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Abstract 

Gaussian distribution models are widely used for 
characterizing and modeling noise in CMOS sensors.  Although it 
provides simplicity and speeds needed in real-time applications, it 
is usually not a very good representation of dark current 
characteristics observed in real devices.  The statistical distribution 
of CMOS sensor dark noise is typically right-skewed with a long tail, 
i.e. with more “hot” pixels than described in a normal distribution.  
Furthermore, the spatial distribution in real devices typically exhibit 
a 1/f-like power spectrum instead of a flat spectrum from a simple 
Gaussian distributions model.  When simulating sensor images, for 
example generating images and videos for training and testing 
image processing algorithms, it is important to reproduce both 
characteristics accurately.  We propose a simple convolution-type 
algorithm using seed images with a log-normal distribution and 
randomized kernels to more accurately reproduce both statistical 
and spatial distributions.  The convolution formulation also enables 
relatively easy GPU acceleration to support real-time execution for 
driving simulation platforms. 

Introduction 
Imaging system simulations is increasingly being used in a 

wide range of industrial and consumer applications, for example 

electronic gaming, virtual/augmented reality, advertising, and 

designing camera system for mobile phone and automotive use.  

There are two main motivations in industrial applications: (1) 

camera applications software can be developed from simulated 

images before the hardware becomes available to reduce time to 

market, and (2) training data for machine learning algorithms can be 

generated from simulation in order to reduce the time and cost of 

having a fleet of drivers to acquire them in the physical world.  For 

these applications in particular, it is important to apply noise models 

that closely match the characteristics of real sensors, as the 

simulated images are used as input for developing image signal 

processors (ISP) and training autonomous driving algorithms.  The 

latter application is most crucial as incorrect noise characteristics 

can potentially lead to significantly different object detection 

performances and in worst cases compromise vehicle safety in the 

real-world operation. 

 

When modeling CMOS sensor noise, it is important to consider 

both statistical and spatial distributions, as well as their dependence 

on operating parameters such as temperature and gain settings.  With 

most camera simulators, noises are typically modeled with Gaussian 

statistical distribution with a simple mean and standard deviation 

parameters [1, 2].  Their spatial properties are not specifically 

considered, thus resulting a random distribution with a flat power 

spectrum.  Dark noise in real sensors behave differently from this 

simple description as we shall discuss in more detail in the following 

section. 

 

Furthermore with modern high dynamic range (HDR) sensors 

that uses multiple capture channels, it is also important to model 

each channel’s distinct noise characteristics to produce simulated 

image that accurately reproduce real sensors’ performances.  For 

example, the latest generation of CMOS sensors for advanced 

driver-assistance systems (ADAS) from major sensor 

manufacturers, such as OMNIVISION’s OX08D and Sony’s 

IMX728, use multiple channels with dual conversion gains, multiple 

exposure times, and an additional lateral overflow integration 

capacitor (LOFIC) [3] to achieve a combined dynamic range of over 

120 dB.  Each of these channels have different noise characteristics 

and dependence on temperature. Since automotive sensors often 

must operate at over 100℃, an accurate noise model of each channel 

and their evolution with temperature change is critical to simulate 

these HDR sensors’ performance characteristics throughout their 

dynamic range. 

 

We report a dark noise model that attempts to match both the 

statistical distribution and spatial distribution of real sensors dark 

current.  The goal is to provide simulated images with better fidelity 

than the commonly used Gaussian noise model while maintaining 

computational performance to support real-time applications.  

CMOS Sensor Noise Distribution 
We first briefly examine some dark noise properties of CMOS 

sensor.  Figure 1 shows the dark noise distribution of a typical sensor 

from a raw image captured with no light exposure.  Three images 

were captured first with dead pixel correction (DPC) turned off, then 

turned on, and finally with a more aggressive de-noise function 

activated.  The power spectra of these 3 images are also plotted.  

Without any de-noise, the noise distribution is right-skewed with a 

long tail, indicating significantly more “hot” pixels than a Gaussian 

distribution would predict.  Therefore the simple Gaussian model 

will generally underestimate the amount of hot pixels.  Application 

of de-noise functions filters out most of the hot pixels, but at some 

cost of impacting the high-resolution features.  It’s worth noting that 

multiple peaks may be observed in some sensor samples.  This is 

often an indication of processing imperfections and it’s less 

common in state-of-the-art sensors. 

 

In addition to statistical distribution, the spatial distribution of 

noise is also important.  A simple Gaussian model will lead to a 

random spatial distribution with a flat power spectrum.  However 

the dark image power spectrum of a raw sensor image generally 

exhibits a 1/f-like spatial frequency dependence, particularly at low-

frequency end and often become flat at high-frequency end.  As 

DPC is applied, the high-frequency components is suppressed, and 

stronger high-frequency suppression results when a more aggressive 

de-noise process is applied. 

 

It’s also interesting to observe the temperature dependence of 

the power spectrum shown in Figure 2.  At low temperatures, below 
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65℃ in this example, the power spectra show an almost exact 1/f-

like behavior.  As temperature increases, the high-frequency 

components increasingly becomes flat, indicating the additional 

thermal noise follow a random spatial distributions.  The effect of 

high spatial frequency suppression from the DPC function also 

becomes more prominent as more hot pixels are identified and 

corrected by the algorithm. 

