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Abstract
Pre-trained vision-language models, exemplified by CLIP,

have exhibited promising zero-shot capabilities across various
downstream tasks. Trained on image-text pairs, CLIP is nat-
urally extendable to video-based action recognition, due to the
similarity between processing images and video frames. To lever-
age this inherent synergy, numerous efforts have been directed
towards adapting CLIP for action recognition tasks in videos.
However, the specific methodologies for this adaptation remain
an open question. Common approaches include prompt tuning
and fine-tuning with or without extra model components on video-
based action recognition tasks. Nonetheless, such adaptations
may compromise the generalizability of the original CLIP frame-
work and also necessitate the acquisition of new training data,
thereby undermining its inherent zero-shot capabilities. In this
study, we propose zero-shot action recognition (ZAR) by adapt-
ing the CLIP pre-trained model without the need for additional
training datasets. Our approach leverages the entropy minimiza-
tion technique, utilizing the current video test sample and aug-
menting it with varying frame rates. We encourage the model
to make consistent decisions, and use this consistency to dynam-
ically update a prompt learner during inference. Experimental
results demonstrate that our ZAR method achieves state-of-the-
art zero-shot performance on the Kinetics-600, HMDB51, and
UCF101 datasets.

Overall Document Guidelines: Head
Advancements in natural language processing, epito-

mized by large-scale language models like BERT[1], GPT[2],
ERNIE[3], and T5[4], showcase an impressive capacity to grasp
contextual intricacies and exhibit proficiency in few-shot and
zero-shot learning settings. This remarkable strength has ignited
a surge of interest in the computer vision domain. For example,
vision-language models (VLMs), such as CLIP [5] and ALIGN
[6], leverage the contextual information encoded within text data,
paving the way for zero-shot transfer to a myriad of downstream
tasks. This paradigm has prompted exploration into leveraging
the knowledge encapsulated within these pre-trained VLMs for
zero-shot video recognition tasks.

However, bridging the gap between image and video recog-
nition poses a notable challenge. Unlike static images, video data
inherently encapsulate temporal information. While VLMs ef-
fectively harness vast image-text datasets for contrastive learn-
ing, they lack the inherent temporal cues encoded within video
data. To address the modality gap associated with leveraging
image-text pre-trained models for video recognition tasks, cur-
rent explorations can be broadly categorized into two approaches.

One approach involves augmenting the original vision-language
model with additional components, such as a decoder[7] or
spatial-temporal extension[8], to accommodate temporal dynam-
ics. While these methods have demonstrated efficacy in video ac-
tion recognition tasks, full fine-tuning of the model imposes sig-
nificant demands on GPU resources, rendering it time-consuming
and inaccessible for some applications. Moreover, considering
that the original CLIP model was trained on an extensive dataset
comprising 400 million image-text pairs, fine-tuning requires a
comparably large dataset to avoid overfitting issues. Even when
appropriately fine-tuned, models often excel on the tuned dataset
but struggle with generalization to unseen datasets, thereby im-
peding the original zero-shot learning capabilities of CLIP. An
alternative approach, spurred by recent research efforts in the
natural language processing domain, entails prompt tuning[7]—a
method that adds a few additional learnable prompts while keep-
ing the original model backbone frozen. Prompting is considered
efficient and demands less computational resources and training
time compared to full fine-tuning techniques. Under a fully su-
pervised setting, prompt tuning can facilitate effective adaptation
from the image to the vision domain. However, it is essential to
note that prompt tuning still necessitates a substantial amount of
labeled data.

Given the aforementioned obstacles, we propose ZAR (zero-
shot action recognition), an innovative solution that circumvents
the requirements of additional labeled training data. ZAR oper-
ates by dynamically tuning the prompt exclusively with the pro-
vided test video through entropy minimization. Entropy mini-
mization allows the model to learn from the inherent distribution
of the data itself, and operates independently of a specific training
regimen, making it particularly well-suited for zero-shot settings
where additional labels are not provided. Additionally, we pro-
pose the utilization of multiple frame rates from the same test
video, a simple yet powerful approach to effectively capture di-
verse temporal dynamics. The on-the-fly prompt adaptation en-
sures that ZAR is finely tailored to each specific video, and fa-
cilitates zero-shot action recognition generalization without the
need for additional training data or annotations. This not only
streamlines the process but also enhances the model’s versatility
and applicability across a broad spectrum of video recognition
tasks. This approach enhances the model’s ability to make in-
formed decisions, ultimately leading to improved performance.

