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Abstract 
Deep learning models have significantly advanced, leading to 

substantial improvements in image captioning performance over the 
past decade. However, these improvements have resulted in 
increased model complexity and higher computational costs. 
Contemporary captioning models typically consist of three 
components such as a pre-trained CNN encoder, a transformer 
encoder, and a decoder. Although research has extensively explored 
the network pruning for captioning models, it has not specifically 
addressed the pruning of these three individual components. As a 
result, existing methods lack the generalizability required for 
models that deviate from the traditional configuration of image 
captioning systems. In this study, we introduce a pruning technique 
designed to optimize each component of the captioning model 
individually, thus broadening its applicability to models that share 
similar components, such as encoders and decoder networks, even 
if their overall architectures differ from the conventional captioning 
models. Additionally, we implemented a novel modification during 
the pruning in the decoder through the cross-entropy loss, which 
significantly improved the performance of the image-captioning 
model. Furthermore, we trained and validated our approach on the              
Flicker8k dataset and evaluated its performance using the CIDEr 
and ROUGE-L metrics. 

Introduction 
In recent years, the field of image captioning has witnessed 

significant advancements, primarily driven by the development of 
deep learning models. These enhancements have improved 
performance metrics considerably; however, they have also led to 
increased model complexity and elevated computational demands. 
Over the past decade, research focused on deep neural networks for 
image captioning has significantly enhanced model performance. 
Notably, the CIDEr [1] scores for state-of-the-art models on the MS-
COCO dataset have risen from 66 to over 130 points. However, 
these advancements have typically resulted in substantial increases 
in model size, exemplified by the growth in decoder size from 12 
million to 55 million parameters. 

Contemporary image-captioning models typically consist of 
three primary components: a pre-trained convolutional neural 
network (CNN) encoder, a transformer encoder, and a transformer 
decoder. To mitigate the increase in model size, various pruning 
techniques have been developed to remove non-essential weights 
from the network. These pruning methods offer multiple benefits, 
including enhanced speed, reduced storage requirements, and lower 
energy consumption, especially during deployment.  

Despite these developments, current research on network 
pruning for these models has not thoroughly addressed the distinct 
components, resulting in methods that are not universally applicable 
to models with varying architectures. This limitation restricts the 
generalizability of pruning techniques, particularly for models that 
incorporate similar components but differ in their overall structure 

of the models. Our objective is to establish a generalized pruning 
strategy applicable to various models featuring encoder and decoder 
networks. The contribution of this paper as follows: 

(a). We proposed a novel approach employing distinct pruning 
techniques tailored to each component of the ResNet-transformer-
based model for image captioning (RTIC). 

 (b). Additionally, we implemented a novel modification to the 
pruning process in the decoder by incorporating the cross-entropy 
loss, which significantly improved the performance of the image-
captioning model. Moreover, we trained and validated our approach 
on the Flickr8k dataset and evaluated its performance using the 
CIDEr and ROUGE-L metrics. 

Related Work  
Recent studies [2] [3] have conducted end-to-end pruning of 

image-captioning models. Tan et al. [2] developed a super-mask 
pruning technique that implements continuous and gradual sparsifi-
cation during the training phase, based on parameter sensitivity in 
an end-to-end fashion. In [2], they noted the scarcity of their 
previous work on pruning the image captioning models due to two 
primary challenges: first, the presence of weights that are shared and 
reused across time steps, which complicates the application of 
variational pruning methods designed for feed-forward networks; 
second, the inherent complexity of the multi-modal task of image 
captioning, requiring any proposed method to perform effectively 
across both image and language domains.  

Furthermore, methods [2] and [3] address the pruning of image 
captioning models within an end-to-end framework. However, their 
approaches are not easily generalizable to models with similar yet 
distinct architectures.  For instance, image-captioning models often 
include vision transformer (ViT) encoders and language model 
(LM) decoders.  
 

 
                                                              (a)  
 

 
(b) 

Figure 1. Pipeline of the ResNet-Transformer based image captioning model 
(RTIC). (a). Unpruned model and (b). Pruned model with the proposed targe-
ted component pruning method. 
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Therefore, we propose a new method for pruning that treats 
each component—namely, the pre-trained ResNet encoder, the 
transformer encoder, and the transformer decoder networks—
separately, as depicted in Figure 1. This method ensures that the 
pruning processes for each component are independent of one 
another. The unpruned model is shown in Figure 1(a), while the 
pruned model is shown in Figure 1(b). 

