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Abstract
In batch steganography, the sender communicates a secret
message by hiding it in a bag of cover objects. The ad-
versary performs the so-called pooled steganalysis in that
she inspects the entire bag to detect the presence of secrets.
This is typically realized by using a detector trained to de-
tect secrets within a single object, applying it to all objects
in the bag, and feeding the detector outputs to a pooling
function to obtain the final detection statistic. This paper
deals with the problem of building the pooler while keep-
ing in mind that the Warden will need to be able to de-
tect steganography in variable size bags carrying variable
payload. We propose a flexible machine learning solution
to this challenge in the form of a Transformer Encoder
Pooler, which is easily trained to be agnostic to the bag size
and payload and offers a better detection accuracy than pre-
viously proposed poolers.

Introduction
Batch steganography and pooled steganalysis has been

introduced by Ker in 2006 [13]. It generalizes the concept
of sending a secret embedded in a single object to multi-
ple objects. The sender divides her message into chunks
that get embedded in individual cover objects in the bag
and then all sent to the recipient. This is called batch
steganography. On the other hand, the Warden is allowed
to inspect the entire bag to decide whether steganography
is being used (pooled steganalysis).

Since the inception of this concept, researchers studied
techniques for spreading the payload (assigning the payload
chunks to individual objects) as well as Warden strategies
for detecting the covert communication [17, 19, 16, 14, 15,
12, 10, 8, 21, 24, 25, 27, 23, 28]. While the communicated
objects can be text, digital media files, and other objects,
most research went into the scenario when secrets are hid-
den in digital images. Trivial payload spreading strate-
gies include the uniform sender that spreads the payload
equally among all images in the bag, the greedy sender that
fully embeds a subset of images, and senders that spread
the chunks based on the image content. This last pay-
load spreading strategy includes the image merging sender
(IMS) [24], which uses a content-adaptive steganographic
algorithm to spread the payload, and the shift-limited and
minimum deflection senders [27] that spread the payload
based on the feedback from a detector trained to detect
steganography.

Pooled steganalysis is typically implemented by pool-
ing the soft outputs of a single image detector (SID) applied
to all images in the bag. For detecting modern content-
adaptive steganography, SIDs are typically trained on ex-
amples of cover and stego images embedded with a range of

payloads. The pooling function can have many forms but
can be broadly divided into two groups—analytic and data
driven poolers. The simplest analytic poolers include the
simple average pooler, which computes the arithmetic av-
erage of all SID outputs, and the max pooler that computes
order statistic of the outputs. Pooling functions can also
be derived from first principles based on a statistical model
of the SID output on cover and stego images [8, 27, 13].
Finally, poolers can also be built with machine learning
tools with bag size independent representations of SID’s
outputs [23, 28]. In this paper, we show how transformers
can be used for building pooling functions that are agnos-
tic to the bag size as well as the payload while providing
better performance than previous art.

This paper is structured as follows. In the next sec-
tion, we briefly discuss relevant prior art and then formally
introduce the basic concepts used in batch steganography
and pooled steganalysis—the spreading strategy and the
pooler. Next, we introduce machine learning poolers and
the Transformer Encoder Pooler (TEP). Finally, we com-
pare the detection performance of the TEP with previous
art and summarize the paper.

Prior art
The first work on data-driven pooling functions is due

Pevný et al. [23]. The authors studied the simplest batch
steganography strategies, the uniform and greedy senders,
and a uniform sender on a fraction of the images from
the bag. The learned pooling function was a linear clas-
sifier operating on Parzen window representations of SID
outputs. For a fixed known payload and one bag size of
100, the learned pooler was experimentally shown to be
very close to the simple average pooler. The authors hy-
pothesized that better pooling functions might be obtained
by employing non-linear classifiers and by using higher di-
mensional representations of the images rather than scalar
(SID) outputs. A similar approach to pooled steganalysis
has been adopted in the experimental work by Zakaria et
al. [28].