Our main contributions are as follows:
- We introduce ZAR (zero-shot action recognition), that tar-

gets video action recognition tasks by obviating the need for addi-
tional training data. ZAR uniquely leverages prompt tuning on the
fly using only the current test sample. To the best of our knowl-
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Figure 1. An overview of ZAR for video action recognition.

edge, we are the first to use prompt-tuning in a zero-shot manner
in the video action recognition domain.

- We propose the incorporation of multiple frame rates to
augment decision-making within the model, fostering consensus
and enhancing accuracy. This innovative technique provides a ro-
bust framework for optimizing performance in video action recog-
nition.

- We conduct experiments to comprehensively investigate
the impact of various frame rate selections and the percentage of
frames utilized for entropy minimization. Furthermore, we com-
pare our results across diverse datasets against established base-
lines, providing valuable insights into the efficacy and versatility
of our proposed approach.

Related Works
Vision-Language Models (VLMs). The integration of

multi-modal representations through large-scale image-text pre-
training [7, 9, 10, 11] has become a cornerstone in the devel-
opment of many applications. The key concept underlying the
pretraining of foundational vision language models (VLMs) such
as CLIP [5] and ALIGN [6] is to immerse them in a plethora of
image-text pairs, thereby fostering an understanding of the seman-
tic connections between images and their accompanying textual
descriptions within a shared embedding space by contrasting co-
herent pairs with incoherent ones. Acquiring robust image-textual
representations, CLIP can operate in an open vocabulary manner,
liberating it from constraints associated with predefined sets of
words or classes during training. This characteristic empowers it
to undertake an extensive array of downstream tasks, encompass-
ing classification [12, 13, 14], object detection [15, 16, 17], image
or video text retrieval [18, 19, 20], among others, with notable
accuracy and efficiency. While extending pretrained image-text
models to video processing seems intuitive, a domain gap exists
between image and video processing due to the temporal clues
present in videos, which are absent in static image data. Common
approaches to bridge this gap and adapt CLIP to the video domain

include integrating separate decoder components [21, 7], employ-
ing auxiliary branches [22], and incorporating spatial-temporal
components [8]. While these approaches may achieve favorable
outcomes on video datasets, they typically entail fine-tuning the
CLIP model, thereby potentially diminishing its inherent open vo-
cabulary and zero-shot capabilities.

Prompt Tuning. Prompting [23] is a prevalent technique
originated from natural language processing, utilized to tailor
models for specific tasks or datasets in a heuristic way. This in-
volves crafting specific prompts or input templates that guide the
model to generate desired outputs, aligning with the task require-
ments or dataset characteristics. Advancements have facilitated
the automation of this process [24, 25] through the incorpora-
tion of a few trainable tokens into the model while preserving
the frozen backbone, thus ensuring the model’s generalizability.
CoOp[26] incorporates additional tokens into the input prompt of
the CLIP model, enabling the conditioning of its predictions on
specific attributes or characteristics of the input data. CoCoOp
[27] extends the capabilities of CoOp by generating an input-
conditional token vector for each image to address a notable lim-
itation in CoOp: the learned context in CoOp may not generalize
effectively to unseen classes within the same dataset. Vifi-CLIP
[28] is a video action recognition model that introduces a two-
step approach: firstly, it undergoes fine-tuning on a video dataset
to address the disparity between image and video modalities; sub-
sequently, prompts are added to both the image and text branches
while freezing the backbone. Although these prompt tuning meth-
ods offer promising approaches for adapting pre-trained models
such as CLIP to specific tasks with reduced parameter overhead
compared to fine-tuning techniques, their efficacy in automati-
cally generating effective prompts hinges on the availability of
labeled data to accurately capture the task requirements, which
poses a challenge to the zero-shot capability of the models.

