P. Finally, we apply the obtained weights to all Pi.

Channel Attention Module. The original channel attention in
CBAM only exploits the maximum and average values of the orig-
inal maps. However, for our detection task, the output of the de-
tection head is the category score, the bounding box, and the cen-
terness. In this case, the maximum, minimum, and average values
can all be used to determine the feature distribution of the item
to some extent. Therefore, we introduce the minimum pooling
(MinPool) to the original channel attention in CBAM to better ex-
ploit the feature map, obtaining adaptive weights for inter-region
features along the channel dimension.

To this end, we introduce the local pooling (LocalPool) op-
eration. Specifically, instead of directly compressing a feature
map with the size of R×H ×W to R× 1× 1 by the global pool-
ing (GlobalPool) in CBAM, we first compress the input feature
map to the size of R×S×S using a pooling (max pooling or min
pooling) operation to get local max/min values, where S is a fixed
value. Next, a global average pooling (GAP) operation is used to

collect the local values from the above pooling operation to obtain
a feature vector with the size of R× 1× 1. We define the above
operations as local maximum pooling (LocalMaxPool) and local
minimum pooling (LocalMinPool) operations.

Based on the introduced LocalPool operation, our channel
attention is given as follows: The feature map F ∈ RR×H×W first
passes through LocalMaxPool and LocalMinPool, respectively, to
generate two feature vectors. Then, they are fed into a shared
multi-layer perception (MLP) followed by a Sigmoid function to
obtain the weight of the channel Wc(F) ∈ RR×1×1. Mathemati-
cally, the channel attention is computed as:

Wc(F)=Sigmoid(MLP(LocalMaxPool(F))+MLP(LocalMinPool(F)))
(1)

where Sigmoid(·), MLP(·), LocalMaxPool(·) and
LocalMinPool(·) denote the Sigmoid function, the MLP
operation, the LocalMaxPool operation and the LocalMinPool
operation, respectively.

The above calculation of channel weights Wc(F) can be ap-
plied to part feature maps to obtain the weights of inter-region
features, which are calculated as:

P
′

i = REPEAT(WR(P))⊙Pi, i = 1,2, . . . ,N (2)

where REPEAT(·) means extending the number of channels from
R to N by replication, ⊙ denotes element-wise multiplication,
which uses the operation of broadcast on space.

Spatial Attention Module. The original spatial attention mod-
ule in CBAM first performs maximum pooling and average pool-
ing operations, respectively, along the channel dimension and
concatenates the two 1×H ×W feature maps along the channel
dimension to obtain a 2×H ×W feature map, which is then com-
pressed to 1×H ×W by a convolution operation. Finally, spatial
weights are obtained by a Sigmoid activation function.

We also introduce the min pooling operation by concatenat-
ing the feature maps through MaxPool, AvgPool, and MinPool to
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Figure 2. The network of Attention Block.

obtain a feature map, of size 3×H×W and then perform the con-
volution and activation operations to calculate the spatial weights
Ws(F) ∈ RH×W . Mathematically, the spatial attention is com-
puted as:

Ws(F)=Sigmoid( f 7×7([MaxPool(F);AvgPool(F);MinPool(F)]))
(3)

where f 7×7 represents a convolution operation with the kernel
size of 7×7. Sigmoid(·), AvgPool(·) and MinPool(·) denote the
Sigmoid, AvgPool, and MinPool operations, respectively.

The above calculation of spatial weights Ws(F) can be ap-
plied to part feature maps to obtain the weights of intra-region
features, which are calculated as:

P
′′

i = WR(P
′
)⊙P

′

i, i = 1,2, . . . ,N (4)

where P′

i can be calculated from Equation 2, ⊙ requires the use of
broadcast on channel.

The flow chart of the Attention Block is shown in Figure 2.

Voting Block
Since the spatial relationship between the parts of the item

is represented visually by the Attention Block, the Voting Block
collects the votes from the corresponding positions. Inspired by
the voting module in [4], the Voting Block is as follows.