Recently, the authors of [9] used Random Forest (RF)
for pooling the outputs of a SID for the joint task of de-
tecting batch steganography and source biasing. To this
end, the pooler accepted the SID soft outputs as well as
the slopes of the so-called detector response curves. The
pooler was trained separately for each bag size and com-
munication rate in an effort to use the best performing
pooler.

While methods that represent bags with bag size in-
dependent representations, such as histograms of SID out-
puts, enjoy low implementation complexity, they have lim-
itations already pointed out in [23]. First, the pooler might
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Figure 1. Transformer encoder block. Positional embeddings are omitted.
For simplicity, multi-head attention is replaced with a single-head. The sym-
bols Wq , Wk, and Wv stand for query, key, and value matrices used in the
self-attention block.

be improved if allowed to work with more information ex-
tracted from each image than the SID output. Second, due
to the data processing inequality [6] the histogram (Parzen
window) representation will necessarily degrade the detec-
tion accuracy, which may especially become pronounced
for small bags, which are likely to be sent in practice.

In contrast, the proposed TEP offers several advan-
tages: TEP can be trained to be bag size and commu-
nication rate agnostic and it gracefully scales to higher-
dimensional bag representations. Moreover, TEP can ac-
cept supplementary information, such as estimated pay-
loads embedded in each image and other image metadata,
including the JPEG quality factor, ISO settings, etc. This
flexibility in incorporating diverse and multimodal infor-
mation sets the transformer approach apart from previous
art.

Batch steganography and pooled steganalysis
In this section, we introduce the key technical concepts

we will need to explain our approach to pooled steganaly-
sis. We start by formally introducing the concept of batch
steganography and then describe analytic as well as ma-
chine learning pooling functions that will be used in this
paper.

Let us denote the set of all possible grayscale cover im-
agesX with a fixed number of N pixels as X . Furthermore,
let X = (X1, . . . ,Xn) be a bag of n cover images. Assum-
ing the sender uses a ternary steganographic scheme, up to
log2 3 bits per pixel (bpp) can be embedded in each image.

Attention
matrix

softmax &
dropout

Figure 2. Single-head attention block. X is a matrix of s embedding
vectors of length e. Matrices Wq , Wk, and Wv are set to be trainable.
The output matrix Z is a matrix of n transformed embeddings of length ev.
Typically, ev = e.

To embed a secret payload of rnN bits in bag X, where
0≤ r ≤ log2 3 bpp is the rate, a spreading strategy is used
to assign relative payloads 0 ≤ αi ≤ log2 3 to each image
Xi, i= 1, . . . ,n. The αi must satisfy r = 1

n

∑n
i=1αi.

A single image detector (SID) is a mapping d :X →R.
For d implemented as a linear classifier, d(X) is the pro-
jection of some inner representation of X on the classifier
weight vector. For d in the form of a CNN, d(X) ∈ [0,1] is
the soft output (logit) after softmax. Having intercepted
a bag of n images Y = (Y1, . . . ,Yn), a pooler that operates
on SID outputs is a mapping π : Rn→ R

π (d(Y1), . . . ,d(Yn)) . (1)

As already pointed above, a pooler could conceivably
utilize more information from each image than just the
scalar output of the SID. A higher-dimensional feature
could be extracted from each image and the pooler could
operate on a concatenation of such features extracted from
all images in the bag. The section “Machine learning pool-
ers” below discusses several choices for the feature vector.

Analytic poolers
The simplest analytic pooler is the average of SID out-

puts

πAVG(d(Y)) = 1
n

n∑
i=1

d(Yi), (2)

where we used for brevity d(Y) , (d(Y1), . . . ,d(Yn)). Note
that πAVG is agnostic of the spreading strategy and the
communication rate r.