Test-time Learning. Applying machine learning models in
a zero-shot manner [29, 30, 31] presents a primary challenge that
require effective solutions: it is critical to adapt the model to
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make predictions for unseen categories or tasks without neces-
sitating extra labeled data. Test-time training (TTT) and its vari-
ants [32, 33] introduce an approach to model adaptation during
inference by integrating a self-supervised branch that operates by
computing an optimization objective tailored to the test sample. In
TTT, the selection of test-time optimization objectives relies on a
proxy task. However, as emphasized by its authors, the choice of
proxy task is critical and must be “ both well-defined and non-
trivial ” in the new domain. Another option for the test-time opti-
mization objective is entropy minimization [34, 35]. This involves
regularizing entropy, as seen in methods like TENT (Test-time
Entropy Minimization) [36], which imposes a penalty on deci-
sions made by the model at high-density regions within the data
distribution [37]. However, TENT requires multiple test samples
to operate effectively. MEMO [38] bypasses the multi-sample
requirements using data augmentations and proves that updating
the entire model at test time on the augmentations of a single test
sample yields robust test-time adaption results. TPT [39] expands
on this research by introducing an additional confidence selec-
tion mechanism for data augmentation, and refrains from utiliz-
ing all the augmented samples for backpropagation. It also opts
to choose the parameter to be the text prompt learner instead of
the entire model. Our approach operates by selecting a different
augmentation method, leveraging the temporal information inher-
ent in videos.

Methodology
Preliminaries

Using CLIP for zero-shot classification We commence
by delineating the conventional procedure for applying CLIP to
downstream classification tasks in a zero-shot fashion. In the
context of video action recognition, given a single test video, we
sample T frames from the video { f1, f2, ..., fT } to form the in-
put V ∈ RT×C×H×W belonging to class yi ∈ Y . Here, T repre-
sent the number of sampled frames from the video, C denotes the
color channel, and H and W represents the spatial dimensions.
Y = {y1,y2, ...yK} denotes the set of all classes, where yi signifies
one class out of a total of K classes. The frames of the video are
processed by the image encoder of the CLIP model to generate
image embeddings, which are subsequently aggregated to obtain
a video feature representation v. Concurrently, the class names
are passed through the text encoder of the CLIP model to obtain
text embeddings {t1, t2, ..., tk} where ti represents the text embed-
ding of the ith class. The similarity score Si(v, ti) is obtained by
calculating the cosine similarity between the video embedding v
and each text feature ti:

Si(v, ti) =
<v, ti>
∥v∥∥ti∥

. (1)

The probability of the given video V belonging to class yi can be
expressed using conditional probability as:

p(yi |V ) =
exp(Si(v, ti)/τ)

ΣK
i=1 exp(Si(v, ti)/τ)

, (2)

where τ refers to the learned temperature of the softmax
function. This temperature helps control the sharpness or smooth-
ness of the resulting probability distribution. During zero-shot in-
ference, the model selects class yi that maximizes the prediction

probability p(yi |V ), indicating that it is the most likely class ac-
cording to the model’s predictions for the input video.

Prompt-Tuning for Model Adaptation Notwithstanding its
commendable performance, the direct application of CLIP to
video-based tasks in a zero-shot manner encounters challenges
arising from the intrinsic temporal dynamics inherent in videos.
These dynamics, absent in the static image data utilized for pre-
training, necessitate tailored adaptation strategies to effectively
leverage the model’s capabilities in video analysis tasks. Prompt
tuning is a prevalent approach for adapting models to downstream
tasks. Formally, for the context prompt setting (where the same
prompts are prepended to each class label, the input provided to
the text encoder is represented as:

[P]1[P]2...[P]L[yi], (3)

where [P] j for ( j = 1,2, ...,L) are learnable prompt vectors, L de-
notes the number of prompt vectors, and each prompt vector [P] j
has the same dimension D as the word embeddings (D = 512 for
CLIP). [yi] represents the class label token. The goal of prompt
tuning is to learn an optimal prompt P = [P]1[P]2...[P]L ∈ RL×D.
This optimal prompt, when combined with the class labels and
passed through the text encoder, provides the most helpful con-
text information about the downstream task, leading to improved
performance in terms of generating more accurate prediction. As
this is a classification task, the objective of improving prediction
accuracy can be formulated by minimizing the cross-entropy loss
L :

L =−E{V,y}

[
1
K

K

∑
i=1

log p(yi |V )

]
, (4)

where E{V,y} represents the expected input video provided by a
training set with labels, K is the number of classes, and p(yi | V )
denotes the conditional probability calculated based on the sim-
ilarity score between the input video features and the class em-
beddings prepended with prompts. Although the CLIP backbone
remains frozen during prompt tuning, with the only learnable pa-
rameters being the few added tokens, this approach still relies on
a labeled training set and trains for a few shots (16 shots for CoOp
[26]) to achieve optimal results.

Evaluation settings. We define two evaluation settings to
assess the performance of our method. In the first setting, we
conduct a zero-shot evaluation, wherein the model is trained on
a pretraining dataset Dp with a set of classes Yp and subsequently
evaluated on a target dataset Dt with a distinct set of classes Yt , en-
suring no class overlap: Yp ∩Yt = /0. In the second setting, known
as base-to-novel setting, we follow the dataset split delineated in
[28], dividing the dataset into base and novel sets. The model is
trained on the base set, comprising classes Yb, and evaluated on
both the novel set, encompassing classes Yn, and the base valida-
tion set. Notably, there are no overlapping classes between the
base and novel splits, ensuring Yb ∩Yn = /0. This approach ef-
fectively reflects the method’s performance on previously unseen
classes.

Experiments
Datasets: We conduct our experiments on four widely used

action recognition datasets:
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Comparison of accuracy (%) of zero-shot action recognition methods with state-of-the-art performance on HMDB-51[40],
UCF101[41], and Kinetics-600[42]. We applied two pretraining approaches: vanilla CLIP pretraining (WIT-400M), and further pre-
training on Kinetics-400 (WIT-400M + K400). For the second pretraining, our approach outperforms the previous best zero-shot
performance on HMDB-51 and UCF101, and achieves competitive results on Kinetics-600. We indicate the gain/decline relative to
the previous best performance in blue.

Method Publication Input Pretrain Views HMDB-51 UCF101 Kinetics-600 GFLOPS

Methods with vision pretraining
ASR[43] ECML’17 16×1122 Sports-1M [44] 1×1 21.8±0.9 24.4±1.0 - 38.5
ZSECOC[45] CVPR’17 - - 1×1 22.6±1.2 15.1±1.7 - -
UR [46] CVPR’18 16×2242 ImageNet + ActivityNet - 24.4±1.6 17.51.6 - -
TS-GCN [47] AAAI’19 16×− YFCC100M 1×1 23.2±3.0 34.2±3.1 - -
E2E [48] CVPR’20 16×1122 Kinetics-700 1×1 32.7 48 - -
ER-ZSAR[49] ICCV’21 16×2242 ImageNet21k 1×1 35.3±4.6 51.8±2.9 42.1±1.4 65
SJE[50] ICCV’15 −×2242 - - - - 22.3±0.6 -
ESZSL[51] ICML’15 - - - - - 22.9±1.2 -
DEM[52] CVPR’17 −×2242 ImageNet 1K - - - 23.6±0.7 -

Methods with vision-language multimodal pretraining
Vanilla CLIP B/16 [5] ICML’21 32×2242 WIT-400M 1×1 40.8±0.3 63.2±0.2 59.8±0.3 563
ActionCLIP B/16 [53] arXiv’21 32×2242 WIT-400M 10×3 40.8±5.4 58.3±3.4 66.7±1.1 563×30
XCLIP B/16 [7] ECCV’22 16×2242 WIT-400M 4×3 44.6±5.2 72.0±2.3 65.2±0.3 281×12
A5 [54] ECCV’22 16×2242 WIT-400M 5×1 44.3±2.2 69.3±4.2 55.8±0.7 281×5
Vita-CLIP B/16 [55] CVPR’23 32×2242 WIT-400M + K400 1×1 48.6±0.6 75.0±0.6 67.4±0.5 563
ViFi-CLIP B/16 [28] CVPR’23 32×2242 WIT-400M + K400 1×1 51.3±0.6 76.8±0.7 71.2±1.0 563

