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Abstract
Few-shot learning is the most prevalent problem which has

attracted lots of attention in recent years. It is a powerful research
method in the case of limited training data. Simultaneously, few-
shot learning methods based on metric learning mainly measure
the similarity of feature embeddings between the query set sample
and each class of support set samples. Therefore, how to design a
CNN-based feature extractor is the most crucial problem. Nowa-
days, the existed feature extractors are obtained via training the
standard convolutional networks (e.g., ResNet), which merely fo-
cuses on the information inside each image. However, the rela-
tions among samples may also be beneficial to promote the per-
formance of the few-shot learning task. This paper proposes a
Convolutional Shared Dictionary Module (CSDM) to find the hid-
den structural information among samples for few-shot learning
and reduce the dimension of sample features to remove redun-
dant information. Therefore, the learned dictionary is more easily
adapt to the novel class, and the reconstructed features are more
discriminative. Moreover, the CSDM is a plug-and-play module
and integrates the dictionary learning algorithm into the feature
embedding. Experimental results on several benchmark datasets
have demonstrated the effectiveness of the proposed CSDM.

INTRODUCTION
In recent years, deep learning network has made significant

progress in the object detection [1], image classification [2–5],
image segmentation [6], etc. In contrast, there are limited training
data in numerous scenes in reality. Numerous effective few-shot
learning methods have recently been proposed to solve low per-
formance caused by insufficient data samples. Unlike traditional
methods, the train set and test set in few-shot learning are inde-
pendent of each other, and each contains the support set and query
set. Generally, there are between 1 and 20 examples per class in
the support set, which puts forward higher requirements on the
model’s generalization performance and how to make fair use of
the finite data. It is entirely different from the traditional classi-
fication problem. Simultaneously, few-shot image classification
tasks mainly include data-based methods [7], optimization-based
methods [8], and metric-learning-based methods [9]. Among
which the few-shot image classification based on metric learning
is the most widely studied.

The few-shot image classification method based on met-
ric learning effectively solved the problem with limited image
data, which usually includes feature extraction network and met-
ric learning module, such as Prototypical Network [10]. First, the
feature extraction network extracts each class of samples’ features

in the support set and query set to represent the sample data. The
metric learning module is then adopted to implement the predic-
tion of the query set samples’ labels and update feature embed-
ding network parameters by minimizing the similarity between
the support set and query set. This kind of method is simple
and effective. However, the feature extraction network merely
extracts the feature independently, without considering the distri-
bution among samples.

This paper introduces the Convolutional Shared Dictionary
Module (CSDM) to consider the correlation among samples fully.
After the feature extraction network, CSDM is used to reconstruct
all samples’ embedding features. The CSDM algorithm can ob-
tain the samples’ distribution according to learning the pattern of
embedding features and thus transform the embedding features
to a more discrimination subspace. Specifically, CSDM uses the
feature embeddings extracted from the feature extraction network
to learn and build a shared dictionary and then obtains the repre-
sentation of samples through the linear combination of dictionary
atoms in the shared dictionary. CSDM can be considered a feature
reconstruction layer inserted into the feature extraction network.
It provides more efficient features by considering the global fea-
tures’ distribution. Figure 1 shows how to apply the CSDM to the
metric-learning-based few-shot learning task.

The main contributions in this paper are as follow,

• We propose an effective Convolutional Shared Dictionary
Module and integrate it into the deep feature extraction net-
work. This framework is called the convolutional shared
dictionary feature extraction framework. CSDM can effec-
tively obtain the relationship among samples to reconstruct
the feature embeddings. The reconstructed feature embed-
dings are more discriminative and thus more suitable for Do-
main Shift tasks.

• To improve the learning ability of the Convolutional Shared
Dictionary Module, CSDM uses the ℓ2 norm on the dic-
tionary to prevent overfitting and enhance the robustness to
data noise. To facilitate optimization, we also propose up-
dating the dictionary during backpropagation.

• The proposed module improves performance 0.2% ∼ 2.4%
over baseline systems (Prototypical Network [10]) on 5-
way N-shot (N = 5,10,15) on four benchmark datasets for
few-shot learning.

