
Cooking Spiders: Efficient OSINT with Chefs and Recipes
York Yannikos, Marc Leon Agel, Julian Heeger, Simon Bugert
Fraunhofer SIT / ATHENE, Darmstadt, Germany
(All authors have contributed equally)

Abstract
Social media, online forums, darknet marketplaces, and var-

ious other digital platforms are increasingly used or targeted by
cybercrime. Therefore, open source intelligence (OSINT) has be-
come an important aspect in digital forensics and cybercrime in-
vestigations: leveraging publicly available data on the Internet
provides new information and offers insights into criminal behav-
ior, patterns, and relationships. Many different tools and services
exist to collect and extract data from websites for digital foren-
sic investigations. These are often expensive and prone to errors
when target websites change their structure or content.

In this paper we present MAMPF, a media acquisition and
multi-processing framework for OSINT tasks. The framework is
able to collect and extract data from various websites with easy
extensibility and maintenance in mind. We show that our frame-
work makes a self-hosted approach to efficient OSINT possible
where a centralized core component is utilized in such a way that
nodes performing crawling / scraping tasks no not require any
maintenance at all. To describe our approach we use the analogy
of a restaurant with chefs that prepare dishes following specific
recipes.

Introduction
Open source intelligence (OSINT) has become a relevant

part for digital forensics investigations dealing with cybercrime.
OSINT helps understanding incidents and gaining insights from
public information. However, many of the OSINT tools currently
available are expensive and very often cloud-based, which can
create concerns about data privacy and accessibility, especially
for law enforcement agencies. New self-hosted, easily extensi-
ble tools are required that allow digital forensic investigators to
customize their workflows and adapt functionality without being
required to write program code, while maintaining control of the
data.

As OSINT has become an integral part of cybercrime inves-
tigations and digital forensics, many different solutions are avail-
able in this area. The tools and services available for digital foren-
sics investigators, law enforcement, or cybersecurity profession-
als provide functionality to collect and extract data from various
sources in the Internet. However, they often come with like high
purchase or running costs, very high maintenance requirements,
or – especially for cloud-based services – lack of control regard-
ing the collected (often sensitive) data.

Our objective was to develop and test a performant and effi-
cient client-server architecture for public data collection and ex-
traction that can run self-hosted, is easily extensible, and central-
izes maintenance efforts in such a way that workers performing
collection tasks rarely need code updates at all, even when target
websites change.

Data Acquisition using OSINT
In past years the technology used to collect data from var-

ious sources has evolved significantly, enabling forensic investi-
gators to extract and analyze public information efficiently. Web
crawling and scraping are common techniques for collecting data
from websites. Additionally, application programming interfaces
(APIs) provided by platforms like X, Telegram, or Facebook fa-
cilitate the collection of structured data and often allow more spe-
cific searches for keywords, hashtags, or user mentions. These
methods can be used to collect social media posts, news articles,
blog posts, or other public information, in order to compile large
datasets for further examination.

However, many websites do not offer public APIs and
even implement counter-measures against web scraping such as
CAPTCHAs. Also dynamic web content can pose an additional
challenge for web scraping due to its reliance on client-side ren-
dering. When a website utilizes JavaScript frameworks like Re-
act, Angular, or Vue.js, the initial website content presented to the
user (or to a scraping tool) may only contain a minimal structure,
while the relevant content is loaded asynchronously afterwards.
Especially traditional web scrapers that typically download static
content may not capture the dynamically loaded elements, there-
fore leading to incomplete data collections. Also, many websites
implement lazy loading, where content is only loaded when the
user scrolls down. Here, more advanced scraping techniques can
be used that are based on headless browsers controlled by frame-
works like Selenium or Playwright, which simulate user interac-
tions and can execute JavaScript code to fully load and render all
content before scraping.

Building an advanced scraper for a website typically requires
a thorough analysis of the structure of the website, including its
DOM and network requests made by client-side JavaScript. This
analysis requires a deep understanding of web technologies and
also the ability to quickly adapt the scraping logic to changes of
the website over time. Both aspects are rarely part of the usual
work of a forensic investigator who utilizes OSINT techniques.