ZAR - 16×2242 WIT-400M 1×1 43.6 ±0.7 64.1±0.9 60.2 ±0.4 281
ZAR + K400 pretrain - 16×2242 WIT-400M + K400 1×1 54.2±0.8 77.4±0.8 70.5 ±0.4 281

+2.9 +0.6 -0.7

Base-to-novel generalization results. HM stands for harmonic mean of the base and novel performance.

Kinetics400 HMDB-51 UCF101

Method Base Novel HM Base Novel HM Base Novel HM

Vanilla CLIP B/16 [5] 53.3 46.8 49.8 53.3 46.8 49.8 78.5 63.6 70.3
ActionCLIP B/16 [53] 69.0 57.2 62.6 69.1 37.3 48.5 90.1 58.1 70.7
XCLIP B/16 [7] 74.1 56.4 64.0 69.4 45.5 55.0 89.9 58.9 71.2
A5 [54] 74.1 56.4 64.0 46.2 16.0 23.8 90.5 40.4 55.8
ViFi-CLIP B/16 [28] 76.4 61.1 67.9 73.8 53.3 61.9 92.9 67.7 78.3
ZAR 75.2 60.7 67.2 75.2 55.2 63.7 91.3 67.2 77.4

Kinetics-400 [56]: Kinetics-400 is a human action recogni-
tion dataset sourced from YouTube videos, comprising approxi-
mately 300,000 short clips. The dataset consists of 400 different
action classes, with each clip lasting around 10 seconds. Each
video is assigned a single label, indicating it belongs to only one
class.

Kinetics-600 [42]: Kinetics-600 is an extension of the
Kinetics-400 dataset, featuring 600 different action classes and
a total of around 480,000 short clips.

HMDB-51 [40]: HMDB-51 is a collection of videos sourced
from various resources including movies and web-based plat-
forms. It includes over 6,000 videos spanning 51 action classes.

UCF101 [41]: UCF101 is an action recognition dataset con-
taining 13,320 videos across 101 action categories. The dataset
encompasses variations in camera view, object viewpoint, and
backgrounds.

Experimental Setup. We use the VIT-B/16 backbone of the
CLIP image encoder for our experiments. We update our prompt

with four learnable tokens, and we use the default initialization
setting ’a video of a’. We use 16 frames for our evaluation, with
single view, the pictures are cropped into 224x224 size to fit into
the backbone of VIT-B/16, and we compare our results to other
methods that adapt CLIP or directly using CLIP for zero-shot ac-
tion recognition on the datasets that we mentioned above. We
optimize the prompt based on entropy minization and we update
the paramter of the prompt learning for 1 step, we use AdamW
with a learning rate of 0.005. We present our results of directly
prompt-tuning CLIP following our method for zero-shot action
recognition on UCF101, HMDB-51, and Kinetics-600 in Tab. 1.
We observed from previous works that models built upon CLIP
and subsequently trained with Kinetics-400 generally exhibit im-
proved performance on downstream video-based action recogni-
tion tasks, with an accuracy improvement of over 8%. Therefore,
we also report the results of further pretraining CLIP on Kinetics-
400 and cross-evaluating on other action recognition datasets us-
ing the same prompt-tuning and zero-shot setting.
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Confidence selection ablation study. We found that selecting the top 80% highest confidence augmentations to update the prompt
learner yields the best results on UCF101 and HMDB-51.

