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Abstract

Gaussian  distribution models are widely used for
characterizing and modeling noise in CMOS sensors. Although it
provides simplicity and speeds needed in real-time applications, it
is usually not a very good representation of dark current
characteristics observed in real devices. The statistical distribution
of CMOS sensor dark noise is typically right-skewed with a long tail,
i.e. with more “hot” pixels than described in a normal distribution.
Furthermore, the spatial distribution in real devices typically exhibit
a 1/f-like power spectrum instead of a flat spectrum from a simple
Gaussian distributions model. When simulating sensor images, for
example generating images and videos for training and testing
image processing algorithms, it is important to reproduce both
characteristics accurately. We propose a simple convolution-type
algorithm using seed images with a log-normal distribution and
randomized kernels to more accurately reproduce both statistical
and spatial distributions. The convolution formulation also enables
relatively easy GPU acceleration to support real-time execution for
driving simulation platforms.

Introduction

Imaging system simulations is increasingly being used in a
wide range of industrial and consumer applications, for example
electronic gaming, virtual/augmented reality, advertising, and
designing camera system for mobile phone and automotive use.
There are two main motivations in industrial applications: (1)
camera applications software can be developed from simulated
images before the hardware becomes available to reduce time to
market, and (2) training data for machine learning algorithms can be
generated from simulation in order to reduce the time and cost of
having a fleet of drivers to acquire them in the physical world. For
these applications in particular, it is important to apply noise models
that closely match the characteristics of real sensors, as the
simulated images are used as input for developing image signal
processors (ISP) and training autonomous driving algorithms. The
latter application is most crucial as incorrect noise characteristics
can potentially lead to significantly different object detection
performances and in worst cases compromise vehicle safety in the
real-world operation.

When modeling CMOS sensor noise, it is important to consider
both statistical and spatial distributions, as well as their dependence
on operating parameters such as temperature and gain settings. With
most camera simulators, noises are typically modeled with Gaussian
statistical distribution with a simple mean and standard deviation
parameters [1, 2]. Their spatial properties are not specifically
considered, thus resulting a random distribution with a flat power
spectrum. Dark noise in real sensors behave differently from this
simple description as we shall discuss in more detail in the following
section.
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Furthermore with modern high dynamic range (HDR) sensors
that uses multiple capture channels, it is also important to model
each channel’s distinct noise characteristics to produce simulated
image that accurately reproduce real sensors’ performances. For
example, the latest generation of CMOS sensors for advanced
driver-assistance  systems (ADAS) from major sensor
manufacturers, such as OMNIVISION’s OX08D and Sony’s
IMX728, use multiple channels with dual conversion gains, multiple
exposure times, and an additional lateral overflow integration
capacitor (LOFIC) [3] to achieve a combined dynamic range of over
120 dB. Each of these channels have different noise characteristics
and dependence on temperature. Since automotive sensors often
must operate at over 100°C, an accurate noise model of each channel
and their evolution with temperature change is critical to simulate
these HDR sensors’ performance characteristics throughout their
dynamic range.

We report a dark noise model that attempts to match both the
statistical distribution and spatial distribution of real sensors dark
current. The goal is to provide simulated images with better fidelity
than the commonly used Gaussian noise model while maintaining
computational performance to support real-time applications.

CMOS Sensor Noise Distribution

We first briefly examine some dark noise properties of CMOS
sensor. Figure 1 shows the dark noise distribution of a typical sensor
from a raw image captured with no light exposure. Three images
were captured first with dead pixel correction (DPC) turned off, then
turned on, and finally with a more aggressive de-noise function
activated. The power spectra of these 3 images are also plotted.
Without any de-noise, the noise distribution is right-skewed with a
long tail, indicating significantly more “hot” pixels than a Gaussian
distribution would predict. Therefore the simple Gaussian model
will generally underestimate the amount of hot pixels. Application
of de-noise functions filters out most of the hot pixels, but at some
cost of impacting the high-resolution features. It’s worth noting that
multiple peaks may be observed in some sensor samples. This is
often an indication of processing imperfections and it’s less
common in state-of-the-art sensors.

In addition to statistical distribution, the spatial distribution of
noise is also important. A simple Gaussian model will lead to a
random spatial distribution with a flat power spectrum. However
the dark image power spectrum of a raw sensor image generally
exhibits a 1/f~like spatial frequency dependence, particularly at low-
frequency end and often become flat at high-frequency end. As
DPC is applied, the high-frequency components is suppressed, and
stronger high-frequency suppression results when a more aggressive
de-noise process is applied.