• The proposed CSDM is a plug-and-play module and can be
integrated into any feature embedding networks.
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Figure 1. The figure shows a schematic diagram of CSDM in the 3-way 3-shot classification task. It consists of a feature extraction network, convolution

dictionary module, and measurement module. (1) The feature extraction network is to extract the feature embeddings of samples. (2) CSDM uses feature

embeddings to build a shared dictionary and transform the feature embeddings into a more efficient representation. (3) The metric learning module predicts the

category of the query set and updates the parameters of the feature extraction network and convolution dictionary module via the cross-entropy loss.

Related Work
Metric Learning

The few-shot learning method based on metric learning mod-
els the distance distribution among samples, making the same
class samples closer and the different classes farther. Finally,
metric the distance of the feature vectors of the samples to com-
plete the classification task. Koch G et al. [11] proposed the
Siamese Network by permuting and combining samples into pairs
and judging whether they belong to the same class by the distance
of the sample pairs. Vinyals O et al. [12] proposed the Matching
Network to construct different feature extraction models for sup-
port set and query set, and weighted sum the prediction results of
support set and query set to obtain the label of unknown samples.
The attention mechanism is introduced into the embedded feature
extraction model to improve the few-shot classification method’s
fast learning ability. Snell J et al. [10] proposed the Prototypi-
cal Network, which calculates a prototype (the average value of
sample feature vectors of each class) for each class sample in the
support set. It then predicts the categories according to the dis-
tance between the samples and prototypes of each class. Sung F
et al. [13] proposed Relation Networks. Unlike using pre-defined
metrics, relation networks learn a non-linear expression and eval-
uate the relationship more accurately. Hui B et al. [14] proposed
adding a self-attention module based on the Relation Network.
The self-attention module finds out the correlation between each
pixel and all other pixels so that the network can extract non-local
long-distance dependency information. Simon C et al. [15] pro-
posed finding a suitable subspace for each class. And then, met-
ric the distance between samples in the subspace and predict the
class.

Dictionary Learning
Dictionary learning is a representation of learning technol-

ogy with a long history. It obtains the sparse representation of
samples by the linear combination of dictionary atoms. Mallat S
G et al. [16] first proposed that dictionary learning is a generic

sparse representation model. Later, dictionary learning was ap-
plied to more fields, such as image classification [17] , image
super-resolution reconstruction [18], image denoising [19], and
image compression [19].

Mairal J et al. [20] proposed a supervised multi-modal dic-
tionary learning method. It uses sparse joint constraints to en-
hance data of the same category to obtain a multi-modal dictio-
nary with identification ability. Yang M et al. [21] introduced
the Fischer criterion into sparse representation and proposed a
discriminative dictionary method based on the Fischer criterion,
which further improved the recognition ability of dictionary learn-
ing. Gu S et al. [22] introduced an analysis dictionary and pro-
posed a Projective dictionary pair learning method. The analysis
dictionary is trained through linear projection, which solves high
complexity and low efficiency of sparse constraints of ℓ0 norm
and ℓ1 norm. Aharon Met al. [23] proposed a dictionary learning
method based on sparse representation, using iterative alternate
learning to optimize the dictionary and better fit the sample data.
Jiang Z et al. [24] introduced a sparse label matrix. Minimizing
the discriminant sparse coding error to obtain a sample similar
coefficient matrix improves dictionary learning’s discrimination
ability. Shao S et al. [25] proposed a dictionary learning method
based on label embedding, which embeds tag information into the
regularized dictionary learning method and transforms the sparse
constraint problem into a convex optimization problem.

Methodology
In this section, we mainly introduce the Convolutional

Shared Dictionary Module. First, we analyze the shortcomings
of the feature extraction network used for few-shot learning and
then explain the proposed CSDM in detail.

Convolutional Neural Network
Few-shot learning based on metric learning (such as Pro-

totypical Network) consists of feature extraction network and
base learner. The feature extraction network is usually a deep
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convolutional network (e.g., ResNet-12). We assume that X =
{xi|i = 1,2, · · ·,K ×N} is the input samples and M = K×N is the
total number of samples. The feature extraction network is con-
sidered as a function F (·), with which the feature embeddings are
represented as F(X) ∈ Rd×N . Here, K represents the number of
categories, N is the number of samples for each class, d is the
dimension of feature embeddings, xi is the ith sample.