HMDB-51 HMDB-51
UCF101

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10%
20% 30% 40% 50% 60% 70% 80% 90% 100%
53.94 53.88 54.07 53.94 53.81 54.01 54.14 54.17 54.14 54.07 77.10
76.84 77.26 77.34 77.34 77.37 77.37 77.42 77.37 77.29

To illustrate the generalizability of our model to distribution
shifts, we also include its performance in base-to-novel settings,
following the setup and division outlined by Rasheed et al. [28].
In this setup, the data is divided into base and novel sets. The
model is trained on the base set while being evaluated on both
the base validation and novel sets, which effectively reflects the
model’s ability to generalize to unseen data points.

Zero-shot setting. In the zero-shot setting, we evaluate
the performance of our ZAR method by applying prompt tun-
ing to CLIP and assessing its effectiveness on unseen datasets
without utilizing any additional labels from those test datasets.
We assess the zero-shot performance of our ZAR method un-
der two different pretraining scenarios. In the first setting, we
directly prompt tune CLIP, indicating that the model is solely
pretrained on the original CLIP model’s training dataset WIT-
400M [5]. In the second setting, we further pretraining CLIP on
Kinetics-400 [56], imbues the model with knowledge from both
WIT-400M and Kinetics-400. In both pretraining scenarios, we
evaluate the performance of the model using our ZAR method
in a zero-shot manner on three testing datasets: UCF101 [41],
Kinetics-600[42] and HMDB-51[40]. Since Kinetics-600 is an
extension of Kinetics-400 with substantial overlap in classes, we
exclusively test on the 220 classes that did not appear in Kinetics-
400 to ensure a fair evaluation of zero-shot performance. We re-
port the accuracy based on three data splits randomly selected
from the pool of 220 categories, with each split containing 160
categories, consistent with the splitting reported in [49]. The re-
sults of our ZAR-method’s zero-shot performance, compared with
other SOTA methods, are presented in Tab. 1. Notably, ZAR with
Kinetics-400 pretraining surpasses the previous best performance
on HMDB-51 by 3%, while performing comparably to previous
results on UCF101 and Kinetics-600. It’s worth highlighting that
our method achieves these results with a significantly fewer num-
ber of trainable parameters to be considered, with only the prompt
learner requiring updates.

Base-to-novel setting. Base-to-novel setting serves as an
effective way to evaluate the model’s performance on unseen data
points, akin to assessing its performance in a zero-shot learning
scenario. In this setting, we divide the dataset into two parts: the
base and the novel sets. The model is trained on the base set and
its performance is evaluated on both the base validation sets and
the novel set, following the same split as reported in [28]. We
trained the model on the base set for 16 shots and evaluated the
results on the novel set as well as the base validation set. Notably,
the classes present in the base validation set are included in the
training data but are not utilized during the training process. The
reported results are averaged across three random seeds to ensure
robustness. The results of base-to-novel generalization are shown

in Tab. 2.

Pretraining CLIP. As outlined in the zero-shot setting sec-
tion, we conducted evaluations of our model’s zero-shot perfor-
mance on both vanilla CLIP and CLIP further pretrained with
Kinetics-400. The pretraining on Kinetics-400 dataset involves
training for 10 epochs, utilizing a batch size of 256, and employ-
ing a learning rate of 8e-6. During the pretraining phase, both
the image encoder and the text encoder parameters are updated,
while the prompt learner is not considered. Although this update
is computationally expensive, for the sake of fair comparison, we
also present the results of this pretraining. Subsequently, during
zero-shot evaluation on the UCF101, Kinetics-600, and HMDB-
51 datasets, only the parameters of the light-weighted prompt
learner are updated, while the image encoder and the text encoder
remain frozen. To facilitate the exchange of temporal informa-
tion between frames and obtain a comprehensive representation
of the entire video, we employed embedding level fusion. In this
fusion technique, the image inputs undergo separate processing
by the CLIP image encoder, and the resulting frame-level em-
beddings are average-pooled to be fused together, forming the
video-level embedding representation. Alternative fusion meth-
ods include image-level fusion, where losses are computed for
each image independently, and decision-level fusion, where the
final logits are averaged after calculating the probability or de-
cision of each individual image frame with the text prompt. In
image-level fusion, each image contributes to parameter updates
and data flow independently, with limited knowledge transfer be-
tween images. In decision-level fusion, each image contributes
to the decision-making process, and their votes are averaged after
calculating the logits for each individual image frame with the text
prompt. In our adoption of the embedding-level fusion method,
knowledge exchange occurs at the embedding level, fostering mu-
tual contribution to knowledge exchange. In this research, we
adopt embedding-level fusion due to its superior performance, as
empirically demonstrated in [28]. Further exploration of each fu-
sion method is beyond the scope of this study. The objective func-
tion during pretraining simply involves cross entropy, as depicted
in Eq. 2. In this equation, the similarity between each video-level
embedding and its corresponding text embedding is maximized.