 

 
Figure 1.  Noise distribution of a typical CMOS sensor.  Upper left: the raw 
output.  Upper right: with DPC turned on.  Lower left: with more aggressive de-
noise function turned on.  Lower right: power spectrum of the 3 images. 

 
Figure 2. Power spectrum of a CMOS sensor without DPC (left) and with DPC 

applied (right) at temperatures between 25C and 105C. 

 A sensor simulation model should ideally reproduce both the 

statistical and spatial distributions of a real sensor.  There have been 

several models introduced to characterize and simulate these 

properties in detail [4, 5], but this work proposes a more simplified 

convolution-type algorithm that is able to closely approximate both 

characteristics and can also be easily implemented with GPUs for 

real-time execution, for example on autonomous driving platforms. 

 

It is also interesting to note such a power spectra series acquired 

at different temperatures also provides a simple way to detect the 

application of de-noise algorithms in a sensor by observing how 

much the high-frequency components deviate from a simple random 

distribution at different temperatures.  Although it is difficult to 

quantify how aggressive the algorithm is, it nevertheless provides 

an insight into noise performance and suppression of high-frequency 

features when comparing multiple sensors.  Hence a comprehensive 

sensor evaluation criterion and process should take these factors into 

account.  

Approach and Results 
We use convolution-like algorithm with a seed image and 

randomized kernel to simulate CMOS sensor dark noise. A random 

two-dimensional seed images 𝑓(𝑥, 𝑦) is first generated using a 

simple Gaussian distribution with mean 𝜇 and standard deviation 𝛿.  

With the commonly used Gaussian noise model, this seed image 

would be used as the actual noise image.  But to reproduce the 

asymmetric profile of the noise distribution in Figure 1, we apply an 

exponential to each element of the seed image.  With the proper 

choice 𝜇 and 𝛿, this new image 𝑒𝑓(𝑥,𝑦)  would reproduce the right-

skewed statistical distribution matching the captured image, and 

potential negative values in the Gaussian distribution is eliminated.  

However, the spatial distribution still has a flat spectrum because the 

noise values are randomly distributed spatially. 

 

To modify this spatial distribution, we construct a kernel for 

each pixel consisting of a constant part and a randomly varying part.  

For example, a 3 × 3 kernel could be constructed as: 

𝑔(𝑥, 𝑦) = [

𝜙 𝜙 𝜙
𝜙 1 − 8𝜙 𝜙
𝜙 𝜙 𝜙

] + [

𝜖1 𝜖2 𝜖3

𝜖4 𝜖5 𝜖6

𝜖7 𝜖8 𝜖9

] 

where 𝜙 is a constant and the 𝜖 values are generated with normal 

distribution with zero mean and stand deviation 𝜎.  The exponential 

noise image is then convolved with the kernel to generate the final 

noise image: 

ℎ(𝑥, 𝑦) = ∑ ∑ 𝑒𝑓(𝑥+𝑖−2,𝑦+𝑗−2)𝑔(𝑖, 𝑗)

3

𝑗=1

3
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The kernel can be roughly interpreted as a crosstalk function 

that affect both the statistical and spatial distributions.  The 

simulated noise images are controlled by 4 parameters 𝜇, 𝛿, 𝜙, and 

𝜎.  Among them, 𝜇 and 𝛿 primarily control the peak value of the 

noise distribution and its right-skewed tail, while 𝜙 and 𝜎 modify 

the distributions at local scales.  It is straightforward to manually 

adjust these values to match simulated results to captured sensor 

data and an iterative algorithm is being developed to optimize them 

automatically. 

 

Figure 3 shows a noise image simulated with this approach.  

The seed image and noise images show significantly different 

appearance although they have similar mean and standard deviation 

measures.  The statistical distribution shows a similar right-skewed 

pattern as the measurement from a real CMOS sensor shown in 

Figure 1 and the power spectrum shows a similar 1/f spatial 

frequency dependence as in Figure 2 at low temperatures. 

 

The comparison from Figure 3 is a good illustration of the 

importance of accurate noise modeling for image simulation, 

especially for modern HDR sensor where multiple channels, each 

with different noise characteristics, are combined to create a final 

image.  If any channel’s simulated noise properties differ too much 

from the real sensors, it may mislead the image processing 

algorithms and misguide the autonomous driving system training, 
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costing time and effort to rework the algorithms and in worse cases 

leading to safety issues with the vehicle. 

 

The process we use is similar to the autoregressive algorithm 

often used in sensor noise generation but simplified for easy CUDA 

implementation for high-speed calculations.  The current code is 

written in python and a C++/CUDA version is being developed for 

real-time execution in OVT’s sensor simulation models for several 

autonomous driving platforms. 

 
Figure 3. Results generated from the noise generation algorithm.  Top left: 
seed image with a simple Gaussian distribution.  Top right: resulting noise 
image after the convolution process.  These display range of these two 
images are scaled to 0.5% and 99.5% percentile of the image values. Lower 
left and right: distribution and power spectrum of the simulation noise image, 

respectively. 

 

 

Conclusion 
We have developed a simple dark noise model that attempts to 

match both the statistical distribution and power spectrum of 

measured CMOS sensor noise characteristics.  It is being integrated 

into OMNIVISION’s real-time sensor simulation library for major 

driving simulation platforms used in the automotive industry.  We 

expect this approach will provide significantly more accurate noise 

modelling than the commonly used Gaussian model, thus leading to 

more effective algorithm development with simulated data and 

reduced product development time and cost. 
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