Method 
To implement the pruning techniques, we utilized a framework 

for the image-captioning model as depicted in Figure 1(a), which 
comprises three main components: a pre-trained ResNet serving as 
the backbone, a transformer encoder, and a transformer decoder. 
Figure 1(b) shows the pruned model after applying the targeted 
component pruning method to each of these components separately: 
channel pruning on ResNet, width pruning on the transformer 
encoder, and depth pruning on the transformer decoder. 

  (a) 

      (b) 
Figure 2. Comparison of pruning and unpruning ResNet (a). Unpruned Res-
Net, and (b). Pruned ResNet. 

Targeted channel pruning of the ResNet component 
The ResNet serves as a backbone of the RTIC, primarily 

responsible for feature extraction. Prior to targeted pruning, we 
trained the ResNet model on Tiny Image-Net dataset [4].  In order 
to implement the pruning on the pre-trained model, traditional 
pruning methods, which involve removing redundant channels 
through the use of a sparsity-inducing term in a pretrained network 
followed by fine-tuning. These approaches face several challenges; 
for example, group lasso technique employed in these methods is 
computationally demanding, challenging to converge, and often 
leads to diminished performance due to the simplified model 
architecture. Kethan et al. [5] introduced a channel pruning method 
applicable across all layers of a network, allowing for a varying 
number of channels to be pruned across different layers. This 
method is designed for a standard ResNet-101 architecture 
incorporating convolution-batch normalization, and ReLU 
activation.  Let B denote the current mini-batch, a standard BN layer 
performs the following affine transformation for each of the i-th 
feature map 𝑧 =  ℝ× , for 𝑖 ∈ {1, 2, . . ., 𝑛} as shown in (1).   

   �̂� =  
௭

()
ି ఓಳ

ටఙಳ
మ ା ∈

  ;  𝑧
(௨௧)

=  𝛾�̂� + 𝛽    (1) 

In this context, �̂�  represents the normalized i-th feature map, 𝑧
(௨௧)

denotes the i-th output feature map,  𝜇
 represents the mean of the 

i-th feature map over the batch B, 𝛾  is the standard deviation of the

i-th output channel  𝑧
(௨௧) and  𝛽   denotes the mean of the  i-th

output channel   𝑧
(௨௧)

.  The term 𝛾
ଶ controls the variance  of the i-

th output channel  𝑧
(௨௧)  and  ∈   is a small positive number.

Neglecting the effect of activations, the i-th input channel of l-th 
convolution layer is has a variance of 𝛾ℓିଵ,

ଶ .   For the entire ResNet, 
𝑊 ≡   {𝑊}{ଵ,ଶ,…,} denotes the set of all convolution parameters, 
and 𝛾 =   ൛𝛾,, 𝛽,ൟ

,
 represents the parameters of the batch

normalization layers. Thus, the contribution of the i-th input to the 
variance of the j-th output in the l-th convolution layer is described 
by Eq. (2): 

 𝛾
ଶ = 𝛾ℓିଵ,

ଶ ฮ𝑊ℓ,,ฮ
ଶ

ଶ
  (2) 

Figure 2(a) illustrates the influence of each input channel on the 
variance of the output channels. When all outputs are considered 
simultaneously, the importance criteria ( 𝐼 ) are established in Eq. 
(3).  

   𝐼 =  𝛾ℓିଵ,
ଶ ∑ ฮ𝑊ℓ,,ฮ

ଶ

ଶℓ
ୀଵ                                                   (3)

The summation can simply be modified with a scalar that it sums as 

one:  ∑ ฮ𝑊ℓ,,ฮ
ଶ

ଶℓ
ୀଵ  = 1. Consequently, the final global importance 

score is denoted by  𝛾(ିଵ,) , which quantifies the extent to which i-
th input channel contributes to the variance of the l-th convolution 
layer. To achieve the desired pruning ratio (η) over T iterations, the 
following steps need to be followed. 