Framework Overview and Architecture
In the following sections we describe MAMPF, a media ac-

quisition and multi-processing framework for OSINT tasks. The
aim of the development of MAMPF was to create a potentially
long running system capable of collecting and extracting web data
from various public web sources on external request. The desired
data types that MAMPF should be able to process include struc-
tured data (such as product titles, object descriptions, timestamps,
or prices from an online trading platform) as well as binary files
(such as product images, videos, audio or document files).

We state four desired properties of such a system:

https://doi.org/10.2352/EI.2025.37.4.MWSF-302
© 2025, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2025
Media Watermarking, Security, and Forensics 2025 302-1

• Resistance to changes in website structure at runtime. When
scraping web data from structured file formats such as
HTML, data extraction techniques often rely on path ex-
pressions which specify the location of the desired data in
the obtained files (for example XPath or CSS selector ex-
pressions for HTML or JSON Query expressions for JSON).
These path expressions are highly dependent on the general
structure of the files, such that data extraction processes fre-
quently break when the website structure changes. This can
happen at any time as website operators are typically unre-
lated third parties. Therefore, in our view it is highly desir-
able to enable the reconfiguration or adaption of web scrap-
ing processes at runtime in a flexible way, such that program
code changes and deployments are not required in order to
react on website structure changes.

• Resilience to runtime errors. Web data scraping takes
place in complex network environments where connection
or timeout errors are common, especially when extracting
large sets of data in a short amount of time. Since web
scraping tasks often consist of sequences of requests, where
request parameters are dependent on results of previous re-
quests, the web scraping processes should be able to recover
from such intermediate request errors.

• Flexibility. Web data comes in various formats and different
web services may offer different ways to obtain data. While
certain web services offer Application Programming Inter-
faces (APIs) to enable access to their structured data, others
might only embed the desired data in their HTML responses.
Since the system should support the data collection and ex-
traction for multiple different sources, it should be flexible
enough to handle different file types and protocols.

• Extensibility. Since data collection tasks generally consist of
a multitude of network requests followed by potential com-
putationally expensive data transformations, it is desirable
to execute them in parallel with an adjustable number of
parallel data collection processes. In addition to horizon-
tal scaling, the system should also support the extension to
new data sources at runtime.

While the first two properties are considering two general
challenges of web data collection and extraction, the latter two
are specific design goals of MAMPF. The developed system pro-
vides an interface for the input of data collection jobs, i.e. OSINT
tasks, which are formulated as predefined templates with corre-
sponding input arguments. For example, a predefined template
could be the extraction of all products, including titles, descrip-
tions, prices, and images listed on eBay which can be found with
a given search query. In this case, the search query is an additional
input parameter that needs to be supplied by the requesting client.
The requesting client then gains a job ID which can be used to
query the status of the data collection job as well as the collected
data once the job is finished.

Architecture
MAMPF is a distributed system composed of multiple

worker nodes that perform data collection tasks and a central-
ized controller component that orchestrates the worker nodes. To
explain the different components and the objects by which the
components communicate, we employ the analogy of a restau-

rant: In this analogy, the centralized controller component can
be thought of as the restaurant kitchen, which is responsible for
accepting and queuing client dish orders, distributing them to
kitchen chefs, and serving finished dishes back to the clients. Cor-
respondingly, the worker nodes are analogous to the kitchen chefs
who prepare the dishes and hand them back to the kitchen. The
predefined templates mentioned previously can be thought of as
recipes, which, together with additional input arguments, contain
instructions about how to prepare a dish that is part of an order.

Restaurant Kitchen (Central Controller)
The restaurant kitchen acts as central controller in MAMPF

and consists of five components, each responsible for a different
part of the functionality of the controller:

The public API exposes an interface for clients to submit
orders, check the status of orders and query extracted data of
finished orders. When an order is submitted, the corresponding
recipe is looked up in the recipe book, a database where up-to-
date recipes of for several dishes are managed and stored. The or-
dered dishes are appended to an order queue from where they are
distributed to the chefs acting as worker nodes. The chefs com-
municate their status and results back to the restaurant kitchen by
using an internal API, which manages the life cycle of the chefs
and the storage of the resulting data in a database.

