

Integration of protocol-driven chatbots with generative AI and a
case study
Hasmik Yengibaryan, Yerevan State University, Yerevan, Armenia
David Akopian; Department of Electrical & Computer Engineering, The University of Texas at San Antonio, San Antonio, USA

Abstract
The integration of deterministic protocol-specified chatbots

with generative AI bridges the gap between precise, protocol-driven
logic and conversational flexibility. This paper introduces
MachineQuizzing, a chatbot designed to enhance learning in
machine learning through gamified quizzes and real-time
explanations. Leveraging platforms like Dialogflow for structured
logic and Gemini for generative capabilities, the chatbot
demonstrates how the integration of these technologies can enhance
conversational experience.

Introduction
Chatbots have become a pivotal part of our daily lives,

enhancing human-machine interaction across various domains.
They are tools that are reshaping business-customer interactions.
Chatbots are increasingly important in various industries, from
customer service to healthcare, education, and finance.

Chatbots, or conversational agents, are computer programs
designed to simulate human conversation with users, usually
through text or voice interactions [1].

Platforms such as Google Dialogflow [2], Amazon Lex [3],
IBM Watson [4], ManyChat [5], and Chatfuel [6] have played a
significant role in advancing this technology. These platforms
mostly focus on protocol-driven chatbots to configure human-
machine conversations. These platforms excel in configuring
conversations based on predefined rules and possibly expert
knowledge, making them highly effective for structured, protocol-
driven applications.

However, LLM advancements resulted in more flexible,
contextually aware, and human-like chatbots. Models such as GPT
[7], Gemini [8], Llama [9], and Claude [10] have revolutionized the
field. Unlike their protocol-driven counterparts, generative AI
(genAI) systems leverage vast general knowledge and advanced
natural language understanding to engage in more dynamic and
intuitive conversations.

Despite the impressive capabilities of protocol-driven
platforms and generative AI systems, a notable gap exists between
these approaches. Protocol-driven platforms offer robust solutions
for specific tasks through structured interactions, but they often lack
the broader conversational flexibility and contextual richness of
generative AI. On the other hand, generative AI does well with
general knowledge and flexibility but fails to accomplish very
specific or structured tasks without additional help [11].

Addressing this gap presents an opportunity to combine the
best of both worlds by integrating the strengths of both approaches.
By combining the precise, protocol-driven logic of protocol-
specified chatbots with the vast knowledge base and conversational
flexibility of generative AI, we can create more powerful and
dynamic chatbot systems.

In particular, Google provides several conversational AI tools,
including Dialogflow [12] for protocol-driven chatbot creation and
Gemini for general chatting.

This paper explores the feasibility of integrating protocol-
specified chatbots with generative AI. It demonstrates this concept
by examining the integration of Dialogflow and Gemini to bridge
the gap between protocol-driven and generative chatbots. A case
study integration MachineQuizzing chatbot is developed for an
enhanced learning experience.

Problem formulation

Integrating protocol-driven chatbots with genAI is to enrich the
limited capabilities of protocol-driven chatbots' specialized
functionalities with the broad knowledge base and human-friendly
interface of generative AI.

In this work, we will explore this integration with a practical
example. As an example, we chose a chatbot assistant that can help
users deepen their knowledge of machine learning with gamified
quizzes. Chatbot’s protocol-driven part should be able to provide
tests to users, which include multiple choice questions about various
machine learning techniques and methods. It should also catch
incorrect responses, grade their performance, save their score, and
provide user statistics about their progress on overall and individual
scores. The Generative part should correct and explain user mistakes
and answer any questions about machine learning that users may
have at any given moment. It should have an easy-to-use and user-
friendly UI to help the gamification learning process.

Dialogflow and integrations
Dialogflow is a conversation design platform that integrates

natural language understanding. It makes it easy to design and
integrate a conversational user interface into a mobile app, web
application, device, bot, interactive voice response system, and so
on [13]. As shown in the schematic description in Figure 1,
Dialogflow serves as a middleman for end-user and internal logic
for the given chatbot.

Dialogflow does not provide the end-user agent, but integrates
with many popular conversation platforms like Google Assistant,
Slack, Telegram, and Facebook Messenger. These integrations are
fully supported by Dialogflow and are configured with the
Dialogflow Console. Each integration handles end-user interactions
in a platform-specific way. [12]

For example, to set up integration, a Telegram bot can be
created, e.g., using Telegram botfather. Then, the bot’s Access
Token should be given to Dialogflow Console. Dialogflow’s
fulfillment feature can be used to process the chatbot logic. There
are two options for this: inline editor and Webhook service. The
inline editor is intended for simple fulfillment testing and
prototyping. Webhook service is used for more complicated
fulfillments. It also allows connection to external databases and
external API calls. User interactions with the integrated platform
will be processed by Dialogflow and transferred to the backend to
identify the corresponding intent. Then, the response logic for the
intent will be activated. It can be a simple response, a

https://doi.org/10.2352/EI.2025.37.3.MOBMU-319
© 2025, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2025
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2025 319-1

communication with a database, or an API call. This conversation
cycle may repeat as many times as needed.