For a Warden aware of the spreading strategy and
communication rate r, we also consider the correlator
pooler [27, 9]

πCORR(d(Y)) = 1
n

n∑
i=1

d(Yi)α̂i, (3)

where α̂i is the estimated payload in the ith image, inferred
by the Warden from the images at hand. When αi = α̂i
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Figure 3. Transformer Encoder Pooler (TEP) architecture. TEP consists
of 6 encoder blocks. Output embeddings are averaged and the resulting
embedding vector is passed to a fully-connected layer.

for all i, the pooler is clairvoyant. In all our experiments,
we use this clairvoyant correlator pooler as the worst-case
scenario for the sender and also to lower the computational
complexity of the experiments. Since in this work we use
the IMS spreading strategy, the clairvoyant pooler is a fea-
sible assumption since the embedding costs of most modern
content adaptive embedding schemes are largely insensitive
to the embedding changes themselves—the payloads esti-
mated from the stego images are nearly identical to the
payloads computed from covers [7].

While analytic poolers are by design agnostic to the
bag size, they may not perform the best in practice. In
contrast, machine learning-based poolers may achieve bet-
ter detection accuracy by learning more complex patterns
from the training data.

Machine learning poolers
Pooling functions can certainly be built with Machine

Learning (ML) techniques. Most importantly, they can
make use of more complex representations of the bags. In
this paper, we use higher dimensional internal representa-
tions of images learned within a trained CNN.

Formally, a trained CNN SID d consists of an “inter-
nal feature extractor” f :X →Rm followed by an MLP/IP
layer ` : Rm→ R

d(Y ) = `(f(Y )). (4)

For example, the popular CNN architecture SRNet
uses a 512-dimensional output of the last convolutional
layer before it is processed by the IP layer. This vec-
tor could be used for more complex bag representations
to train a ML pooler.

In this paper, we will use three different representa-
tions of a bag for training ML poolers :

1. The bag is represented with soft SID output only

fd = d(Y) ∈ Rn. (5)

2. The bag is represented with internal features

ff = (f(Y1), . . . ,f(Yn)) ∈ Rm×n. (6)

3. Payloads can be added to the representation if they
are known or estimable. Both types of representations
from 1) and 2) can be extended by appending the
vector of n payloads α = (α1, . . . ,αn) embedded in
each image

fd,α = (fd,α) ∈ R2n (7)

ff,α = (ff ,α) ∈ R(m+1)×n. (8)

Once the feature vectors are extracted for all bags, a ma-
chine learning tool can be used to train a pooler for a fixed
bag size n. To cover all possible bag sizes, one could pos-
sibly train a pooler for each bag size. While this is obvi-
ously cumbersome, expensive, and not suitable for prac-
tical applications, such poolers have previously been used
for research purposes [27, 9]. In this paper, we train Ran-
dom Forest [3] (RF) and Logistic Regression [22] (LogReg)
classifiers, which were selected for their ability to handle
high-dimensional features while maintaining low training
complexity.

ML poolers implemented with a bag size independent
representation of images were introduced in [23]. To make
the feature vector size invariant to the bag size, the authors
used the following Parzen Window (PW) mapping

fh =
(

1
n

n∑
i=1

k
(
d(Yi), c1

)
, ...,

1
n

n∑
i=1

k
(
d(Yi), cp

))
∈ Rp,

(9)

where k(x,y) = exp(−γ(x−y)2) is the Gaussian kernel and
{ci}pi=1 is a set of equally spaced points in a real interval
bounded by the range of d(Y ) ([0,1] for CNN outputs). A
payload-informed PW pooler works with the feature vector
fh.α

fh,α =
(

1
n

n∑
i=1

k
(
d(Yi), c1

)
, ...,

1
n

n∑
i=1

k
(
d(Yi), cp

)
, (10)

1
n

n∑
i=1

k
(
αi, c

′
1
)
, ...,

1
n

n∑
i=1

k
(
αi, c

′
p

))
∈ R2p,

where {c′}pi=1 is a set of equally spaced points in the in-
terval [0, log2 3].

