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Abstract 
The integration of deterministic protocol-specified chatbots 

with generative AI bridges the gap between precise, protocol-driven 
logic and conversational flexibility. This paper introduces 
MachineQuizzing, a chatbot designed to enhance learning in 
machine learning through gamified quizzes and real-time 
explanations. Leveraging platforms like Dialogflow for structured 
logic and Gemini for generative capabilities, the chatbot 
demonstrates how the integration of these technologies can enhance 
conversational experience. 

Introduction  
Chatbots have become a pivotal part of our daily lives, 

enhancing human-machine interaction across various domains. 
They are tools that are reshaping business-customer interactions. 
Chatbots are increasingly important in various industries, from 
customer service to healthcare, education, and finance. 

Chatbots, or conversational agents, are computer programs 
designed to simulate human conversation with users, usually 
through text or voice interactions [1]. 

Platforms such as Google Dialogflow [2], Amazon Lex [3], 
IBM Watson [4], ManyChat [5], and Chatfuel [6] have played a 
significant role in advancing this technology. These platforms 
mostly focus on protocol-driven chatbots to configure human-
machine conversations. These platforms excel in configuring 
conversations based on predefined rules and possibly expert 
knowledge, making them highly effective for structured, protocol-
driven applications. 

However, LLM advancements resulted in more flexible, 
contextually aware, and human-like chatbots. Models such as GPT 
[7], Gemini [8], Llama [9], and Claude [10] have revolutionized the 
field. Unlike their protocol-driven counterparts, generative AI 
(genAI) systems leverage vast general knowledge and advanced 
natural language understanding to engage in more dynamic and 
intuitive conversations. 

Despite the impressive capabilities of protocol-driven 
platforms and generative AI systems, a notable gap exists between 
these approaches. Protocol-driven platforms offer robust solutions 
for specific tasks through structured interactions, but they often lack 
the broader conversational flexibility and contextual richness of 
generative AI. On the other hand, generative AI does well with 
general knowledge and flexibility but fails to accomplish very 
specific or structured tasks without additional help [11]. 

Addressing this gap presents an opportunity to combine the 
best of both worlds by integrating the strengths of both approaches. 
By combining the precise, protocol-driven logic of protocol-
specified chatbots with the vast knowledge base and conversational 
flexibility of generative AI, we can create more powerful and 
dynamic chatbot systems. 

In particular, Google provides several conversational AI tools, 
including Dialogflow [12] for protocol-driven chatbot creation and 
Gemini for general chatting.  

This paper explores the feasibility of integrating protocol-
specified chatbots with generative AI. It demonstrates this concept 
by examining the integration of Dialogflow and Gemini to bridge 
the gap between protocol-driven and generative chatbots. A case 
study integration MachineQuizzing chatbot is developed for an 
enhanced learning experience. 
 
Problem formulation 

Integrating protocol-driven chatbots with genAI is to enrich the 
limited capabilities of protocol-driven chatbots' specialized 
functionalities with the broad knowledge base and human-friendly 
interface of generative AI. 

In this work, we will explore this integration with a practical 
example. As an example, we chose a chatbot assistant that can help 
users deepen their knowledge of machine learning with gamified 
quizzes. Chatbot’s protocol-driven part should be able to provide 
tests to users, which include multiple choice questions about various 
machine learning techniques and methods. It should also catch 
incorrect responses, grade their performance, save their score, and 
provide user statistics about their progress on overall and individual 
scores. The Generative part should correct and explain user mistakes 
and answer any questions about machine learning that users may 
have at any given moment. It should have an easy-to-use and user-
friendly UI to help the gamification learning process. 

Dialogflow and integrations 
Dialogflow is a conversation design platform that integrates 

natural language understanding. It makes it easy to design and 
integrate a conversational user interface into a mobile app, web 
application, device, bot, interactive voice response system, and so 
on [13]. As shown in the schematic description in Figure 1, 
Dialogflow serves as a middleman for end-user and internal logic 
for the given chatbot. 