(a). Train the ResNet backbone on a large dataset, applying 
appropriate regularization on the batch normalization variance 𝛾

ଶ. 
(b). Rank the channels according to their global importance score 
𝛾. 
(c). Prune η/T channels based on to their importance score and fine 
tune the pruned model on a downstream target dataset. 
(d). Repeat the process starting from step 2 for T iterations to attain 
the desired level of sparsity. The ResNet backbone is pruned 
independently.  During the training of the image captioning model, 
the pruned ResNet is loaded while its weights are frozen. Figure 2(b) 
displays the final pruned ResNet component. 

      (a)                                          (b) 
Figure 3. Comparison of the pruned and unpruned encoder of the RTIC. (a). 
Unpruned encoder, and (b). Pruned encoder.  
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Targeted width pruning of the Encoder component 
The encoder, depicted as a second component of the RTIC in 

Figure 3. Ko et al. [6] demonstrated that the sparsity of the encoder 
network significantly influences the output quality of encoder-
decoder LMs, whereas the number of encoder layers does not 
significantly affect inference time. Given that, the encoder-decoder 
network utilized in our image-captioning model mirrors the same 
architecture of traditional LMs, similar trends are anticipated. Width 
pruning is applied to the encoder network, as depicted in Figure 3. 
Unlike Ref. [6], which employed ℓ0 regularization by enforcing an 
equality constraint between the target and current sparsity, we do 
not specify a target sparsity and instead apply regular weight 
regularization across all encoder weights. Additionally, ℓ2

regularization is employed to maintain appropriate gradient flows 
throughout the model, with 𝜆ଵ set at 0.01. Thus, the loss contribu-
tion from the encoder ( 𝐿  ) is expressed by Eq. (4). 

  𝐿 =  𝜆ଵ ∑  {,} ฮ𝑊ଶ
,


ฮ    (4) 

(a)                                               (b) 
Figure 4. Comparison of pruned and unpruned decoder of the RTIC. (a). 
Unpruned decoder (UD) and (b). Pruned decoder (PD). 

Targeted depth pruning of Decoder component 
      The decoder, illustrated as the third component of the RTIC in 

the Figure 4(a). Ko et al. [6] observed that the number of decoder 
layers was directly proportional to both the inference time and the 
model size. Accordingly, depth pruning was applied to the decoder 
network, as depicted in Figure 4(b). For a specified number of 
selected layers ds, Ls represents the index of the selected layer, and 
a decoder subnetwork is generated through uniform sampling, as 
described in Eq. (5). 

 𝐿௦ =  ቊቔ
ିଵ

ௗೞିଵ
ቕ  .  ℓ + 1 | ℓ ∈ { 0 , … , 𝑑௦ − 1}ቋ    (5) 

Ko et al. [6] utilized hidden state distillation to align the hidden 
states of the decoder subnetwork (𝐻ௗ,௦

ℓ )  with those of the original 

decoder network. The mean square error (MSE), 𝐻ௗ ,ℓ ቔ
ିଵ

ௗೞିଵ
 . ℓ +

1ቕ is the selected state from the original decoder network, and the 

hidden state distillation loss (𝐿
ௗ) is illustrated in Eq. (6). This 

equation represents the loss contribution from the decoder network, 
referred to as the pruned RTIC [6]. 

𝐿
ௗ =  ∑ 𝑀𝑆𝐸 ቀ𝐻ௗ,௦

ℓ  , 𝐻ௗ ,ℓ ቔ
ିଵ

ௗೞିଵ
 . ℓ + 1ቕቁℓ ∈ {ଵ,ଶ,…,ௗೞ}    (6) 

Novel approach of the targeted pruning on Decoder 
Our approach to depth pruning in the decoder is depicted in the 

Figure 5. We adopted a slightly different approach. 

      (a)                                        (b) 
Figure 5. Comparison of pruned and unpruned decoder of the RTIC. (a). 
Unpruned decoder (UD) and (b). Pruned decoder (PD) with the novel change 
in decoder final layer. 

We matched all hidden states of the decoder subnetwork to those of 
the original decoder network as shown in the Figure 4, except for 
the final layer, as stated in Eq. (7).  