Each sample corresponds to an output (embedding feature)
independently, and the embedding features are obtained sepa-
rately. This lead to the feature extractor network cannot effec-
tively use relationship among the samples. To find the structural
information hidden in the feature embeddings and remove the re-
dundant information, we propose a Convolutional Shared Dictio-
nary Module (CSDM). The reconstructed feature embeddings via
the CSDM would have more reliable discriminability.

Convolutional Shared Dictionary Module
As mentioned above, the relations among samples play cru-

cial roles in extracting feature embeddings, and the convolutional
neural networks usually ignore the relations. In this paper, we
propose the Convolutional Shared Dictionary Module (CSDM)
to address this problem. To be more specific, we try to employ
a to-be-learned dictionary D to re-represent the feature embed-
ding as X∗, where D ∈ Rd×n. Here, n is the number of dictionary
atoms. This way builds a strong connection among classes, which
is helpful for the downstream classification task. We formulate
the CSDM as:

{D,S}= argmin
D,S

{
∥F(X)−DS∥2

F +α ∥D∥2
F +β ∥S∥2

F

}
(1)

where S ∈ Rn×N is the code for F(X), α , and β are constant
parameters. Then we optimize (1) to obtain the optimal of shared
dictionary D and matrix S. We expand (1) as follows:

{D,S}= trace{(F(X)−DS)T (F(X)−DS)

+αDT D+βST S}
(2)

where trace is the trace of matrix. The optimal shared dic-
tionary D is as follows:

D = XST
(

SST +αI
)−1

(3)

We propose to embed the shared dictionary D and the coding
matrix S into the feature extraction network and update them dur-
ing backpropagation and forward propagation, respectively. The
optimal coding matrix S is as follows:

S =
(

DT D+β I
)−1

DT F(X) (4)

The coding matrix S contains inter-class information, we de-
fine the embedding features after reconstruction as follows:

X∗ =
∑
(
ST −mean(ST )

)
n−1

(5)

We summarize the steps in Algorithm 1.

Algorithm 1 Convolutional Shared Dictionary Module
Input: Samples X = [x1,x1, · · · ,xN ] for k classes.
Output: Reconstructed embedding features X∗. Initialize CNN

parameters, coding matrix S, shared dictionary matrix D.
Obtain embedding features F(X).
Optimize shared dictionary matrix D and coding matrix

S as described in Section .
Update dictionary D by (3).
Update coding S by (4).

Obtain reconstructed embedding features X∗ by (5).

Baseline with CSDM
Figure 1 shows the architecture of the baseline with CSDM.

We use the base learner to follow the Prototypical Network model
and consider reconstructed embedding features of each class cen-
ter in the support set as the prototype. Then use the query set
to calculate the probability of each sample corresponding to each
class.

EXPERIMENT
This section mainly shows and analyzes the experimental re-

sults on four benchmark few-shot image classification datasets
and compares them with the baseline method (Prototypical Net-
work). Besides that, we evaluate the performance of the proposed
method CSDM under domain shift.

Datasets
We evaluate the proposed method on four benchmark few-

shot image classification datasets: miniImageNet [12], tieredIma-
geNet [9], CIFAR FS [9], and FC100 [9].

The miniImageNet dataset is a sub-dataset of the ILSVRC-
2012 dataset [26], which contains 100 classes of the ILSVRC-
2012 dataset, and each class includes 600 images. Among them,
we randomly select 64, 16, and 20 classes for meta-training, meta-
validation, and meta-testing, respectively.

The tieredImageNet dataset contains 608 classes of data se-
lected from the ILSVRC-2012 dataset [26], and each category
also includes 600 images. These classes are divided into 34 high-
level classes, of which 20 (351), 6 (97), and 8 (160) high-level
classes (classes) for meta-training, meta-validation, and meta-
testing, respectively.

The CIFAR-FS dataset contains all 100 classes of data in
the CIFAR-100 [27], of which 64, 16, and 20 classes for meta-
training, meta-validation, and meta-testing, respectively. And
each class contains 600 images.