Transformers
The transformer architecture was first introduced

in [26], where the authors proposed a simpler and more
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Figure 4. Detection accuracy wAUC of RFs trained on different represen-
tations of bags as a function of the bag size n for a fixed rate r = 0.4. The
top plot shows the RF trained on internal SID features ff vs. RF trained on
just soft outputs fd. The bottom plot contrasts the performance of the RF
when adding the payloads (fd,α and ff,α). Both subplots also contain the
corresponding analytic poolers, πAVG and πCORR.

efficient architecture for sequence modeling to eliminate
convolutions and recurrence. The transformer utilizes
encoder-decoder structure similar to many other neural
sequence transduction models. The baseline transformer
architecture proposed in [26] consists of 6 encoder and 6
decoder blocks.

Figure 1 shows a simplified architecture of an encoder,
comprising a self-attention block followed by a skip con-
nection (Add) and normalization (Norm), as well as a fully
connected block, which is also followed by a skip connec-
tion and normalization. The fully connected block consists
of a first fully connected layer with a customizable hidden
layer size, an activation function, a dropout layer, and a
second fully connected layer. For the activation function,
we employ the Gaussian Error Linear Unit (GELU) [11],
which exhibits increased curvature and non-monotonicity,
enabling it to approximate complex functions more effec-
tively than ReLU. Additionally, we incorporate a dropout
layer within the fully connected block to mitigate overfit-

ting. Note that this simplified architecture excludes posi-
tional encoding, which is crucial for text sequence modeling
but irrelevant for pooled steganalysis since images in a bag
could have an arbitrary order.

The core element of the encoder is a self-attention
block, which allows modeling long-range dependencies
across input embeddings. Figure 2 shows how the self-
attention block is built. It consists of trainable matrices
Wq, Wk, and Wv (query, key, and value matrices). Matri-
ces Wq and Wk transform input embeddings into the at-
tention matrix QKT which indicates how each embedding
relates to the other embeddings. Eventually, the attention
matrix is passed through softmax and weighted by the V
matrix to form the final transformed embeddings. This
process generates refined embeddings that capture contex-
tual relationships within the input sequence. Similar to
the fully connected block, we incorporate dropout to mit-
igate overfitting. We note that the original transformer
encoder uses multi-head attention block to speed up the
computation; we illustrate a single-head attention block
for simplicity.

In pooled steganalysis, embeddings are feature vectors
obtained for each image in a bag. For example, we extract
s embeddings of length e for each image (e depends on the
bag representation), then each bag could be represented
as a sequence of embeddings forming an s× e embedding
matrix. The transformer architecture allows us to process
input embedding to capture relationships across embed-
dings vectors. Multiple encoder blocks permit capturing
more high-level dependencies. However, the transformed
embeddings are still bag size dependent. In order to re-
move the dependency on the bag size, we take an average of
transformed embeddings forming a single embedding vec-
tor of length e. Eventually, the embedding vector is passed
to a fully connected layer for a binary classification task.
The proposed architecture is shown in Figure 3. We exper-
imented with different amount of encoders and set it to 6
as it achieves the best performance while being computa-
tionally efficient.

The proposed TEP architecture has multiple advan-
tages. TEP is a data-driven pooler that is agnostic to the
bag size. In other words, bags of different sizes could be
used for training and for inference with a single network.
In addition, the embedding vectors could be of any nature.
Specifically, they can contain image metadata, which has a
potential to improve the detection accuracy. Most impor-
tantly, a trained TEP could be applied to unseen bag sizes
and communication rates due to the generalization ability
of neural networks. All these aspects make the TEP a flex-
ible solution for pooled steganalysis. In the following sec-
tion, we extensively test the performance of the proposed
TEP and contrast it against state-of-the-art poolers.