In particular, protocol-driven chatbots created with Dialogflow
can be integrated with Generative AI using dedicated APIs. The
Gemini API gives access to the whole Gemini model family, which
are Google's latest models [14]. To gain access to models, an API

key should be created in Google AI Studio. Then, in the backend,
the model in use should be chosen and configured.

Method description
 We created a chatbot called MachineQuizzing. Various

tools and technologies such as Dialogflow, MySQL, Python,

Figure 1. Chatbot workflow using Dialogflow

Figure 2. Contexts and Intents

Figure 3. Quiz Structure

319-3
IS&T International Symposium on Electronic Imaging 2025

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2025

FastAPI, Gemini API, Telegram Messenger were used to build the
chatbot. Each tool played a crucial role in various aspects of chatbot
functionality, from natural language understanding to backend logic
development and user interface.

● Building the protocol-driven bot component: Dialogflow
serves as the main platform for building and designing the
conversational chatbot agent [13].

● Intent classification: for Intent classification chatbot was
taught using Dialogflow's natural language understanding
capabilities. Training phrases are needed to distinguish the
intents, which are sample phrases that can be typed by the
end user. For each intent, 5-20 training phrases were
created. From practical observations, it is observed that
for very similar expressions, the system had difficulty
classifying expressions that were sufficiently different
from them. However, when taught with distinct
expressions, intent classification occurred more precisely.
Therefore, when building MachineQuizzing, we
considered this and chose expressions for training that
were less in number, but as comprehensive as possible.

● Slot filling, contexts: For these, we also used Dialogflow's
features. Slot filling determines the user's preferred test
type at the beginning, see Figure 2, and quiz answer
options during the test, see Figure 3. Contexts guide users
through the conversations. In Figure 2, three boxes signify
the intents, and arrows are their connecting contexts.

● Backend: in order to process the external logic of the
chatbot, it makes Webhook requests to the backend
through the fulfillment feature of Dialogflow. Then the
requests are received and processed using the FastAPI
Web framework and the Python programming language,
respectively. This backend infrastructure made it possible
to process user data from Telegram, interact with external
services (Gemini API) and databases (MySQL).

async def handle_request(request: Request):
 # Retrieve the JSON data from the request
 payload = await request.json()
 question_id = None

 # Extract necessary information from the payload

 # Get username and intent from payload
 username =
payload["originalDetectIntentRequest"]['payload']['data']['from']['id']
 intent = payload['queryResult']['intent']['displayName']

 # Get parameters and query text
 parameters = payload['queryResult']['parameters']
 query_text = payload['queryResult']['queryText']

 # Get output context
 output_context = payload['queryResult'].get('outputContexts', None)

Call function for the corresponding intent
 …

● User Interface: for UI Telegram instant messaging service
was used. Chatbots integration with it enables users to
interact with the chatbot directly within Telegram. The
platform provides users with accessibility across different
devices and environments, such as Telegram's mobile and
desktop applications, as well as Telegram Web.
Additionally, through integration, user data is collected in

the backend—specifically, their usernames, which serve
as the primary key in the database.

● Database system: MySQL database management system
(RDBMS) was used to store and manage user’s score data.

def insert_or_update_progress(username, quiz_name, score):
 # Connect to the database
 conn = mysql.connector.connect(
 host="localhost",
 user="root",
 password="password",
 database="quiz_progress"
)
 cursor = conn.cursor()

 # Check if entry exists for the given username and quiz_name
 cursor.execute(f"SELECT * FROM {quiz_name} WHERE
username=%s", (username,))
 existing_entry = cursor.fetchone()

 if existing_entry:
 # Entry exists, update the values
 first_attempt = existing_entry[1] # Get existing first_attempt score
 average = ((existing_entry[2] * existing_entry[4]) + score) /
(existing_entry[4] + 1)
 last_attempt = existing_entry[5]
 num_attempts = existing_entry[4] + 1
 current_attempt = score

 # Update the row
 cursor.execute(f"UPDATE {quiz_name} SET first_attempt=%s,
average=%s, last_attempt=%s, num_attempts=%s,"
 f" current_attempt=%s WHERE username=%s",
 (first_attempt, average, last_attempt, num_attempts,
current_attempt, username))
 else:
 # Entry does not exist, insert new row
 first_attempt = score
 average = score
 last_attempt = score
 num_attempts = 1
 current_attempt = score

