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Abstract  
 Computer Vision has become increasingly important in smart 
farming applications, including scheduling crop irrigation. A 
combination of various remote sensing devices enables continuous 
monitoring of a crop and non-destructive prediction of irrigation 
time. Appropriately scheduled and precisely targeted irrigation 
enables sustainable use of this limited resource. 
 In agriculture, absorption-based and thermal-based imagery 
are used to monitor plant conditions through indices such as the 
Normalized Difference Water Index (NDWI) and Crop Water Stress 
Index (CWSI).  
 This paper provides an overview of the concept and 
components of monitoring systems for automated irrigation 
scheduling. It explains the potential and limitations of applying 
computer vision-based systems for plant stress detection, providing 
insights to advance understanding in this growing field. 

Introduction 
 Agriculture is a complex production process that relies on 
various interdependent factors, including irrigation scheduling, 
directly affecting crop quality and productivity. The efficient use of 
water in agriculture remains one of the most critical challenges 
modern technologies aim to address [1]. 
 Irrigation significantly impacts crop yield, particularly in 
protected environments (e.g., greenhouses) that lack a natural water 
supply (such as rainwater) and in open fields. In semi-arid and 
humid areas, additional irrigation is often used to increase crop 
productivity [2]. Common irrigation methods include flooding 
water on the field surface, subsurface irrigation, applying water 
beneath the ground surface, sprinkler systems that spray water under 
pressure, and drip or trickle irrigation, which delivers water directly 
to the root zone [3]. 
 The main goal of irrigation scheduling is to determine the 
correct time and amount of water to be applied to a crop to optimize 
production and offset adverse environmental impacts [4]. Irrigating 
too early or too late cannot ensure the required plant water status 
throughout the growing cycle [5]. Appropriately scheduled and 
precisely targeted irrigation concerning the actual water demand of 
the crop enables sustainable use of this limited resource. It also 
prevents environmental issues such as groundwater pollution and 
runoff [6][7]. Poor irrigation scheduling results, on the other hand, 
in under-watering or waterlogging [8]. 

 An efficient irrigation system is based on predicting crop water 
demand. It requires an understanding of the dynamics of plant water 
use, which is related to continuously changing weather conditions, 
soil characteristics, and plant physiology. A close inspection of the 
plant using human observations, focusing on indicators such as the 
color of the substrate surface, the presence of flagging foliage, or 
slight color changes in leaves that occur in some crops just before 
wilting, is not precise enough. Some growers attempt to gauge plant 
drought stress by inserting a finger into the soil or touching the 
leaves. However, human touch is not a reliable measure of moisture, 
as the absence of moisture is typically perceived only in relatively 
dry conditions, which are already suboptimal for plant growth [3]. 
Moreover, if water stress symptoms become visible to the bare 
human eye, the crop is likely already suffering under a higher level 
of water stress. Human expertise in irrigation management is not 
scalable or universally accessible across all fields, farms, or crops. 
It is often slow in analyzing data and processing information in real 
time [1]. Recent research has indicated that growers who do not use 
any irrigation scheduling tool but rely on heuristic methods, such as 
manual, time-based, or volume-based irrigation, tend to register 
significant water losses [8]. 
 The simplest and most cost-effective method for automating 
irrigation is using timers to control irrigation cycles. This approach 
is particularly feasible in soilless media used in greenhouses. 
Although this substrate has high water-holding capacity, it typically 
has high infiltration rates and porosity, allowing excess water to 
drain away readily. As a result, irrigation can be applied on a fixed 
schedule, so watering always occurs earlier and for longer than the 
crop might require. However, a purely time-based approach can also 
lead to suboptimal root zone moisture conditions if the substrate 
cannot provide adequate oxygen for the roots under saturated 
conditions. For instance, if the substrate depth is shallow, the plants 
use water relatively slowly [3]. 
 An intelligent and automated monitoring system is a valuable 
tool and time-saver for farmers. Figure 1 illustrates a general system 
cycle pipeline. A decision-support system typically collects and 
processes data from various sources, such as imaging devices, 
weather stations, and soil sensors, to achieve a balance between 
water quantity and irrigation time. Modern measuring devices are 
often mounted on mobile platforms such as aerial drones or ground 
sensing rovers, providing spatial information to ensure precise and 
targeted irrigation. By continuously monitoring crop water status, 
the system assists farmers in creating effective plans for optimal 
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plant treatment considering water availability and crop 
requirements. 

Figure 1: A general system cycle pipeline of an automated irrigation system. 