Parameter selections. Through empirical investigation, we
determined the optimal values for N (number of crops), Q (num-
ber of different sampling rates), and M (number of video sam-
ples per sampling rate) to be 3, 4, and 4, respectively. For the
prompt updating stage, involving both directly adapting CLIP and
pretraining CLIP on Kinetics-400 and further evaluating on other
datasets in a zero-shot manner, we crop 16 frames from the video.
This results in a total of 3×4×4 = 48 augmentations and a com-
bined total of 48×16= 768 image frames. The input tensor to the
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model for prompt updating has a shape of 768×3×2242, where
3× 2242 represents the shape of a single image. In the base-to-
novel setup for prompt updating, we crop 8 frames from the video,
resulting in a tensor with a shape of 384×3×2242. During infer-
ence, all operations are performed on a single 16×3×2242 video
clip, which is center cropped from the original video.

Methodology to implement different frame rates. To im-
plement different frame rate sampling, the video is initially pro-
cessed into images. Subsequently, a random starting point of the
video is selected, with the sampling rate simulated by uniformly
sampling from a truncated range of video frames. For example, if
a 10-second video consists of a total of 300 frames with a physical
frame rate of 30 fps, half the length of the video is chosen as the
starting point, with the starting frame randomly selected at 40 and
the corresponding ending frame at 190. Uniform sampling is then
applied, which effectively doubles the sampling rate compared to
working on the full-length video and performing uniform sam-
pling. For example, in a scenario where a 10-second video com-
prises 300 frames with a physical frame rate of 30 fps, working on
a truncated video—where the starting frame is randomly chosen
at 40 and the corresponding ending frame at 190, or equivalently,
a half-length video—results in a sampling rate that is effectively
doubled compared to working on the full-length video and per-
forming uniform sampling.

Results visualizations. To provide a more intuitive under-
standing of our results, we present visualizations of attention
maps generated by our approach, depicted Fig. 2. These atten-
tion maps reveal the model’s ability to selectively focus on crucial
features even amidst motion, capturing abstractly related aspects
of the depicted actions. We also visualze the t-sne of the dataset
as presented in Fig. 6. The t-sne visualization technique essen-
tially transforms high-dimensional output into a lower dimension
to facilitate the visualization of cluster separations. In our case,
the output of our backbone consists of 512-dimensional features,
which are then converted into 2D features for t-sne visualization.
We observe that Kinetics-600 and UCF101 exhibit clearer cluster
separations in the t-sne visualization, indicating better discrimi-
native features among classes. Conversely, HMDB-51 displays
overlapping classes at the center, suggesting a more challenging
scenario for classification. Despite this inherent difficulty, our
method achieves improved performance on HMDB-51 compared
to previous approaches, showcasing its effectiveness in handling
the intricacies of this dataset.

Ablation Study
We conduct an ablation study on each parameter of our

model, empirically validating the efficacy of our approach and
identifying the optimal configuration.