Experiments
In this section, we describe the experimental setup and

evaluate the TEP against alternative pooling methods.
All experiments were conducted using the ALASKA II

dataset [5] prepared as described in [5] but without the final
JPEG compression. The entire dataset comprises 75,000
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Figure 5. Detection accuracy wAUC of different poolers across variable bag sizes with a fixed communication rate r = 0.4. The poolers are trained with bag
representations ff/fh (left) and ff,α/fh,α (right).

images randomly partitioned into three disjoint subsets (for
compatibility with our previous work): Split A, Split W,
and Split T. Split A contains 25,000 images and serves as
the training set for Alice’s SID. Within Split A, we allocate
22,000 images for training, 1,000 for training, and 2,000
for testing. To construct the bags for evaluation, we utilize
Split T which also consists of 25,000 images. Given that
some poolers require separate image sets for training and
testing, we randomly assign one-third of Split T to training
(Split Ta) and and reserve the remaining two-thirds for
evaluating the poolers (Split Tb). Split W with 25,000
images is unused.

In our experiments, we use a SID implemented as an
SRNet [1] trained on cover and stego images from Split A
with weights seeded from JIN-SRNet [4]. This means that
the internal feature representation (as explained in Section
“Machine learning poolers”), f(Y ) ∈ Rm, m = 512, is the
output of the last convolutional layers in the trained SRNet
(SID) before the IP layer when presenting it with image Y
on the input.

The stego images were created with HILL [20] and
with relative payloads in bpp sampled uniformly from

P = {0.05,0.1,0.2, ...,1.4,1.5}. (11)

Stego bags are generated using the Image Merging
Sender (IMS) [24], which is a well-studied approach that
naturally extends single-image steganography to the bag
setting. The IMS treats a bag of n images, each contain-
ing N pixels, as a single large image, into which a total
payload of rnN bits is embedded. Notably, the embedding
costs are precomputed on individual images using the HILL
cost function [20]. The actual embedding is simulated on
the rate–distortion bound with an embedding simulator.

For training data-driven poolers, it is essential to gen-
erate disjoint sets of bags for training, validation, and test-
ing. To this end, we construct 10,000 pairs of cover/stego
bags from Split Ta and 5,000 pairs from Split Tb for eval-
uation. The first 10,000 pairs are further partitioned into
8,000 pairs for training and 2,000 pairs for validation. All

benchmarking is conducted on the testing set using bags of
size n ∈ {2,4,8,16,32,64} with the performance evaluated
using the weighted Area Under the Curve (wAUC) [5].

The training process for machine learning-based pool-
ers follows a standardized pipeline. All input features are
normalized to zero mean and unit variance. Prior to train-
ing, we conduct hyperparameter estimation for each ma-
chine learning algorithm. For Random Forest (RF), the
tuned hyperparameters include the number of estimators
(300, 500, and 700), the maximum number of features
(None, sqrt, log2), the maximum depth (20, 32, None),
the minimum number of samples to split an internal node
(2, 5, 10), and the minimum number of samples required
to be at a leaf node (1, 2, 4). For Logistic Regression
(LogReg), the search space includes the solver parameters
(liblinear, saga), the inverse of regularization strength
(from -2.5 to 10), and the maximum number of iterations
(1,000, 5,000, 10,000). Hyperparameter tuning is per-
formed via a Monte Carlo cross-validation procedure with
three iterations, using a fixed 1:3 train-test split ratio. All
training and evaluations were implemented in Python with
the scikit-learn package.

The TEP is implemented using PyTorch library and is
publicly available in our GitHub repository1. We explore
various architectural configurations, including the number
of encoder blocks, attention heads, feature dimensionality
per head, hidden layer size, and dropout rate. Through
empirical evaluation, we determine that the optimal con-
figuration consists of 6 encoder blocks, 8 attention heads,
a feature dimensionality of 64 per head, a hidden layer size
of 1024, and a dropout rate of 0.1. For training, we imple-
ment a custom batch sampler to ensure that all bags within
a batch are of the same size. Additionally, to prevent the
network from relying on the order of the images, all fea-
tures within a bag are randomly permuted at each step.
The optimization is performed using the AdamW optimizer
with a one-cycle learning rate scheduler with an initial