𝐿
ௗ =  ∑ 𝑀𝑆𝐸 ቀ𝐻ௗ,௦

ℓ  , 𝐻ௗ ,ℓ ቔ
ିଵ

ௗೞିଵ
 . ℓ + 1ቕቁ

ௗೞିଵ
ℓୀଵ    (7) 

The output of the last layer is aligned with the true caption of the 
image, where CC denotes the correct captions, and CE represents the 
cross-entropy loss as expressed in Eq. (8).  

𝐿ௗ
௧௧ =  𝐿

ௗ + 𝐶𝐸൫𝐶𝐶 , 𝐻ௗ ,ௗೞ
൯    (8) 

This loss described in Eq. (8) as the loss contribution from the 
decoder network, this is referred to as the proposed pruned-novel 
change in the decoder. The rationale for this approach is to ensure 
that the output closely mirrors the original caption. Therefore, rather 
than aligning the last layer outputs of the pruned and unpruned 
decoders, we aligned the final output of the pruned decoder with the 
true caption of the image. Additionally, the proposed decoder 
pruning method demonstrated superior performance compared to 
the original decoder pruning technique. The final loss optimized 
during training is outlined in Eq. (9): 

𝐿௧௧ =  𝜆ଵ ∑  {,} ฮ𝑊ଶ
,


ฮ +   𝜆ଶ𝐿
ௗ +  𝐶𝐸൫𝐶𝐶 , 𝐻ௗ ,ௗೞ

൯      (9)

where 𝐿௧௧   represents the total loss optimized for the pruned 
network during the training, and 𝜆ଶ  represents the decoder loss 
contribution coefficient set at 0.01. The final pruning model for the 
image-captioning model is displayed in Figure 1(b). This model 
integrates individual network components, including ResNet 
pruning, encoder pruning, and decoder pruning. The validation of 
the proposed method is demonstrated in the experiments and results 
section.  

Experiments and Results 
 We conducted extensive numerical experiments to validate the 

effectiveness of our proposed method. This section introduces the 
datasets and evaluation metrics used, specifies the experimental 
settings, and compares the results of our method with those of state-
of-the-art approaches. To validate the proposed method, we 
conducted the extensive experiments using the Flickr8k dataset [8] 
[9]. This dataset, curated specifically for image captioning tasks, 
comprises 8,000 images, each accompanied by five distinct captions 
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(a)                                                         (b)                                                        (c)
Figure 6. The quantitative results of the image captioning model, (a). Unpruned RTIC Model, (b). Pruned RTIC [6], and (c). Proposed Method. 

provided by human annotators, totaling 40,000 captions. The Tiny-
ImageNet dataset [4], a subset of the larger ImageNet dataset, is 
designed for efficient experimentation in machine learning. This 
dataset includes 100,000 images across 200 classes. Each image is 
downsized to a 64 × 64 color image. Each class contains 500 training 
images, 50 validation images, and 50 test images. We used this 
dataset to train the ResNet-101 pre-trained architecture for feature 
extraction. To evaluate the performance of our proposed method and 
the quality of the generated captions, we employed two metrics: 
recall-oriented understudy for gisting evaluation (ROUGE-1, 
ROUGE-L) [7], and consensus-based image description evaluation 
(CIDEr) [1]. We conducted experiments on a single deep learning 
computer equipped with an NVIDIA RTX A6000 graphics card and 
CUDA, using PyTorch version 2.3.1.  

The system was configured with the following hyperpara-
meters: a pre-trained CNN based on ResNet, an input image size of 
256 × 256, a batch size of 32, and an embedding size of 512. The 
dropout rates were set at 0.02, 0.1, and 0.5. A vocabulary was 
initially created from words appearing at least five times across the 
dataset and was tokenized using the Spacy tokenizer. The learning 
rate was set to 0.0003, referred to as “Karpathy’s learning rate,” for 
all experiments. The maximum caption length was 5000, Adam was 
used as the optimizer, and the weight decay for both the encoder and 
decoder was set at 0.01.  

Table 1. Comparative analysis of performance scores between 
pruned and unpruned models. 

Table 2. Size comparisons of pruned and unpruned models. 