Dialogflow does not provide the end-user agent, but integrates 
with many popular conversation platforms like Google Assistant, 
Slack, Telegram, and Facebook Messenger. These integrations are 
fully supported by Dialogflow and are configured with the 
Dialogflow Console. Each integration handles end-user interactions 
in a platform-specific way. [12] 

For example, to set up integration, a Telegram bot can be 
created, e.g., using Telegram botfather. Then, the bot’s Access 
Token should be given to Dialogflow Console. Dialogflow’s 
fulfillment feature can be used to process the chatbot logic. There 
are two options for this: inline editor and Webhook service. The 
inline editor is intended for simple fulfillment testing and 
prototyping. Webhook service is used for more complicated 
fulfillments. It also allows connection to external databases and 
external API calls. User interactions with the integrated platform 
will be processed by Dialogflow and transferred to the backend to 
identify the corresponding intent. Then, the response logic for the 
intent will be activated. It can be a simple response, a 
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communication with a database, or an API call. This conversation 
cycle may repeat as many times as needed.  

In particular, protocol-driven chatbots created with Dialogflow 
can be integrated with Generative AI using dedicated APIs. The 
Gemini API gives access to the whole Gemini model family, which 
are Google's latest models [14]. To gain access to models, an API 

key should be created in Google AI Studio. Then, in the backend, 
the model in use should be chosen and configured.  

 

Method description 
 We created a chatbot called MachineQuizzing. Various 

tools and technologies such as Dialogflow, MySQL, Python, 

 
Figure 1. Chatbot workflow using Dialogflow 

 
Figure 2. Contexts and Intents 

 

 
Figure 3. Quiz Structure 
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FastAPI, Gemini API, Telegram Messenger were used to build the 
chatbot. Each tool played a crucial role in various aspects of chatbot 
functionality, from natural language understanding to backend logic 
development and user interface.  

● Building the protocol-driven bot component: Dialogflow 
serves as the main platform for building and designing the 
conversational chatbot agent [13].  

● Intent classification:  for Intent classification chatbot was 
taught using Dialogflow's natural language understanding 
capabilities. Training phrases are needed to distinguish the 
intents, which are sample phrases that can be typed by the 
end user. For each intent, 5-20 training phrases were 
created. From practical observations, it is observed that 
for very similar expressions, the system had difficulty 
classifying expressions that were sufficiently different 
from them. However, when taught with distinct 
expressions, intent classification occurred more precisely. 
Therefore, when building MachineQuizzing, we 
considered this and chose expressions for training that 
were less in number, but as comprehensive as possible. 

● Slot filling, contexts: For these, we also used Dialogflow's 
features. Slot filling determines the user's preferred test 
type at the beginning, see Figure 2, and quiz answer 
options during the test, see Figure 3. Contexts guide users 
through the conversations. In Figure 2, three boxes signify 
the intents, and arrows are their connecting contexts. 

● Backend: in order to process the external logic of the 
chatbot, it makes Webhook requests to the backend 
through the fulfillment feature of Dialogflow. Then the 
requests are received and processed using the FastAPI 
Web framework and the Python programming language, 
respectively. This backend infrastructure made it possible 
to process user data from Telegram, interact with external 
services (Gemini API) and databases (MySQL). 

 
async def handle_request(request: Request): 
    # Retrieve the JSON data from the request 
    payload = await request.json() 
    question_id = None 
 
    # Extract necessary information from the payload 
 
    # Get username and intent from payload 
    username = 
payload["originalDetectIntentRequest"]['payload']['data']['from']['id'] 
    intent = payload['queryResult']['intent']['displayName'] 
   
    # Get parameters and query text 
    parameters = payload['queryResult']['parameters'] 
    query_text = payload['queryResult']['queryText'] 
 
    # Get output context 
    output_context = payload['queryResult'].get('outputContexts', None) 

# Call function for the corresponding intent 
     … 

● User Interface: for UI Telegram instant messaging service 
was used. Chatbots integration with it enables users to 
interact with the chatbot directly within Telegram. The 
platform provides users with accessibility across different 
devices and environments, such as Telegram's mobile and 
desktop applications, as well as Telegram Web. 
Additionally, through integration, user data is collected in 

the backend—specifically, their usernames, which serve 
as the primary key in the database. 