 # Insert new row
 cursor.execute(
 f"INSERT INTO {quiz_name} (username, first_attempt, average,
last_attempt, num_attempts, current_attempt) "
 f"VALUES (%s, %s, %s, %s, %s, %s)",
 (username, first_attempt, average, last_attempt, num_attempts,
current_attempt))

 # Commit changes and close connection
 conn.commit()
 conn.close()

● Generative AI integration: for MachineQuizzing’s
generative part Google’s Gemini Pro was used [8]. The
chatbot has been integrated with the Gemini API, which
can be activated in two cases: for mistake corrections and
question answers. If the wrong answer to a quiz is given,
the model is activated by quizzes intent and explanation
why the answer is wrong is generated.

def question(user, parameters: dict, output_context: list, quiz: dict,
quiz_answer: dict, question_id, score):
 …
 else:
 # Provide feedback if answer is incorrect
 fulfillment_text = api_answer(
 f"Question is:{quiz[str(int(question_id) - 1)]} and my answer is
{parameters['quiz-answer']} explain why it is wrong and what is the correct
answer") + \
 " \n Ask me other questions you may have or type 'next' if you
want to see the next question."
 active_context = prefix + f"context_question{int(question_id) - 1}"
 return JSONResponse(content={
 "fulfillmentText": fulfillment_text,
 "outputContexts": [
 {

IS&T International Symposium on Electronic Imaging 2025
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2025 319-3

 "name": f"{active_context}",
 "lifespanCount": 2
 }]
 })

If a user asks a question Default Fallback intent is
activated as no intent is matched and the answer is
generated.

def fallback(context: list, query_text: str):
 # Generate response using API
 fulfillment_text = api_answer(query_text)
 print(fulfillment_text)
 return JSONResponse(content={
 "fulfillmentText": fulfillment_text,
 "outputContexts": [
 {
 "name": f"{context[0]['name']}",
 "lifespanCount": 2
 }
]
 })

Encountered problems and their solutions

During the building process of MachineQuizzing we
encountered some problems mainly connected to webhook timeout
limitation [12]. When no matching intent is found, for example
when a user has asked a question about machine learning, the
Default Fallback intent is activated and the query is sent to Gemini's
API. Dialogflow has a maximum webhook timeout limit of 5
seconds, that is, if no response is received from the backend within
5 seconds, it returns the default response of the system, for example,
"Sorry, can you say that again?", "I didn't get that. Can you repeat?"
or "One more time?".

One of the problems arose when a response received from the
Gemini API was being processed.Gemini's replies are written in
Common Markdown, which is incompatible with Telegram's
MarkdownV2. All translation attempts were causing a violation of
the aforementioned 5-second time limit. So the format was
converted from Markdown markup language to plain text.

Another problem was Gemini’s response time, which also
conflicted with Dialogflow’s webhook timeout limit. In order to
avoid this limitation and get more accurate answers, prompt tuning
was done using the following texts:

“When asked questions, keep your answers as short as possible and
don't give any extra information unless specifically asked.”

“Picture yourself as my trusted ML advisor, I will ask you ML
related questions, please answer them. I'll also give you quizzes and
the answer options, my answer which will likely be wrong, don't
give me the quiz answers just give me direction. I'm turning to you
for assistance with my quizzes or any ML inquiries. Offer insights,
hints, or answers to help me progress. Please help me learn.”

This action reduced the time it takes Gemini to generate a

response by 0.038 seconds on average. For example, this action took
Gemini's response generation time from 0.005616 seconds to
0.043894 seconds, reducing it by 0.038278 seconds for "What is
linear regression?" query, and for "What is a confusion matrix?"
query response was reduced by 0.038303 seconds from 0.045353 to
0.00705.

While testing the chatbot, we also encountered a problem with
hallucinations during the generation of the wrong answer
explanations [15]. Initially the current test question and the user's
wrong answer with the following prompt were given to Gemini:
"Question is: {current question} and my answer is {user's wrong

answer}." Sometimes wrong version answers were generated as
correct ones. Here, too, we applied prompt tuning, we added
"explain why it is wrong and what is the correct answer" to the above
prompt. As a result, the number of hallucinations decreased.

Results
 We created MachineQuizzing by combining a protocol-

driven chatbot created via Dialogflow with generative AI
represented by Gemini. Our chatbot successfully addresses all the
elements outlined in the problem description.

We'll consider each point in detail below.
● Quizzes: MachineQuizzing provides several quizzes,

ranging from general machine learning to specific
techniques such as dimensionality reduction,
classification, and regression. There are 21 tests of 7
types, each consisting of 10 multiple-choice questions
with only one correct answer. If the answer is correct, the
user earns points, and the next question is presented.
Quizzes allow users to test their understanding of key
machine learning concepts and principles.

● Evaluation system: during the quiz, the chatbot evaluates
the user's answers. Each correct answer is valued 10
points, giving the opportunity to score a maximum of 100
points. The user does not receive points for skipped and
wrong answered questions. After completing each quiz,
the user receives the score.