The number of attention heads in both the self-attention and cross-
attention layers was fixed at 8. All models are trained with 20 
epochs. To evaluate the proposed method, we used the ROUGE-L 
and CIDEr scores as shown in Table 1. The CNN+LSTM has the 
lowest reported performance with the modest ROUGE-L, and 
CIDEr scores, indicating its limited effectiveness in generating 
captions. The Merge_RNN demonstrates a significant improvement 
that shows a better alignment with the human-written sentences. The 
unpruned RTIC model achieves the better CIDEr score and similar 
performance with ROUGE-L. When pruned, the RTIC model drops 
a performance in CIDER metric due to prune the unwanted layers to 
help the model to reduce its complexity.  Additionally, our proposed 
method outperforms the results achieved by relying solely on hidden 
state distillation for the decoder network.  

Table 2 shows the pruning ratios for three components: ResNet, 
Decoder, and Encoder. Both ResNet and decoder are reduced to half 
their original size (0.5 ratio), indicating uniform pruning for these 
components. The encoder’s pruning ratio ranges from 0.5 to 0.7, 
suggesting some flexibility to retain more capacity in this critical 
component. This strategy aims to optimize resource usage while 
preserving the Encoder’s capacity to balance efficiency and quality. 
A comparison of the sizes of the pruned and unpruned components 
in terms of Megabytes (MB)is presented in Table 3. The unpruned 
RTIC model has a size of 346.5 MB that indicates it needs larger 
memory requirements compared to pruned models. Both the pruned 
RTIC model and the proposed method are reduced to 240.0 MB, 
showing identical memory efficiency after pruning. The pruning 
process results in a size reduction of approximately 31% (from  

Name of the Model ROUGE-1 ROUGE-L CIDEr 
CNN+LSTM [8] - 0.2180 0.2890 
Merge_RNN [9] - 0.4430 0.4690 
Unpruned RTIC Model 0.3740 0.3478 0.7980 
Pruned RTIC [6] Model 0.3104 0.2880 0.4320 
Proposed method  0.3110 0.2894 0.4377 

Component Size Ratio (Pruned/Unpruned) 
ResNet 0.5 
Decoder 0.5 
Encoder 0.5-0.7 
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Table 3. Comparison of model size of pruned and unpruned models 
in terms of memory (MB). 

346.5 MB to 240.0 MB), making these models more lightweight. 
Despite the significant size reduction, the proposed method achieves 
better performance over the pruned RTIC model, demonstrating 
effective optimization. This emphasizes that pruning strategies can 
significantly reduce the model size without sacrificing performance 
and can even improve overall performance. Furthermore, the 
qualitative results are presented in Figure 6. Figure 6(a) shows the 
results of the unpruned RTIC model, Figure 6(b) demonstrates the 
predicted captions of the pruned RTIC model, and Figure 6(c) 
illustrates the predicted image captions generated by the proposed 
method. The model has a few false cases, as shown in Figure 7. In 
the first image, the model predicts: “A girl in a purple dress is laying 
on a red carpeted floor” instead of “A young girl climbs a rock wall 
in a purple dress.” In the second image, the model predicts: “Two 
people are hiking up a steep grassy hill” instead of “A hiker climbing 
a rocky hill with fog surrounding him.” In both cases, the model's 
predictions are accurate in general but fail to correctly identify the 
color or the number of people. 

Figure 7. The wrong prediction cases of the image captioning model. 

Conclusion 
In conclusion, the advancement of deep learning models has 

significantly enhanced image captioning performance, though this 
improvement often comes at the cost of increased model complexity 
and computational demands. Contemporary image-captioning 
models typically comprise a pre-trained CNN encoder, a transfor-
mer encoder, and a transformer decoder. Previous efforts in network 
pruning of these models have not addressed these components 
individually, thereby limiting their applicability to diverse model 
architectures. This study introduces specific pruning techniques 
designed for each part of the captioning model, thereby enhancing 
their generalizability to models with similar components, such as 
encoder and decoder networks. Additionally, this study proposed a 
novel approach in the decoder, which shows considerable promise 
in enhancing performance. This methodology not only builds upon 
existing research but also advances the model efficiency, and 
adaptability in the field of image captioning. 
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