The FC100 dataset also contains 100 classes in the CIFAR-
100 [27], divided into 20 high-level classes, among which 12
(60), 4(20), and 4(20) high-level classes for meta-training, meta-
validation, and meta-testing, respectively. The number of images
is the same as the CIFAR-FS datasets. The number of images
is 600. Both the tieredImageNet dataset and the FC100 dataset
are more challenging to classify samples belonging to the same
high-level class.

Experimental Setups
In the training stage, we use the meta-learning method to

train our model. Each meta-task selects 5 classes of samples, and
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Figure 2. The effect of the number of dictionary atoms on the model’s

performance. We conduct various experiments on the CIFAR-FS dataset,

setting the number of dictionary atoms to 64, 128, 256, and 512, respectively.

We train and test the performance of the model under the same environment.

The figure shows experiments result on 5-way N-shot (N =1,5,10,15). From

the figure, with the number of dictionary atoms increasing, the performance

of the model gradually decreases after enhancement. When the dictionary

atom is 128, the performance is the strongest, and we use this parameter in

all experiments.

the number of samples in each category is 15 (5-way 15-shot) on
the four datasets. The meta-validation set is used only to adjust
the parameters of the model and not for training.

We choose ResNet-12 as our feature extraction network,
which is the same as [9], and use the SGD optimizer to train
the model. The initial learning rate is set to 0.1 and gradually de-
creases as the number of epochs increases, and we also use label
smooth. Selecting the number of atoms in the parameter dictio-
nary of CSDM is shown in Figure 2. For a fair comparison, we
train the baseline method and CSDM model under the same pa-
rameters. We randomly evaluate 1,000 episodes with 95% confi-
dence intervals on the meta-testing set as the final result by public
code. We compare the proposed CSDM and baseline methods on
four benchmark datasets, such as miniImageNet, tieredImageNet,
CIFAR-FS, and FC100 datasets. We present the experimental re-
sults in Table 1.

Table 1. Classification results

Datasets CSDM 1-shot 5-shot 10-shot 15-shot

miniImageNet
59.25% 75.60% 79.36% 80.99%

✓ 57.39% 77.22% 80.90% 82.31%
-1.86% +1.62% +1.54% +1.32%

tieredImageNet
61.74% 80.00% 83.57% 84.34%

✓ 62.61% 82.49% 85.65% 86.78%
+0.87% +2.49% +2.08% +2.44%

CIFAR-FS
72.20% 83.50% 85.66% 86.49%

✓ 70.33% 84.39% 86.57% 87.09%
-1.87% +0.89% +0.91% +0.6%

FC100
37.50% 52.50% 56.65% 58.07%

✓ 38.43% 52.73% 57.18% 59.28%
+0.93% +0.23% +0.53% +0.71%
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Figure 3. Evaluate accuracies on CIFAR-FS and FC100 datasets with the

various meta-training shot. The CSDM performance on N-shot (N=5,10,15)

gradually increases with increasing meta-training shot.

Experiment Results
Table 1 shows the accuracy of the baseline method and

the baseline method with CSDM and the accuracy improvement
of these two methods. We can see that on the 5-way N-shot
(N=5,10,15) meta-testing, the performance of CSDM has im-
proved to varying degrees over the baseline method. On the 5-way
1-shot meta-testing, the performance on two fine-grained classi-
fication datasets, such as tieredImageNet and FC100, increases
by 0.87 and 0.93, respectively. However, the experiments on the
miniImageNet and CIFAR-FS datasets are not ideal. It may be
because it is not stable to find the relationship among extremely
few samples through dictionary learning. We speculate that the
proposed CSDM is more suitable for situations with more meta-
testing data, and we also conduct experiments to verify our specu-
lation. We adopt the same parameters to train the baseline method,
and the proposed CSDM obtains better experimental results on
5-way 10-shot and 15-shot. As shown in Table 1, the proposed
CSDM has improved at least 0.5% in performance than the base-
line method.

We compared our results with previous work on four
datasets, as shown in Table 2 and Table 3, and our experimen-
tal results were competitive. We conduct more detailed experi-
ments on CIFAR-FS and FC100 datasets to analyze the advan-
tages of CSDM. As shown in Figure 3, the CSDM performance
on 5-way N-shot (N=5,10,15) gradually increases with increas-
ing meta-training shot, which is more practical. However, the
baseline method does not have this trend. We may use a higher
shot to train the model and obtain better performance. We analyze
that with the increase of meta-training shot, the proposed method
can mine more relationships among sample classes to reconstruct
sample embeddings, which is more suitable for metric learning.