1https://github.com/DDELab/TEP
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Figure 6. Detection accuracy wAUC of different poolers across variable
bag sizes with a fixed communication rate r = 0.3 and ff,α/fh,α feature
vector.

learning rate of 10−3. Notably, in all experiment the TEP
is always trained exclusively on bags of sizes {2,4,8}, mean-
ing that larger bag sizes {16,32,64} are never encountered
during training. In contrast, the RF and LogReg poolers
are trained separately for each bag size.

In the following subsections, we benchmark TEP
alongside other poolers in two distinct setups. The first
setup involves testing on bags of varying sizes, while keep-
ing the communication rate fixed to assess the effect of the
bag representation on detection accuracy. We also assess
whether the TEP can effectively detect bags of unseen sizes
that are embedded with a known communication rate. In
the second setup, both the bag size and the communica-
tion rate vary. This allows us to evaluate TEP’s ability to
maintain robust detection performance across bags with
unseen sizes and varying communication rates.

Effect of bag representation
First, in Figure 4 (top) we demonstrate that training

a machine learning pooler (RF and LogReg) on internal
feature vectors ff ∈R512×n (Eq. (6)) rather than solely on
the soft outputs fd = d(Y) ∈ Rn leads to improved detec-
tion performance. The bottom subplot further illustrates
that utilizing internal feature vectors with payloads ff,α en-
hances performance compared to fd,α. These experiments
were executed for a fixed communication rate of r = 0.4
across all bag sizes. We note that a separate RF pooler
was trained for each tested bag size.

Comparing ML poolers
Having established that the SID’s internal features

constitute a superior choice for representing the bag, we
proceed to investigate which pooler achieves the optimal
performance and whether incorporating payloads further
enhances it. To this end, we train RF, LogReg, TEP, and
PW poolers using both ff/fh and ff,α/fh,α feature vectors.
We remind the reader that the RF and LogReg classifiers
had to be trained for each bag size as the dimensionality

of the features ff and ff,α depends on the bag size n.
To determine the hyper parameters γ and p for the PW

bag representations (Eq. (9)), we experimented with vari-
ous kernel width parameters γ and observed that the opti-
mal value computed as described in [2] (Eq 11) yields the
best results. The best performing value of the parameter p
was determined as p= 64. It is worth noting that while the
PW feature vector maintains a fixed size, the PW pooler
can be trained in two distinct modes. In the first mode, the
PW pooler is trained for each bag size (analogous to RF
and LogReg), whereas in the second mode, the PW pooler
is trained on data encompassing all bag sizes. Our obser-
vations indicate that training the PW pooler with a fixed
bag size performs consistently better than when training
on all bag sizes.

Figure 5 illustrates the detection performance of vari-
ous poolers when utilizing ff/fh (left) and ff,α/fh,α (right)
bag representations. The results presented in the plot
suggest that incorporating payloads generally leads to im-
proved performance across all poolers with the exception
of LogReg for which the performance remains unchanged.
Furthermore, the TEP consistently outperforms all other
poolers, irrespectively of the chosen feature vector. It is
worth noting that RF consistently surpasses LogReg in
performance; consequently, RF is adopted as the default
machine learning pooler in subsequent experiments. Inter-
estingly, while RF demonstrates an improvement over the
simple average pooler, it fails to outperform the correlator
pooler for larger bag sizes. This limitation is likely due
to RF’s potential inability to effectively learn a complex,
non-linear decision boundary when confronted with higher
input dimensionalities. Finally, the performance of PW is
observed to be quite similar to that of RF once the bag size
becomes sufficiently large. This behavior is anticipated, as
the bins in PW tend to be noisier for smaller bag sizes.