Chefs (Worker Nodes)
A chef is a separate process that is responsible for cooking,

i.e. preparing / processing dishes. Since each dish is defined by
a recipe and additional input arguments (see below), a chef first
has to specify a set of recipes which it is able to handle. When
a chef connects to the restaurant kitchen, it announces its set of
supported recipes such that only queued dishes suitable for the
chef are routed to it.

Figure 1 shows the architecture of MAMPF with its compo-
nents that are described in the following section.

Chef

Developers

Dish

Dish

Dish

Order Queue

Collected
Data

Internal API

Recipes

Ingredient

Ingredient

Maintenance
Work

• Announce supported recipes
• Get suitable dishes to prepare
• Send back prepared dishes

Chef

Restaurant Kitchen

...

Public API

Users

Order Result

Chef

Chef

Figure 1. Overview of the MAMPF architecture

302-3
IS&T International Symposium on Electronic Imaging 2025

Media Watermarking, Security, and Forensics 2025

Kitchen Components
Besides the previously mentioned APIs and databases,

MAMPF further includes components that are named using our
restaurant analogy. These components are described in the fol-
lowing:

Recipe
A recipe is the main specification of a data collection task. It

consists of one or multiple ingredients and defines how a dish can
be prepared, e.g. how data can be collected or extracted from a
target website. The ingredients a recipe consists of are structured
as tree. Recipes are written in a domain-specific language.

Ingredient
An ingredient is a lower-level computation task. Each ingre-

dient specifies a set of input parameters and include executable
code that defines how to process the input parameters and return
a result. For example, a ”request” ingredient may define an input
URL and perform an HTTP request to that URL, returning the
HTML response.

Ingredients can also depend on other ingredients by specify-
ing the required return type. When the implementation of an in-
gredient requests another ingredient to be computed, it may spec-
ify a context object which will be available during the execution
of the other ingredient. This makes it possible to combine abstract
ingredients in a useful way. For example, one could define an in-
gredient that requires a parsed DOM tree in the context object and
an XPath expression as a parameter and returns the text node at
the specified XPath. This ingredient can then be combined with
another ”request” ingredient to build a larger ingredient that re-
quests an HTML page and returns the text at a specific location.
The resulting tree of ingredient dependencies, up to the ”root in-
gredient”, defines a recipe (see above).

The execution of an ingredient has to be implemented in a
chef (worker node). As a result, the set of recipes that a chef can
handle is given by all recipes that only contain ingredients imple-
mented in that chef. Ingredients can be implemented to handle
specialized use cases, such as taking a screenshot of a website,
performing a web requests using a proxy, or using the Tor net-
work to access an onion service. Chefs can be deployed wherever
they have network access to the internal API, such that they can
meet the runtime requirements of those use cases.

Dish
A dish is defined as a recipe together with the input argu-

ments of the root ingredient of the associated recipe. As such, it
can be given to a chef which can start the computation by exe-
cuting the root ingredient. In practice, an order queue system is
used to queue up the dishes awaiting computation. When a dish
is put into the order queue by the restaurant kitchen, the set of all
ingredients is taken into account to find a suitable chef for this
dish.

In the implementation of ingredients, chefs have access to
the private API of the restaurant kitchen, such that they can save
binary or structured data and even queue up new dishes. In this
way, they can communicate back the results of the data collection
to the kitchen. The ability to queue new dishes enables the chunk-
ing of large data collection tasks into multiple smaller dishes in a
tree-like structure and a parallel execution of the dishes. Further-

more, complex data collection tasks may require multiple differ-
ent ingredients for specialized use cases that are not all available
on a single chef, which requires this chunking in order to supply
them to suitable chefs.

