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Abstract 

In this study, we investigated the improvement of the 
characteristics of the pixels of a polarization image sensor used for 
high-frequency electric field imaging. It was confirmed that the 
signal-to-noise ratio can be improved by increasing the number of 
metal wiring layers constituting the polarizer and by expanding the 
pixel dimensions. The combination of these improvements is 
expected to enable high-frequency field imaging with higher 
sensitivity. 

Introduction 
The electric field measurement technique using the electro-

optic (EO) effect [1-3] is applicable to high frequencies up to THz, 
and when combined with image sensors, it is expected to be used for 
RF device evaluation [4-11] and inspection using THz waves [12-
16]. However, the sensitivity of this method is low, and it requires 
significant improvement for practical applications.  To solve this 
problem, we have developed a method to improve sensitivity using 
a polarization image sensor of our own design [17-22]. This has 
enabled the image sensor to measure electric fields in the frequency 
domain instead of the conventional time domain measurement, 
making it possible to image the response of a specific frequency in 
a short period of time. 

However, the current system is only capable of measuring 
high-frequency electric fields of relatively high intensity, such as the 
near-field of a high-frequency device, and further improvement in 
sensitivity is needed. There remains room for improvement in image 
sensors as well, and improvements in pixels and readout circuits are 
required. 

Objective 
Based on the process limitations in polarized image sensor 

design, it is necessary to optimize for field imaging. There are 
several factors involved in optimization, including the configuration 
of the polarizer on the pixel, pixel capacitance, and inter-pixel 
crosstalk. The objective of this study is to find the optimal 
conditions for these from a prototype test pixel. 

Method 
Figure 1 shows the configuration of the optical system in a 

high-frequency field imaging system. In this configuration, a 
polarization image sensor is used as the image sensor. In electric 
field imaging, it is necessary to acquire faint changes. However, 

image sensor pixels generally have an upper limit on the signal-to-
noise ratio due to photon shot noise and pixel saturation. In this 
configuration, the polarization beam splitter (PBS) and the on-pixel 
polarizer of the polarization image sensor form a dual-polarizer 
configuration. The on-pixel polarizers are arranged at 0 and 90 
degrees, while the PBS is oriented at 45 degrees to both. 

 
Figure 1. Optical setup of electro-optic imaging system 
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Figure 2. Polarization conditions at each point in the optical 

setup. (a) incident linear polarized light. (b) Polarization 
modulated light by the electrooptic crystal. (c) Modulation 

depth enhanced light through the PBS. 
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In the electric-field imaging systems based on the EO effect, 
the birefringence change induced on an EO crystal is read using light. 
Linearly polarized light is incident on the optical system. This light 
is of such high intensity that it would cause pixel saturation if it were 
irradiated directly onto the image sensor (Fig.2(a)). This 
polarization component is reflected by the PBS and irradiated to the 
EO crystal, which has an anti-reflection coating on the upper side 
and an high-reflection coating on the lower side, and travels back 
and forth within the crystal. The light returned to the PBS is mostly 
reflected. Here, the polarization of the light is modulated (Fig.2(b)) . 
An ideal polarizer transmits only one polarization component. 
However, as the practical PBS, a small portion of the incident 
polarization and most of the orthogonal polarization component are 
transmitted. This results in a reduction in light intensity and an 
increase in the depth of polarization modulation. (Fig.2(c)) This 
translates into a conversion of the signal to conditions that are easier 
to detect by the image sensor pixels. 

In the practical experiment, the irradiated light is assumed to 
be intensity-modulated light. The modulation frequency fLO is 
assumed to be a frequency slightly different from the frequency f RF 
of the high-frequency electric field to be observed. The combination 
of an EO crystal and a polarizer acts as a mixer, so the light detected 
by the pixel contains a component of intermediate frequency 
fIF=|fRF-fLO|. The image sensor itself cannot detect the high-
frequency signal of the observed object, but by setting fIF to 1/4 of 
the frame rate, the intermediate frequency component including the 
electric field information of the observed object is detected. 

The incident light is at a wavelength of 780 nm. This 
wavelength is readily available for optical modulators and optical 
amplifiers and is also sufficiently detectable by Si image sensors. In 
particular, photodiodes using the n-well/p-sub structure of the 0.35-
μm standard process used in this study have a relatively wide 
depletion layer and show sufficiently high sensitivity in this 
wavelength band. The pixel architecture is a 3-transistor active pixel 
sensor (APS). This is because the noise reduction effect using CDS 
by using 4-transistor APS was not expected to be significant in 
improving the characteristics for the purpose of this study, since it 
is intended to be used in the photon shot noise-limited region. The 
basic pixel structure is shown in Figure 3(a). In this example, the 
pixel size is 30-μm square and the PD size is 15-μm square. Figure 
3(b) shows the cross-sectional structure. A 0° or 90° polarizer is 
mounted on the photodiode using a wiring layer. In this example, 
the polarizer is composed of two layers of Metal2 and Metal3.  