It’s also interesting to observe the temperature dependence of
the power spectrum shown in Figure 2. At low temperatures, below
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65°C in this example, the power spectra show an almost exact 1/f-
like behavior. As temperature increases, the high-frequency
components increasingly becomes flat, indicating the additional
thermal noise follow a random spatial distributions. The effect of
high spatial frequency suppression from the DPC function also
becomes more prominent as more hot pixels are identified and
corrected by the algorithm.
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Figure 1. Noise distribution of a typical CMOS sensor. Upper left: the raw
output. Upper right: with DPC turned on. Lower left: with more aggressive de-
noise function turned on. Lower right: power spectrum of the 3 images.
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Figure 2. Power spectrum of a CMOS sensor without DPC (left) and with DPC
applied (right) at temperatures between 25°C and 105°C.

A sensor simulation model should ideally reproduce both the
statistical and spatial distributions of a real sensor. There have been
several models introduced to characterize and simulate these
properties in detail [4, 5], but this work proposes a more simplified
convolution-type algorithm that is able to closely approximate both
characteristics and can also be easily implemented with GPUs for
real-time execution, for example on autonomous driving platforms.

It is also interesting to note such a power spectra series acquired

at different temperatures also provides a simple way to detect the
application of de-noise algorithms in a sensor by observing how
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much the high-frequency components deviate from a simple random
distribution at different temperatures. Although it is difficult to
quantify how aggressive the algorithm is, it nevertheless provides
an insight into noise performance and suppression of high-frequency
features when comparing multiple sensors. Hence a comprehensive
sensor evaluation criterion and process should take these factors into
account.

Approach and Results

We use convolution-like algorithm with a seed image and
randomized kernel to simulate CMOS sensor dark noise. A random
two-dimensional seed images f(x,y) is first generated using a
simple Gaussian distribution with mean u and standard deviation 6.
With the commonly used Gaussian noise model, this seed image
would be used as the actual noise image. But to reproduce the
asymmetric profile of the noise distribution in Figure 1, we apply an
exponential to each element of the seed image. With the proper
choice u and &, this new image e/*¥) would reproduce the right-
skewed statistical distribution matching the captured image, and
potential negative values in the Gaussian distribution is eliminated.
However, the spatial distribution still has a flat spectrum because the
noise values are randomly distributed spatially.

To modify this spatial distribution, we construct a kernel for
each pixel consisting of a constant part and a randomly varying part.
For example, a 3 X 3 kernel could be constructed as:
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where ¢ is a constant and the € values are generated with normal
distribution with zero mean and stand deviation o. The exponential
noise image is then convolved with the kernel to generate the final

noise image:
3 3
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The kernel can be roughly interpreted as a crosstalk function
that affect both the statistical and spatial distributions. The
simulated noise images are controlled by 4 parameters p, §, ¢, and
o. Among them, u and § primarily control the peak value of the
noise distribution and its right-skewed tail, while ¢ and o modify
the distributions at local scales. It is straightforward to manually
adjust these values to match simulated results to captured sensor
data and an iterative algorithm is being developed to optimize them
automatically.

Figure 3 shows a noise image simulated with this approach.
The seed image and noise images show significantly different
appearance although they have similar mean and standard deviation
measures. The statistical distribution shows a similar right-skewed
pattern as the measurement from a real CMOS sensor shown in
Figure 1 and the power spectrum shows a similar 1/f spatial
frequency dependence as in Figure 2 at low temperatures.

The comparison from Figure 3 is a good illustration of the
importance of accurate noise modeling for image simulation,
especially for modern HDR sensor where multiple channels, each
with different noise characteristics, are combined to create a final
image. If any channel’s simulated noise properties differ too much
from the real sensors, it may mislead the image processing
algorithms and misguide the autonomous driving system training,
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costing time and effort to rework the algorithms and in worse cases
leading to safety issues with the vehicle.

The process we use is similar to the autoregressive algorithm
often used in sensor noise generation but simplified for easy CUDA
implementation for high-speed calculations. The current code is
written in python and a C++/CUDA version is being developed for
real-time execution in OVT’s sensor simulation models for several
autonomous driving platforms.
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Figure 3. Results generated from the noise generation algorithm. Top left:
seed image with a simple Gaussian distribution. Top right: resulting noise
image after the convolution process. These display range of these two
images are scaled to 0.5% and 99.5% percentile of the image values. Lower
left and right: distribution and power spectrum of the simulation noise image,
respectively.
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Conclusion

We have developed a simple dark noise model that attempts to
match both the statistical distribution and power spectrum of
measured CMOS sensor noise characteristics. It is being integrated
into OMNIVISION’s real-time sensor simulation library for major
driving simulation platforms used in the automotive industry. We
expect this approach will provide significantly more accurate noise
modelling than the commonly used Gaussian model, thus leading to
more effective algorithm development with simulated data and
reduced product development time and cost.
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