Order
An order consists of one or many dishes and describes a com-

plete OSINT task. For example, if several websites should be
crawled and all found images and text data should be extracted
and downloaded, the corresponding order would include a dish
for each website, each consisting of the required ingredients to
navigate the websites, download images, extract text data, etc.

Communication Flow
In order to process an OSINT task with MAMPF, a set of

chefs must be deployed first. Chefs can be hosted and run in
different locations as long as they are able to communicate with
MAMPF’s internal API. After starting their work, the chefs ask
for the latest set of recipes, announce which kind of recipes they
are able to cook, and then start watching the order queue. After
the chefs are ready, a user can submit an OSINT task, i.e. put an
order on the order queue. This order could include a set of web-
sites to be crawled as well as information about which specific
data should be extracted and collected – i.e. a number of dishes.

Is a dish order
queued?

Can I handle the
recipes for that dish?

Cook dish

No

Yes

Yes

Put order back
on queue

No

Deliver dish

Get a list of
latest recipes

Start

Figure 2. Communication flow of chefs in MAMPF

Figure 2 shows the communication flow of the chefs: They
continuously watch the order queue to fetch new dishes for cook-
ing, i.e. to perform the actual crawling / scraping tasks on a web-
site. After a chef finished cooking, i.e. collecting and extracting
the data for the dish, it delivers the dish by sending the data to
the database using the internal API. In the database the collected
data is deduplicated and stored, e.g. for subsequent processing or
analyses.

Writing Recipes
We developed a domain-specific language (DSL) to write

recipes in MAMPF. Recipes are stored in JSON format in the
recipe book, i.e. the database containing all recipes available for
chefs. Figures 3 and 4 show example recipes written in our DSL
including different ingredients.

In order collect data from a new website we can use the DSL
to write new recipes containing the relevant ingredients. This

IS&T International Symposium on Electronic Imaging 2025
Media Watermarking, Security, and Forensics 2025 302-3

{
"id": 0,
"$schema": "../ schema.json",
"name": "DOWNLOAD_SIMPLE",
"version": 1,
"body": {

"input_params": [{
"name": "url",
"type": "string"

}],
"protocol": {

"type": "DOWNLOAD",
"url": "{input[url]}",
"meta": [{

"key": "url",
"value": "{input[url]}"

}]
}

}
}

Figure 3. Example recipe to download a file from a given input URL

{
"id": 0,
"$schema": "../../ schema.json",
"name": "TARGET_ITEM",
"version": 1,
"body": {

"input_params": [
{ ... }

],
"protocol": {

"type": "CRAWL_PAGE",
"request": {

"type": "REQUEST",
"url": "{input[href]}",
"parse": "next_data"

},
"sub": [

{
"type": "DOWNLOAD_IMAGES",
"image_links": {

"type": "JQ",
"q": "try(.props.pageProps.

↪→ rawGallery.gallery[].images
↪→ [] | last(to_entries[]).
↪→ value.url)",

"ret": "ALL"
},
"image_download": {

"type": "INVOKE",
"recipe_name": "DOWNLOAD_SIMPLE",
"recipe_version": 1,
"args": [{ "key": "url", "value":

↪→ "{image_href}" }]
},
...

}
]

}
}

}

Figure 4. Excerpt from an example recipe including ingredients to download

images extracted using JSON Query

could involve writing XPath expressions, JSON queries, or CSS
selectors as well as additional website-specific content handling
like pagination, or downloaders for multimedia data. To extend
functionality within MAMPF, we can also utilize additional mi-
croservices, e.g. for automated CAPTCHA solving or for sending
web requests via proxies.

Despite the required work to figure out how the relevant con-
tent of a new website could be extracted for data collection, this
simplifies maintenance significantly within MAMPF: The chefs
hardly ever need program code changes – all they have to do is
fetch a list of the latest available recipes from the recipe book to
continue working.

Evaluation Scenario
To test our approach we used MAMPF in the ANCHISE

project (www.anchise.eu), where we conducted research re-
garding the protection of cultural heritage against looting and il-
licit trafficking. We defined recipes for several different platforms
that sell or trade cultural goods. Using the recipes we successfully
adapted the framework to crawl platforms like eBay or Catawiki
(www.catawiki.com) searching for stolen cultural goods.