The output of the Attention Block is N part feature maps
{P′′

1,P
′′

2, . . . ,P
′′

N}, where P′′

i ∈RH×W×R, i= 1,2, . . . ,N (calculated
from Equation 4), which is also the input to the Voting Block.

The output of the Voting Block is the voting result maps V,
where V = {Vi ∈RH×W×1|i = 1,2, . . . ,N}, and the outputs of the
three prediction branches correspond to the output Vcls, Vbbox
and Vcenterness. Then, the peaks in the Vcls / Vcenterness indicate
the presence of object instances. At the same time, the value cor-
responding to the same position on the Vbbox is the bounding box
regression value of the object.

The voting process converts the part feature maps (e.g., Pn)
to voting result maps (e.g., Vn), which takes in a part feature
map as the input and generates a voting result map. Specifically,
for feature layers of different sizes, there are different receptive
fields responsible for detecting prohibited items of different sizes.
Therefore, we need to adjust the size of the vote field of the Voting

Block according to the size of each feature map’s receptive fields,
so that the vote results come from the various parts that make up
the object and context.

Joint Loss Function
The joint loss function for the model is given as:

LJoint = γ1Lcls + γ2Lbbox + γ3Lcenterness

=
3

∑
i=1

γi(λconviLconvi +λahvmiLahvmi)
(5)

where i=1,2,3 correspond to the classification branch, the bound-
ing box branch, and the centerness branch respectively, γ and λ

are hyperparameters. For the classification branches, λconv1 =
λahvm1 = 1.0 and FocalLoss [11] is used for Lconv1 and Lahvm1 ;
For the bbox branches, λconv2 = λahvm2 = 1.0 and GIoULoss [30]
is used for Lconv2 and Lahvm2 ; For the cneterness branch, λconv3 =
0, λahvm3 = 1.0 (includes AHVM only) and CrossEntropyLoss is
used for Lconv3 and Lahvm3 .

Experiments
First, we introduce the experimental settings. Next, we

perform ablation studies to demonstrate the effectiveness of our
AHVM. Finally, we compare our proposed method with several
state-of-the-art methods on OPIXray and PIDray datasets.

Experimental Settings
Datasets All the methods are trained and tested on two datasets:
OPIXray [6] and PIDray [7]. The OPIXray dataset contains a
total of 8,885 X-ray images (with the size of 1,225× 954) of 5
categories (i.e., folding knife, straight knife, scissor, utility knife,
and multi-tool knife), where the test set can be divided into OL1,
OL2, and OL3 according to the different levels of occlusion. The
PIDray dataset contains 12 categories of prohibited items (i.e.,
gun, knife, wrench, pliers, scissors, hammer, handcuffs, baton,
sprayer, powerbank, lighter, and bullet) with 47,677 X-ray im-
ages. For the PIDray dataset, we resize the image to 500× 500.
As our main focus is on the detection of occluded prohibited
items, the hidden test set is used to evaluate the performance of
the model.

To demonstrate the generalization of our method, we choose
an anchor-based method ATSS and an anchor-free method FCOS
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Ablation Studies for AHVM. AP(%) is used to evaluate the per-
formance of methods on different object occlusion levels.

Method OL1 OL2 OL3 Overall
ATSS 42.9 40.6 39.2 41.2

ATSS+VB 44.1 41.5 39.5 42.2
ATSS+CBAM+VB 44.0 41.5 40.1 42.1

ATSS+AB+VB 44.8 41.8 40.6 42.8

as base detectors and incorporate AHVM into base detectors.
Both ATSS and FCOS contain three prediction branches (a classi-
fication branch, a bounding box branch, and a centerness branch),
but they differ in sample matching.
Implementation details Our proposed VotingNet is implemented
on the MMDetection toolkit1. All the results are reported on a
machine with an NVIDIA RTX A5000. The whole network is
trained with a stochastic gradient descent (SGD) algorithm with
a momentum of 0.9 and a weight decay of 0.0001. The initial
learning rate is set as 0.01 and the batch size is set as 16. Unless
otherwise specified, other parameters involved in the experiments
follow the settings of the MMDetection toolkit.
Evaluation Metrics We evaluate the performance using the AP
metrics in [31]. The AP score is averaged across all 10 IoU (In-
tersection over Union) thresholds (between 0.50 and 0.95) and all
the categories (5 for OPIXray and 12 for PIDray). We also give
AP50 and AP75 scores, which are calculated at IoU = 0.50 and
IoU = 0.75, respectively.