In Figure 6, we show the results of a similar experiment
as above for a different rate of r = 0.3 and only for the bag
representations that include the payloads ff,α/fh,α. Con-
sistent with our previous finding, the TEP exhibits the best
performance. While the RF outperforms the correlator for
the two smallest bag sizes, it falls behind for the remaining
bag sizes. Moreover, we observe a similar trend with the
PW pooler, which gradually approaches the performance
level of the RF for the largest bag sizes.

In summary, our experiments so far have demon-
strated that the TEP achieves the best performance across
variable bag sizes for two communication rates, notably
despite being trained on only half of the considered bag
sizes.

Variable bag size and communication rate
In this section, we evaluate ML poolers on bags of

varying sizes where the communication rate decays with
the bag size n according to the formula

r(n) =
( 2
n

)λ
×0.8. (12)

Here, the parameter λ controls the rate of decay with the
initial payload set to r(2) = 0.8. We note that λ = 1/2
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Figure 7. Detection accuracy wAUC of different poolers across variable bag sizes with decaying communication rate r(n) with λ= 1/2. Poolers are trained
with bag representations ff/fh (left) and ff,α/fh,α (right).

corresponds to scaling the payload size according to the
square root law [18] (SRL) to guarantee constant statistical
detectability across all bag sizes. For λ > 1/2, the payload
size is adjusted with n in a “sub-SRL” fashion meaning that
the detectability decreases to zero as n→∞, while λ< 1/2
corresponds to super-SRL payload scaling that asymptot-
ically guarantees perfect detection.

In the spirit of the previous benchmarking experi-
ments, we first identify the feature vector that yields the
best performance. Figure 7 presents a comparison of the
TEP, RF, and PW poolers under the decaying commu-
nication rate scenario with λ = 1/2. The results consis-
tently show a similar trend across all poolers: training with
the ff,α/fh,α bag representations gives better performance
compared to other representations. The TEP exhibits the
superior detection on both seen/unseen bag sizes and com-
munication rates. Note that the statistical detectability
is expected to approach a finite value, as dictated by the
SRL. We do not observe this convergence in our experi-
ment because the size of the bags is too small to exhibit
the asymptotic behavior.

Next, having selected the feature vector, we vary the
parameter λ to induce a slower (super-SRL) or faster (sub-
SRL) decay of the communication rate. In Figure 8, we
compare the same set of poolers for a decaying rate λ= 1

4
(top) and λ = 3

4 (bottom). In both scenarios, the TEP
consistently achieves the best detection accuracy among
all tested poolers. We also observe that with λ = 1

4 , the
detection performance of PW and RF remains relatively
stable while the TEP and the correlator attain near per-
fect detection as one would expect for super-SRL payload
scaling.

In summary, our experiments involving variable bag
sizes and communication rates have consistently demon-
strated that the Transformer Encoder Pooler outperforms
all other state-of-the-art pooling functions considered in
this study.

Conclusions
This paper addresses the topic of learning pooling

functions for steganalysis of digital images. We leverage the
transformer, a recently proposed machine learning archi-
tecture known for its efficient handling of sequential data,
and introduce the Transformer Encoder Pooler (TEP). The
TEP has several important advantages over previously pro-
posed machine learning pooling functions. First, it is a
flexible design that allows training on bags of varying sizes
and varying communication rates. Second, the training
complexity gracefully scales with increased dimensional-
ity of bag representation for the pooling function. The
ability of the TEP to accept higher-dimensional bag repre-
sentations gives it a significantly better detection accuracy
when compared to pooling just the scalar detector outputs.
Third, the architecture is flexible enough to permit repre-
sentations augmented with image metadata, such as esti-
mated payloads residing in each image, JPEG quality, and
ISO setting to potentially further improve detection. The
TEP enjoys low training complexity and can detect batch
steganography in bags of unseen sizes embedded with a
range of communication rates.

Looking ahead, we aim to explore whether TEP can be
adapted for batch steganography in the JPEG domain and
investigate whether incorporating image metadata to bag
representations further enhances detection performance.
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