Figure 5 shows the adapted MAMPF architecture for the
ANCHISE project. We added a temporary section to our database
in the restaurant kitchen and built an interface to communicate
with an external service. The external service included another
database curated by museums and law enforcement, that included
a list of stolen objects to search for.

DB with
(Stolen) Objects

Chef
Chef Chef

Trading
Platform

Trading
Platform

Trading
Platform

{ }

Temporary DB
with search results

Law Enforcement,
Museums

User
Interface

Restaurant
Kitchen

Figure 5. Overview of the MAMPF architecture applied in the ANCHISE

project for evaluation

The communication flow between MAMPF and the parties
involved in ANCHISE was as follows:

1. Museums or law enforcement agencies uploaded informa-
tion about stolen objects (cultural goods), i.e. text descrip-
tions, search keywords, and images.

2. An OSINT task was defined to search several platforms for
the stolen objects.

302-5
IS&T International Symposium on Electronic Imaging 2025

Media Watermarking, Security, and Forensics 2025

www.anchise.eu
www.catawiki.com

3. The task was submitted to MAMPF’s order queue.
4. MAMPF processed the order by collecting data about rele-

vant objects from the platforms.
5. The data was then analyzed externally to determine whether

or not the found objects were similar to the recorded stolen
objects (based on image similarity).

6. If similar objects were found, their data was stored for fur-
ther action – otherwise, the collected data was deleted.

We repeated steps 2–6 for several days to monitor the target
platforms for new object postings. While we tested our frame-
work, eBay changed their site layout slightly in such a way that
our chefs would sometimes provide wrong results while crawling
the website. However, we could adapt quickly (i.e. within min-
utes) by modifying the corresponding recipes and pushing them
to the recipe book. After the chefs updated the recipes they could
continue to successfully collect data from eBay.

A detailed description about the adaptions, results, and per-
formance of our data collection within the ANCHISE project is
given in [6].

Related Work
Recent efforts have been made to obtain distributed systems

of web crawling agents. In [3], the authors present a distributed
web crawler capable of indexing unstructured data from social
platforms such as Reddit and Hacker News. While this approach
is well suited for capturing unstructured data, the proposed sys-
tem does not handle the extraction of structured data and the re-
quirements for modularity at runtime resulting from changes to
data structures. In another work, Khder et al. [5] provide a com-
prehensive introduction to the concepts of web crawling and web
scraping, with a discussion of the legal and ethical implications
of these practices. The authors proceed with an examination of
the different applications of web crawling in fields such as data
science and cybersecurity. They argue that a more clearly defined
global legal framework for web scraping is required, that balances
information privacy rights with business interests.

In [4] the authors provide an overview about the use of public
data and free OSINT tools in computer security incident response
teams (CSIRTs). Based on an online survey and interviews with
25 participants from 13 different CSIRTs, the authors find that
public data is commonly collected and used in CSIRTs. They
state that main challenges in using OSINT are lacking systematic
processes and suitable frameworks for the validation and evalua-
tion of free tools as well as the general availability of useful public
data sources and OSINT tools. The authors conclude that more re-
search is required for a more efficient and effective use of public
data and free tools.

Regarding the combination of OSINT with AI technology,
the authors of [8] review the current state of OSINT techniques,
highlighting their limitations in practical applications. The paper
underscores the importance of integrating AI, machine learning,
and deep learning to automate intelligence gathering, enhancing
OSINT applications in cyber defenses, social media analysis, and
digital forensics. The authors conclude that the integration of AI
improves the detection of cybercrime, helps with culprit identi-
fication, and supports counter-terrorism efforts. In another study
regarding the topic, Browne et al. [1] conduct a review of cur-
rent research on the combination of OSINT and AI algorithms.

The research questions posed by the authors are wide-ranging,
encompassing the detection of trends in the mentioned fields, the
deployment of AI systems at specific stages of the OSINT pro-
cess, and the data sources utilized.