 This paper provides an overview of methods and components 
for predicting the optimal irrigation time. The structure of the paper 
is as follows: Section 2 reviews various irrigation scheduling 
methods. Section 3 details remote sensing techniques for water 
stress detection. Section 4 discusses the components and 
measurement methods of computer vision-based systems. Finally, 
Section 5 concludes the paper with insights into PlantSens, an 
automated monitoring system for remote water stress detection. 

Irrigation Scheduling Methods 
 Irrigation scheduling methods can be categorized into the 
following approaches: (1) weather-based monitoring, (2) soil-based 
monitoring, and (3) plant-based monitoring, as shown in Figure 2. 

Figure 2: Schematic overview of irrigation scheduling methods [8]. 

 Weather-based monitoring measures environmental conditions 
such as humidity, wind speed, solar radiation, and air temperature to 
estimate water loss to the atmosphere through evapotranspiration, 
including soil evaporation and plant transpiration. The Penman-
Monteith method is the most commonly used technique for 
estimating reference evapotranspiration. However, as a point-based 
approach, it is limited to local-scale applications and unsuitable for 
large, heterogeneous areas [9]. This method is a useful alternative 
for providing an approximate irrigation schedule in cases where soil 
or plant measurements are not feasible. 

 The traditional methods for crop water stress detection are 
based on soil moisture measurements [9]. The soil-based monitoring 
involves measuring the soil water potential or soil water content. 
Soil sensors are conventional devices that are easy to apply and 
widely used for irrigation scheduling. However, since water 
deficiency does not occur uniformly across a field, the assessed 
degree of water deficit stress imposed on the plants does not 
necessarily represent the water deficit stress level that the plants 
actually experience. For instance, lower soil moisture levels could 
be sufficient during periods of less intensive evapotranspiration but 
not necessarily during high evaporative demand. Another limitation 
of soil-based monitoring is the high number of sensors often 
required for heterogeneity and precise monitoring, making the 
system quite expensive and difficult to maintain [10]. 
 Plant-based monitoring refers to direct sensing of plant water 
status parameters and indirect sensing of plant response to stress. 
The direct sensing techniques, such as pressure chambers or leaf 
diffusion porometers, are more accurate but labor-intensive, 
destructive, and time-consuming [11]. 

Remote Sensing Methods 
 In recent decades, indirect methods for assessing plant stress 
have gained increasing importance, driven by advancements in 
remote sensing technology, particularly imaging systems. 
Numerous studies have investigated various indicators, such as leaf 
surface temperature and spectral absorption related to leaf water 
content. These techniques offer a significant advantage over direct 
stress detection, as infrared thermography and optical spectroscopy 
enable non-invasive monitoring without physical contact with plant 
leaves. In contrast, soil-based and direct sensing methods collect 
data from a single location on a specific plant or plant part, providing 
only an averaged representation of conditions. Therefore, these 
techniques are not well suited for large-scale crop monitoring due to 
the limited number of plants that can be measured simultaneously. 
However, when mounted on a moving platform, remote imaging 
systems enable the observation of entire areas rather than just single 
points, significantly enhancing monitoring efficiency [10]. The 
advantages of using imaging technology for remote sensing are that 
it can be fairly accurate, nondestructive, and yield consistent results 
[12]. 

Absorption-Based Water Stress Detection 
 Leaves interact with sunlight across a broad spectral range, 
including the visible (VIS, 400–700 nm), near-infrared (NIR, 700–
1000 nm), and shortwave infrared (SWIR, 1000–3000 nm, also 
known as middle infrared) regions [13]. In the visible spectrum, 
light absorption is primarily driven by photosynthetic pigments, as 
water absorption in this range is minimal. A high reflectance in the 
visible spectrum typically indicates reduced chlorophyll content, 
corresponding to lower photosynthetic activity. 
 Machine vision is not capable of using direct reflectance 
measurements as a metric for plant stress detection, which is why 
reflectance indices (RI) that combine two or more spectral bands are 
used [14]. The reflectance indices for crop water stress detection are 
summarized in Table 1.   
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Table 1: Reflectance indices for crop water stress detection. 