● Statistics: in addition to grading tests, chatbot allows users
to compare received scores with the results of other users,
as well as with the results of previous attempts. This
feedback mechanism allows users to track their progress
and identify gaps in their knowledge.

● Explanation of wrong answers: if the user answers a
question incorrectly, the chatbot explains why the answer
is incorrect. This instant feedback helps users understand
concepts more deeply through simple and concise
explanations.

● Answering questions: the chatbot can also answer
questions that arise during the test. Thanks to this feature,
users have access to the relevant information when they
need it and can reach the correct quiz answer through the
questions.

Thus, thanks to the above features, the chatbot enables
users to easily grasp the complex concepts of machine
learning and strengthen their knowledge as can be seen in the
screenshots below or by following the QR code:

Analysis and Conclusion
This paper shows a successful example of integration of

protocol-specified chatbot with GenAI. With MachineQuizzing,
you can see the advantages of parts of integration. Its protocol part
provides the selection, presentation, and evaluation of tests and
provides users with statistics on their progress. The GenAI part
provides answers to questions and explanations of mistakes. Since
the explanations are activated only in the case of an incorrect
answer, the protocol-specified part also controls the truthfulness of

319-5
IS&T International Symposium on Electronic Imaging 2025

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2025

the generated answer. In conclusion,
integration resulted in a simple and
convenient assistant for
familiarization with machine
learning, its branches, and
algorithms. A chabot operation
illustration example can be observed
through the link of Figure 4, and
sample screenshots are shown in
Figure 5.

References
[1] E. Adamopoulou and L. Moussiades, “An overview of Chatbot

technology,” in IFIP advances in information and communication
technology, 2020, pp. 373–383. doi: 10.1007/978-3-030-49186-4_31.

[2] “Conversational agents and dialogflow,” Google Cloud.
https://cloud.google.com/products/conversational-agents

[3] “Build and deploy conversational AI interfaces with Amazon Lex,”
Amazon Web Services, Inc. Available: https://aws.amazon.com/lex/

[4] “IBM Watson.” https://www.ibm.com/watson
[5] “Chat Marketing Made Easy with Manychat,” manychat.com.

https://manychat.com/
[6] Chatfuel, “Chatfuel | AI agents for automated sales | Meta’s partner,”

Chatfuel. https://chatfuel.com/
[7] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,

"Improving language understanding by generative pre-training,"
2018. [Online]. Available: https://cdn.openai.com/research-
covers/language-unsupervised/language_understanding_paper.pdf

[8] “Gemini: a family of highly capable multimodal models,” arXiv, Jan.
2023, doi: 10.48550/arxiv.2312.11805.

[9] Llama H. Touvron et al., “LLAMA: Open and Efficient Foundation
Language Models,” arXiv, Jan. 2023, doi:
10.48550/arxiv.2302.13971.

[10] Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku,
Anthropic, 2024. Available: https://anthropic.com/claude-3-model-
card

[11] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue
systems,” ACM SIGKDD Explorations Newsletter, vol. 19, no. 2, pp.
25–35, Nov. 2017, doi: 10.1145/3166054.3166058.

[12] Google Cloud, “Dialogflow ES documentation.” Available:
https://cloud.google.com/ dialogflow/es/docs.

[13] N. Sabharwal and A. Agrawal, “Introduction to Google Dialogflow,”
in Apress eBooks, 2020, pp. 13–54. doi: 10.1007/978-1-4842-5741-
8_2.

[14] Google AI for Developers, “Gemini API Overview.” Available:
https://ai.google.dev/gemini-api/docs/api-overview

[15] Z. Xu, S. Jain, and M. Kankanhalli, “Hallucination is Inevitable: An
Innate Limitation of Large Language Models,” arXiv , Jan. 2024, doi:
10.48550/arxiv.2401.11817

Author Biography

Hasmik Yengibaryan received her BS in Statistics from Yerevan State
University, Armenia. She is currently a graduate student at the faculty of
Mathematics and Mechanics in YSU. Her research interests include
Machine Learning and AI technologies.

David Akopian received his Ph.D. degree from Tampere University,
Finland. He is currently a Professor with The University of Texas at San
Antonio (UTSA). Before joining UTSA, he was a senior scientist at Nokia.
His current research interests include mobile computing and positioning, He
is a Fellow of US National Academy of Inventors.

Figure 5. Sample screen snapshots of the chatbot operation

Figure 4. QR code:
chatbot operation

IS&T International Symposium on Electronic Imaging 2025
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2025 319-5

https://aws.amazon.com/lex/
https://www.ibm.com/watson
https://chatfuel.com/
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://anthropic.com/claude-3-model-card
https://anthropic.com/claude-3-model-card
https://ai.google.dev/gemini-api/docs/api-overview

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org