Hwang et al. [2] give an introduction to OSINT, distin-
guishing it from other intelligence collection methods such as
HUMINT and TECHINT, and outlining their respective military
applications. They analyze security threats to OSINT, including
data privacy breaches, where attackers exploit personal informa-
tion for financial gain, and data forgery, which compromises au-
thenticity in contexts like fake news. Finally, they examine se-
curity requirements and access control principles for managing
collected OSINT data.

In previous works we presented our own findings from OS-
INT research in the darknet where we monitored darknet market-
places or single vendor shops to gain insights about their activity.
We scraped several marketplaces like Dream Market, Wall Street
Market, or White House Market and analyzed offered goods,
buyer and seller activity, or transaction amounts [11, 10]. By
continuously monitoring specific platforms we could also iden-
tify a marketplace that runs an elaborated scam by faking ven-
dor and buyer activity while offering no goods at all [7]. To
access several marketplaces in the Tor network we implemented
automated captcha solvers and provided an overview about used
captcha types and suitable solvers in [9].

Conclusion
In this paper we introduced MAMPF, a media acquisition

and multi-processing framework for OSINT tasks. Our goal was
to develop a general-purpose framework that can run self-hosted,
is easily extensible through the use of a domain-specific language,
and uses a centralized maintenance approach with self-updating
workers and high scaling flexibility. We chose to describe the
rather complex framework using a restaurant analogy to illustrate
the core principles and design ideas more easily.

After the implementation we evaluated MAMPF in a sce-
nario within the ANCHISE project where we successfully col-
lected data from various different target platforms on the Internet
for a subsequent analysis. We found that our framework fulfilled
all of the four desired properties we formulated: resistance, re-
silience, flexibility, and extensibility.

In previous publications we presented research regarding
OSINT on specific target platforms, e.g. on single darknet mar-
ketplaces, using techniques to automatically evade anti-crawling
mechanisms implemented by the platform operators. We are plan-
ning to integrate our research results from these projects into
MAMPF to provide additional flexibility for the framework, e.g.
by implementing microservices for captcha solving. This would
further enable us to use MAMPF to crawl data from darknet mar-
ketplaces more efficiently. Additionally, we are currently testing
and optimizing the performance of the framework when crawling
and scraping data from different sources at the same time.

Acknowledgments
This research was conducted in the FROST+ML project

funded by the German Federal Ministry of Education and Re-
search and the Hessian Ministry of Higher Education, Research,
Science and the Arts within their joint support of the National
Research Center for Applied Cybersecurity ATHENE.

IS&T International Symposium on Electronic Imaging 2025
Media Watermarking, Security, and Forensics 2025 302-5

The evaluation has also been supported by the Horizon Eu-
rope project ANCHISE (Applying New solutions for Cultural
Heritage protection by Innovative, Scientific, social and economic
Engagement). This project has received funding from the Eu-
ropean Union’s Horizon Europe Framework Programme under
grant agreement no. 101094824.

References
[1] Thomas Oakley Browne, Mohammad Abedin, and Mohammad

Jabed Morshed Chowdhury. A systematic review on research
utilising artificial intelligence for open source intelligence (OS-
INT) applications. International Journal of Information Security,
23(4):2911–2938, 2024.

[2] Yong-Woon Hwang, Im-Yeong Lee, Hwankuk Kim, Hyejung Lee,
and Donghyun Kim. Current Status and Security Trend of OSINT.
Wireless Communications and Mobile Computing, 2022(1), 2022.

[3] Donovan Jenkins, Lorie M. Liebrock, and Vince Urias. Designing
a Modular and Distributed Web Crawler Focused on Unstructured
Cybersecurity Intelligence. In 2021 International Carnahan Con-
ference on Security Technology (ICCST), pages 1–6, 2021.

[4] Sharifah Roziah Binti Mohd Kassim, Shujun Li, and Budi Arief.
How national CSIRTs leverage public data, OSINT and free tools in
operational practices: An empirical study. Cyber Security: A Peer-
Reviewed Journal, 5(3):251–276, 2022.