Previous research has shown that the highest polarization 
extinction ratio at this wavelength is achieved by using a grating 
structure with a line/space ratio of 0.7 μm / 0.7 μm for the polarizer 
on the pixel using a metal interconnect layer. The extinction ratio 
also changes as the number of grating layers is increased. We 
fabricated pixels with different numbers of grating layers and 
investigated the optimum conditions. In addition, polarization image 
sensors are equipped with polarizers in different directions for 
neighboring pixels. This allows changes in the polarization to be 
observed to be read as complementary signals. However, as 
crosstalk increases between pixels, the effective polarization 
extinction ratio decreases, and polarization detection performance is 
reduced. In this regard, we investigated the optimal conditions for 
test pixels with pixel dimensions of 45 μm and different photodiode 
spacing and area by creating a prototype test pixel.  

A comparison table between the newly fabricated pixel and 
previous pixels is shown in Table I. While increasing the pixel 
dimensions, the fill factor is also increased. This was determined 
based on the results of the crosstalk evaluation described below. The 
number of metal wiring layers used for the polarizer has also been 
increased. 

Results 
As for the number of polarizer layers, it improves with 

increasing the number of layers. At a wavelength of 780 nm, a 
polarization extinction ratio of 5.7 was obtained with three layers, 

 
Figure 4. Relative sensitivity as a function of extinction ratio. 

 
Figure 3. (a) Micrograph of 30-μm polarization pixels. (b) 

Schematic of polarization pixel cross section. 
 
 

TABLE I. Comparison of pixel specifications  
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compared to 3.2 with two layers. This result indicates that the 
performance index, which is 1 when the extinction ratio is infinite, 
increases significantly from 0.26 to 0.70. Here, the performance 
index is given by (ER-1)/(ER+1), where ER is the extinction ratio. 

On the other hand, since the transmittance drops to about half, the 
improvement is not very large when the irradiance is constant. 
However, since the irradiated light intensity in the assumed field 
imaging system can be amplified by a semiconductor optical 
amplifier or the like to compensate for the reduction in optical 
sensitivity, the improvement in sensitivity due to the improved 
extinction ratio will contribute significantly to the overall 
improvement of the system. 

 It was confirmed that photodiode spacing affects the 
reduction of effective extinction ratio due to crosstalk: when the 
spacing of photodiodes separated by guard rings with n-well layers 
is reduced from 25 μm to 10 μm, the reduction in polarization 
detection performance index due to the reduction of effective 
extinction ratio is about 10%. However, considering the reduction 
in sensitivity due to the decrease in fill factor, the effect of crosstalk 
is not dominant up to a photodiode spacing of about 12 μm for a 
pixel dimension of 45 μm. 

The results of evaluating the signal and noise of each of the 
pixels used in the previous study and those used in the current study 

are shown in Figure 5. The signal-to-noise ratios are also shown in 
these figures. 

There is no significant difference in signal sensitivity. The 
increase in pixel dimensions increases the fill factor, although the 
sensitivity to the same number of photons is reduced due to the 
increase in pixel capacitance. As a result, no significant difference 
appears. On the other hand, noise is low. This result can be explained 
by the increase in pixel capacity. In both pixels, the noise component 
gradually increases with light intensity, indicating that the effect of 
photon shot noise increases with light intensity. However, in the 45 
μm pixel, there is a small amount of readout noise influence even 
near pixel saturation. 

 The signal-to-noise ratio improved by roughly 4 dB over the 
entire observation area.Ideally, an improvement in SNR with an 
increase in fill factor near pixel saturation would have been expected, 
but the prototype pixel did not show that level of improvement. The 
effect of readout noise was negligible up to a PD size of 15 μm, but 
for further improvement at 45-μm pixels, it is necessary to consider 
methods to reduce readout noise such as CDS. 

Conclusion 
 In this study, we investigated the optimization of polarization 
image sensor pixels for high-frequency field imaging using the EO 
effect. The extinction ratio was improved by a factor of 1.6 by using 
a three-layered polarizer. This contributes to a 4 dB increase in 
sensitivity when the amount of light reaching the PD is the same. In 
addition, an SNR improvement of about 4 dB was obtained for a 
pixel using a 45-μm pixel. With these improvements, it is estimated 
that the field detection sensitivity can be improved by approximately 
8 dB. 
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