Percentage of selected video augmentations utilized for
entropy minimization. We recognize the significance of the per-
centage of video augmentations utilized for entropy minimization,
which contributes to the gradient backpropagation of the prompt
learner. Prior methodologies such as MEMO [52] employ all aug-
mentations of a single image to update the entire model during test
time, whereas TPT proposes to leverage the top 10% augmenta-
tions with the highest confidence for entropy minimization, and
updating only the prompt learner. Given the divergence between
their training on images and our focus on video-based tasks, as
well as our distinct augmentation methodologies using different

Figure 2. Attention map visualization of ZAR focus.

frame rates compared to traditional rotate and flip augmentation
approaches, we conduct empirical investigations to determine the
optimal percentage of video augmentations necessary for updat-
ing the prompt learner. We conduct our experiments on UCF101
and HMDB-51 in a zero-shot manner, selecting augmentations
with the highest confidence and varying the selection percentage
from 10% to 100% in increments of 10%. Our findings reveal
that selecting 80% highest confidence augmentations yields the
best results on both datasets.The accuracy corresponding to each
confidence selection percentage is presented in Tab. 3 Therefore,
the top 80% video augmentations with the highest confidence are
selected for the updating of prompt learner parameters, unless oth-
erwise stated.

Number of different sampling rates, Q. To find out the in-
fluence of using different frame rates, we also conduct an ablation
study regarding the number of different sampling rates. We use
a total of four different sampling rates, achieved through uniform
sampling of segments from the video, with the slowest sampling
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Figure 3. *

Kinetics-600
Accuracy 70.5

Figure 4. *

HMDB-51
Accuracy 54.2

Figure 5. *

UCF101
Accuracy 77.4

Figure 6. t-sne visualization of zero-shot performance on Kinetics-600,

HMDB-51 and UCF101.

rate corresponding to the entire video length. We begin our ab-
lation study by removing the fastest sampling rate (obtained by
uniform sampling of 1/8 of the entire video) and successively ab-
late the video samples derived from using 1/4 and 1/2 of the entire
video. The sampling rate ablation study result is shown in Tab. 4.
As we systematically remove augmentations with fast sampling
rates and transition to slower ones, we observe a corresponding
decline in accuracy, eventually converging to accuracy equivalent
to models employing fine-tuning without prompt tuning. This ob-
servation underscores the importance of using multiple sampling
rates, as it enables the model to capture diverse temporal dynam-
ics and glean essential motion cues from the video data.

Number of crops, N We investigate the impact of different
numbers of crops to augment the video. Specifically, we evaluate
the performance when using a single crop, 3 crops, 5 crops, and
9 crops. Here, ”1 crop” refers to the center crop, ”3 crops” en-
compass left, middle, and right crops, ”5 crops” include top and

bottom crops in addition to the previous three, and ”9 crops” fur-
ther expand to include top-left, top-right, bottom-left, and bottom-
right crops. Our ablation study results, as presented in Table 5, in-
dicate that employing 3 crops yields the highest accuracy. How-
ever, accuracy drops significantly when using 5 or 9 crops. We
attribute this decline to the increased diversity of viewpoints in-
troduced by the additional crops, leading to difficulties in effec-
tively minimizing entropy and capturing mutual features across
the different views.

Sampling rates ablation study.

HMDB-51

Use all four sampling rates Drop 1/8 Drop 1/8 and 1/4 Drop 1/8, 1/4, and 1/2
54.2 53.6 52.1 51.5

Number of crops ablation study.

HMDB-51

1 crop 3 crops 5 crops 9 crops
53.6 54.2 52.0 51.8

Conclusion
We propose a zero-shot prompt learning framework for video

based action recognition, using different sampling rates augmen-
tations to update the prompt learner and enhance accuracy across
various action recognition datasets. Employing the CLIP back-
bone, our method operates in a true zero-shot fashion, devoid of
additional training data, and relies solely on individual test videos.
We empirically demonstrate the efficacy of our approach via com-
prehensive experimentation, affirming its viability and effective-
ness.

Limitations. While our approach consistently achieves su-
perior zero-shot results on HMDB-51, its improvement over pre-
vious best on other datasets remains marginal. We posit that this
limitation may stem from the nature of entropy minimization,
which relies on the fidelity of the label-to-data point linkage. In
scenarios where labels lack details, pertinent information may be
lost during video encoding, leading to suboptimal entropy reduc-
tion and prompt undates.
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