[5] Moaiad Ahmad Khder. Web scraping or web crawling: State of art,
techniques, approaches and application. International Journal of
Advances in Soft Computing & Its Applications, 13(3), 2021.

[6] Huajian Liu, York Yannikos, Julian Heeger, Simon Bugert, Walde-
mar Berchtold, and Martin Steinebach. Automated Monitoring of
Stolen Cultural Artifacts on OnlineMarketplaces. In IS&T Elec-
tronic Imaging, Mobile Devices and Multimedia: Enabling Tech-
nologies, Algorithms, and Applications 2025. Society for Imaging
Science and Technology, 2025.

[7] Florian Platzer and York Yannikos. Trust Assessment of a Darknet
Marketplace. In Jia Hu, Geyong Min, Guojun Wang, and Nektarios
Georgalas, editors, 22nd IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom
2024, Exeter, UK, November 1-3, 2023, pages 1806–1813. IEEE,
IEEE, 2023.

[8] Ashok Yadav, Atul Kumar, and Vrijendra Singh. Open-source in-
telligence: a comprehensive review of the current state, applications
and future perspectives in cyber security. Artificial Intelligence Re-
view, 56(11):12407–12438, 2023.

[9] York Yannikos and Julian Heeger. Captchas on Darknet Market-
places: Overview and Automated Solvers. IS&T Electronic Imag-
ing, Media Watermarking, Security, and Forensics 2024, 36:1–6,
2024.

[10] York Yannikos, Julian Heeger, and Martin Steinebach. Scraping and
analyzing data of a large darknet marketplace. Journal of Cyber
Security and Mobility, pages 161–186, 2023.

[11] York Yannikos, Annika Schäfer, and Martin Steinebach. Monitoring
product sales in darknet shops. In Proceedings of the 13th Interna-
tional Conference on Availability, Reliability and Security, ARES
’18, page 59, New York, NY, USA, 2018. ACM, Association for
Computing Machinery.

Author Biography
York Yannikos received his Diplom (equiv. Master’s degree) in com-

puter science from the University of Rostock, Germany in 2008. Since then

he has been working as research associate in the Media Security and IT
Forensics department at the Fraunhofer Institute for Secure Information
Technology (SIT) and at the National Research Center for Applied Cy-
bersecurity (ATHENE) in Darmstadt, Germany. His research interests in-
clude darknet marketplaces, open source intelligence, and digital forensic
tool testing.

Marc Leon Agel is a research associate in the Media Security and IT
Forensics department at the Fraunhofer Institute for Secure Information
Technology (SIT) and at the ATHENE National Research Center for Ap-
plied Cybersecurity in Darmstadt, Germany. He holds a Master’s degree
in physics from the Technical University of Darmstadt and his research
interests include open source intelligence, digital forensics and machine
learning.

Julian Heeger is a research associate in the Media Security and IT
Forensics department at the Fraunhofer Institute for Secure Information
Technology (SIT) and a researcher at the National Research Center for
Applied Cybersecurity (ATHENE) in Darmstadt, Germany. He holds a
Master’s degree in IT security from the Technical University of Darmstadt.

Simon Bugert received his Master’s degree in computer science
from the Technical University of Darmstadt, Germany in 2021. Since then
he has been a research associate in the Media Security and IT Forensics
department at the Fraunhofer Institute for Secure Information Technology
(SIT) and at the ATHENE National Research Center for Applied Cyberse-
curity.

302-7
IS&T International Symposium on Electronic Imaging 2025

Media Watermarking, Security, and Forensics 2025

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org

	Abstract
	Introduction
	Data Acquisition using OSINT
	Framework Overview and Architecture
	Architecture
	Restaurant Kitchen (Central Controller)
	Chefs (Worker Nodes)
	Kitchen Components
	Recipe
	Ingredient
	Dish
	Order
	Communication Flow
	Writing Recipes
	Evaluation Scenario
	Related Work
	Conclusion
	Acknowledgments
	Author Biography