● Database system: MySQL database management system 
(RDBMS) was used to store and manage user’s score data. 

def insert_or_update_progress(username, quiz_name, score): 
    # Connect to the database 
    conn = mysql.connector.connect( 
        host="localhost", 
        user="root", 
        password="password", 
        database="quiz_progress" 
    ) 
    cursor = conn.cursor() 
 
    # Check if entry exists for the given username and quiz_name 
    cursor.execute(f"SELECT * FROM {quiz_name} WHERE 
username=%s", (username,)) 
    existing_entry = cursor.fetchone() 
 
    if existing_entry: 
        # Entry exists, update the values 
        first_attempt = existing_entry[1]  # Get existing first_attempt score 
        average = ((existing_entry[2] * existing_entry[4]) + score) / 
(existing_entry[4] + 1) 
        last_attempt = existing_entry[5] 
        num_attempts = existing_entry[4] + 1 
        current_attempt = score 
 
        # Update the row 
        cursor.execute(f"UPDATE {quiz_name} SET first_attempt=%s, 
average=%s, last_attempt=%s, num_attempts=%s," 
                       f" current_attempt=%s WHERE username=%s", 
                       (first_attempt, average, last_attempt, num_attempts, 
current_attempt, username)) 
    else: 
        # Entry does not exist, insert new row 
        first_attempt = score 
        average = score 
        last_attempt = score 
        num_attempts = 1 
        current_attempt = score 
 
        # Insert new row 
        cursor.execute( 
            f"INSERT INTO {quiz_name} (username, first_attempt, average, 
last_attempt, num_attempts, current_attempt) " 
            f"VALUES (%s, %s, %s, %s, %s, %s)", 
            (username, first_attempt, average, last_attempt, num_attempts, 
current_attempt)) 
 
    # Commit changes and close connection 
    conn.commit() 
    conn.close() 

● Generative AI integration: for MachineQuizzing’s 
generative part Google’s Gemini Pro was used [8]. The 
chatbot has been integrated with the Gemini API, which 
can be activated in two cases: for mistake corrections and 
question answers. If the wrong answer to a quiz is given, 
the model is activated by quizzes intent and explanation 
why the answer is wrong is generated. 

def question(user, parameters: dict, output_context: list, quiz: dict, 
quiz_answer: dict, question_id, score): 
  … 
    else: 
        # Provide feedback if answer is incorrect 
        fulfillment_text = api_answer( 
            f"Question is:{quiz[str(int(question_id) - 1)]} and my answer is 
{parameters['quiz-answer']} explain why it is wrong and what is the correct 
answer") + \ 
                        " \n Ask me other questions you may have or type 'next' if you 
want to see the next question." 
        active_context = prefix + f"context_question{int(question_id) - 1}" 
        return JSONResponse(content={ 
            "fulfillmentText": fulfillment_text, 
            "outputContexts": [ 
                { 
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                    "name": f"{active_context}", 
                    "lifespanCount": 2 
                }] 
        }) 

If a user asks a question Default Fallback intent is 
activated as no intent is matched and the answer is 
generated. 

def fallback(context: list, query_text: str): 
    # Generate response using API 
    fulfillment_text = api_answer(query_text) 
    print(fulfillment_text) 
    return JSONResponse(content={ 
        "fulfillmentText": fulfillment_text, 
        "outputContexts": [ 
            { 
                "name": f"{context[0]['name']}", 
                "lifespanCount": 2 
            } 
        ] 
    }) 

 
Encountered problems and their solutions 

During the building process of MachineQuizzing we 
encountered some problems mainly connected to webhook timeout 
limitation [12]. When no matching intent is found, for example 
when a user has asked a question about machine learning, the 
Default Fallback intent is activated and the query is sent to Gemini's 
API. Dialogflow has a maximum webhook timeout limit of 5 
seconds, that is, if no response is received from the backend within 
5 seconds, it returns the default response of the system, for example, 
"Sorry, can you say that again?", "I didn't get that. Can you repeat?" 
or "One more time?". 

One of the problems arose when a response received from the 
Gemini API was being processed.Gemini's replies are written in 
Common Markdown, which is incompatible with Telegram's 
MarkdownV2. All translation attempts were causing a violation of 
the aforementioned 5-second time limit. So the format was 
converted from Markdown markup language to plain text.  