Feature Visualization with t-SNE
We use t-SNE [34] to visualize features on the CIFAR-FS

dataset. As shown in Figure 4, the feature extractor used in the
baseline method does not consider the relationship among sam-
ples, resulting in partial overlap of adjacent embedded feature
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Table 2. Comparison with previous to prior work on miniIma-
geNet and tieredImagent dataset on 5-way 5-shot case.

Model Backbone miniImageNet tieredImageNet

MAML [8] ConV-4 63.11±0.92 70.30±1.75
Relation Nets [13] ConV-4 65.32±0.70 71.32±0.78
SNAIL [28] ResNet-12 68.88±0.92 -
AdaResNet [29] ResNet-12 71.94±0.57 -
TADAM [30] ResNet-12 76.70±0.30 -
Prototypical [10] ResNet-12 75.60±0.48 80.00±0.55
TEAM [31] ResNet-12 72.04 -
Meta-Transfer [32] ResNet-12 75.53±0.80 -
TapNet [33] ResNet-12 76.36±0.10 80.26±0.12

SDL-FSL ResNet-12 77.22±0.71 82.49±0.56

Table 3. Comparison with previous to prior work on CIFAR-FS
and FC100 dataset on 5-way 5-shot case.

Model Backbone CIFAR-FS FC100

MAML [8] ConV-4 71.50±1.00 -
Relation Nets [13] ConV-4 69.30±0.80 -
TADAM [30] ResNet-12 - 56.10±0.40
Prototypical Nets [10] ResNet-12 83.50±0.50 52.50±0.60

SDL-FSL ResNet-12 84.39±0.5 52.73±0.6

distribution and incorrect classification. The proposed CSDM
method fully considered the relationship among samples and
found concise patterns. The distribution of the same class is more
concentrated, and the distance of different categories is more dis-
tant, making it easier to judge the category.

(a) Baseline (b) CSDM

Figure 4. The t-SNE visualization. We test the effect of the CSDM on the

embedding features in a 5-way problem.

Performance Under Domain Shift
We train the model on the miniImageNet [12] dataset

and evaluate performance on the CUB [35], plantae [36], and
places [37] dataset under the same parameters. We follow the set-
ting in [38]. Table 4 shows the accuracy of the baseline method
and the CSDM and the accuracy improvement of these two meth-
ods. The proposed module improves performance 0.28% ∼ 4.63
% over baseline methods on 5-way N-shot (N = 1,5,10).

The CSDM we proposed can find the relationship among
samples, reconstruct all the sample features, and reduce the di-
mension of the sample features that can remove some redundant
information. We found that the performance of CSDM in cross-
domain was improved higher than that in the few-shot learning
dataset. It would be because the inter-class differences between
the meta-training data and the meta-testing data in the few-shot
learning dataset were not significant. Consequently, the improve-
ment effect was limited. In contrast, the inter-class differences be-
tween the meta-training data in the miniImageNet and test data in
the cross-domain experiment are more potent. Thus, the CSDM
improves the discrimination of sample features more effectively
by utilizing the relationship among samples.

Table 5. Classification results under domain shift

Datasets CSDM 1-shot 5-shot 10-shot

mini. → CUB
36.56% 50.65% 55.48%

✓ 36.96% 53.76% 59.92%
+0.40% +3.11% +4.44%

mini. → plantae
29.57% 39.73% 43.81%

✓ 30.98% 43.19% 48.44%
+1.41% +3.46% +4,63%

mini. → places
47.79% 65.34% 69.68%

✓ 48.07% 67.07% 71.72%
+0.28% +1.73% +2.04%

Conclusions
This paper proposes a plug-and-play module, Convolutional

Shared Dictionary, inserted into the metric-learning-based few-
shot learning method and reconstructed embedding features ac-
cording to the relationship among samples. It helps the feature
embeddings obtain the statistical relationship information and
thus improves metric-learning-based few-shot image classifica-
tion tasks.
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