Ablation Studies
We conduct ablation studies to analyze the influence of the

key modules on the OPIXray dataset at different levels of occlu-
sion. The results are given in Table 1, where we add the key
components one by one into the baseline ATSS.

First, by adding the Voting Block (VB) into ATSS,
ATSS+VB improves the performance of the baseline ATSS
method by 1.2% AP, 0.9% AP, 0.3% AP, and 1.0% AP on OL1,
OL2, OL3 and overall, respectively. Then, by incorporating
both Attention Block (AB) and Voting Block (VB) into the base-
line, the performance of model on OL1, OL2, OL3 and Over-
all improved by 1.9% AP, 1.2% AP, 1.4% AP and 1.6% AP, re-
spectively. We also replace the AB in VotingNet with CBAM
for comparison. ATSS+AB+VB achieves higher accuracy than
ATSS+CBAM+VB. This shows the effectiveness of our proposed
extended CBAM, specifically designed for prohibited item detec-
tion. In particular, all the variants except for the ATSS lever-
age a combination of the convolution network and compositional
model. The convolutional network can extract discriminative fea-
tures, while the compositional model is robust to occlusion. Their
combination can improve the final performance.

Comparison with State-of-the-Art Methods
We first compare our method with some state-of-the-art ob-

ject detectors on the OPIXray and the PIDray datasets. The results
are given in Table 2.

Compared with the original ATSS and FCOS methods, Vot-
ingNet gives 1.6% and 2.5% improvements in terms of AP on two
datasets, respectively. Moreover, VotingNet outperforms other
competing methods in most evaluation metrics. Incorporating
AHVM into the base detectors can improve the detection of oc-

1https://github.com/open-mmlab/mmdetection

The evaluation results on the OPIXray and PIDray dataset. AP,
AP50, and AP75 (%) are used to evaluate the performance of all
methods.

Method
OPIXray Dateset PIDray Dateset

AP AP50 AP75 AP AP50 AP75
Faster-RCNN [8] 40.4 89.5 26.8 45.9 64.8 52.6
Cascade-RCNN [9] 40.6 90.1 27.0 48.2 63.7 54.2
SSD300 [10] 33.9 80.0 20.1 42.9 64.9 47.5
YOLOv3 [32] 37.1 88.2 21.5 44.6 67.6 50.6
RetinaNet [11] 40.9 90.1 26.5 44.6 63.2 50.0
free-anchor [33] 41.0 90.5 25.7 46.4 64.7 52.3
OAP [17] 38.4 88.7 23.2 45.2 63.6 50.8
FCOS [14] 40.7 90.0 27.4 44.3 62.9 49.8
VotingNet (FCOS) 41.5 91.3 28.9 46.7 65.5 53.7
ATSS [28] 41.2 89.8 28.1 46.1 63.4 52.3
VotingNet (ATSS) 42.8 90.7 30.8 48.6 66.0 54.6

cluded prohibited items. Therefore, introducing the generalized
Hough transform to the compositional model effectively facili-
tates the robustness to occlusion.

Conclusion
In this paper, we propose VotingNet based on the compo-

sitional model, which contains an AHVM located at the detec-
tion head. AHVM consists of AB and VB, which assign higher
weights to the unoccluded parts of the prohibited item and per-
form voting. Therefore, AHVM can focus more on the unoc-
cluded parts of the object when locating prohibited items and filter
out the influence of occluded items, enabling more accurate detec-
tion of prohibited items under occlusion. Experiments show the
effectiveness of VotingNet.
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