Another problem was Gemini’s response time, which also 
conflicted with Dialogflow’s webhook timeout limit. In order to 
avoid this limitation and get more accurate answers, prompt tuning 
was done using the following texts: 

“When asked questions, keep your answers as short as possible and 
don't give any extra information unless specifically asked.” 

“Picture yourself as my trusted ML advisor, I will ask you ML 
related questions, please answer them. I'll also give you quizzes and 
the answer options, my answer which will likely be wrong, don't 
give me the quiz answers just give me direction. I'm turning to you 
for assistance with my quizzes or any ML inquiries. Offer insights, 
hints, or answers to help me progress. Please help me learn.” 

 
This action reduced the time it takes Gemini to generate a 

response by 0.038 seconds on average. For example, this action took 
Gemini's response generation time from 0.005616 seconds to 
0.043894 seconds, reducing it by 0.038278 seconds for "What is 
linear regression?" query, and for "What is a confusion matrix?" 
query response was reduced by 0.038303 seconds from 0.045353 to 
0.00705. 

While testing the chatbot, we also encountered a problem with 
hallucinations during the generation of the wrong answer 
explanations [15]. Initially the current test question and the user's 
wrong answer with the following prompt were given to Gemini: 
"Question is: {current question} and my answer is {user's wrong 

answer}." Sometimes wrong version answers were generated as 
correct ones. Here, too, we applied prompt tuning, we added 
"explain why it is wrong and what is the correct answer" to the above 
prompt. As a result, the number of hallucinations decreased. 

Results 
 We created MachineQuizzing by combining a protocol-

driven chatbot created via Dialogflow with generative AI 
represented by Gemini. Our chatbot successfully addresses all the 
elements outlined in the problem description.  

We'll consider each point in detail below. 
● Quizzes: MachineQuizzing provides several quizzes, 

ranging from general machine learning to specific 
techniques such as dimensionality reduction, 
classification, and regression. There are 21 tests of 7 
types, each consisting of 10 multiple-choice questions 
with only one correct answer. If the answer is correct, the 
user earns points, and the next question is presented. 
Quizzes allow users to test their understanding of key 
machine learning concepts and principles. 

● Evaluation system: during the quiz, the chatbot evaluates 
the user's answers. Each correct answer is valued 10 
points, giving the opportunity to score a maximum of 100 
points. The user does not receive points for skipped and 
wrong answered questions. After completing each quiz, 
the user receives the score. 

● Statistics: in addition to grading tests, chatbot allows users 
to compare received scores with the results of other users, 
as well as with the results of previous attempts. This 
feedback mechanism allows users to track their progress 
and identify gaps in their knowledge. 

● Explanation of wrong answers: if the user answers a 
question incorrectly, the chatbot explains why the answer 
is incorrect. This instant feedback helps users understand 
concepts more deeply through simple and concise 
explanations. 

● Answering questions: the chatbot can also answer 
questions that arise during the test. Thanks to this feature, 
users have access to the relevant information when they 
need it and can reach the correct quiz answer through the 
questions. 

Thus, thanks to the above features, the chatbot enables 
users to easily grasp the complex concepts of machine 
learning and strengthen their knowledge as can be seen in the 
screenshots below or by following the QR code: 

Analysis and Conclusion 
This paper shows a successful example of integration of 

protocol-specified chatbot with GenAI. With MachineQuizzing, 
you can see the advantages of parts of integration. Its protocol part 
provides the selection, presentation, and evaluation of tests and 
provides users with statistics on their progress. The GenAI part 
provides answers to questions and explanations of mistakes. Since 
the explanations are activated only in the case of an incorrect 
answer, the protocol-specified part also controls the truthfulness of 
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the generated answer. In conclusion, 
integration resulted in a simple and 
convenient assistant for 
familiarization with machine 
learning, its branches, and 
algorithms. A chabot operation 
illustration example can be observed 
through the link of Figure 4, and 
sample screenshots are shown in 
Figure 5.   
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Figure 5. Sample screen snapshots of the chatbot operation 

 
Figure 4. QR code: 
chatbot operation  
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