Index Formula References 

Normalized 
Difference 
Vegetation 
Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁

        (1) Rouse et al., 
1974 [15] 

Water Index 𝑊𝑊𝑁𝑁 = 𝑁𝑁900
𝑁𝑁970

               (2) Penuelas et al., 
1997 [16] 

Water Index 𝑊𝑊𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1300
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1450

         (3) Seelig et al., 
2009 [17] 

Normalized 
Difference 
Water Index 

𝑁𝑁𝑁𝑁𝑊𝑊𝑁𝑁 = 𝑁𝑁860−𝑁𝑁1240
𝑁𝑁860+𝑁𝑁1240

  (4) Gao, 
1996 [18] 

 The normalized difference vegetation index (NDVI) is one of 
the most widely recognized indices. NDVI quantifies vegetation 
greenness, density, and yield by comparing reflectance in the near-
infrared (strongly reflected by vegetation) and red (strongly 
absorbed by vegetation) spectral regions. The range of NDVI values 
is from -1.0 to 1.0, where negative values and values near zero 
indicate non-vegetation, positive values from 0.1 to 0.5 represent 
sparse vegetation, and even higher positive values from 0.6 to 1 
represent dense green vegetation [19].  
 Besides chlorophyll, water is the second strongest absorbing 
molecule in leaves, with absorption peaks at approximately 970, 
1200, 1450, 1950, and 2500 nm [20]. As plant dehydrates, water loss 
decreases absorption and increases reflectance at these wavelengths. 
Various spectral indices have been developed to assess plant water 
stress remotely by combining water-sensitive absorption bands. 
 Seelig et al. (2009) focused on SWIR absorption maxima and 
defined WI as the ratio of reflectance at 1300 nm (low water 
absorption) and 1450 nm (high water absorption). Gao (1996) 
explored water content estimation using reflectance at 860 nm and 
1240 nm. While NIR absorption at 970 and 1200 nm is lower than 
at the more sensitive SWIR bands (1450 and 1950 nm), these longer 
wavelengths are often impractical for remote sensing due to strong 
atmospheric water vapor absorption, which limits their availability 
in sunlight reaching the Earth's surface. As a result, Seelig's method 
is challenging to implement, especially in environments without 
external light sources. Consequently, many studies have focused on 
NIR-based water indices, such as the normalized difference water 
index (NDWI): 

𝑁𝑁𝑁𝑁𝑊𝑊𝑁𝑁 = 𝑁𝑁970−𝑁𝑁𝑥𝑥
𝑁𝑁970+𝑁𝑁𝑥𝑥

        (6) 

where 𝑅𝑅𝑥𝑥 represents wavelengths such as 850, 880, or 900 nm, 
depending on the plant species and specific water content estimation 
requirements. 

Temperature-Based Water Stress Detection 
Indirect detection of plant water stress is often based on leaf 

temperature, which is inversely correlated with transpiration and 
stomatal opening. This effect is based on the fact that an insufficient 
water supply under a higher ambient temperature and vapor pressure 
deficit (VPD) results in the closure of leaf stomata, increasing crop 
temperature [10]. For instance, Figure 3 illustrates temperature 
differences between stressed and well-irrigated plants. 

Figure 3: Temperature difference between a stressed plant (left) and non-stressed (right) 
[21]. 

Idso et al. (1981) and Jackson et al. (1981) presented a method for 
quantifying this stress by determining the crop water stress index 
(CWSI) as: 

𝐶𝐶𝑊𝑊𝐶𝐶𝑁𝑁 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤
𝑇𝑇𝑑𝑑𝑑𝑑𝑐𝑐−𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤

  (7) 

where 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 refers to the current canopy temperature, 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤 is the 
temperature of a non-stressed leaf transpiring at the maximum 
potential rate by stomata being completely open and 𝑇𝑇𝑑𝑑𝑑𝑑𝑐𝑐 is the 
temperature of stressed leaf not transpiring where stomata are fully 
closed. The CWSI tends towards 0 after irrigation and moves 
continuously towards 1 as soil water becomes limiting. The most 
challenging part of the CWSI approach is accurately determining the 
upper and lower limits, which correspond to the maximum stress 
and non-stress conditions, respectively [10]. 

Computer Vision-Based Systems 
Computer vision has potential in agriculture since industrial 

cameras offer promising solutions to detect changes in plant's 
biochemical and biophysical characteristics. Besides imaging 
objects in visible light, machine vision systems can also inspect 
objects in spectral ranges invisible to human eyes, such as infrared. 

Camera Characteristics 
A high-performance vision system relies on well-tuned 

hardware and software to accurately capture, process, and analyze 
images. The following components and parameters are essential for 
ensuring optimal system functionality. 

Image Sensor 
The Image Sensor is responsible for converting light reflections 

into digital information. The image quality depends on several 
factors, such as sensor resolution, sensitivity, and noise level. 
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Image Processing 
The Image Processor analyzes captured data and extracts 

meaningful information. Vision systems typically use two 
processing approaches: build-in and external processing. A device 
with a built-in processor, also known as a smart camera, reduces the 
need for external computing by analyzing the images internally. 
External processing requires transmitting raw data to a powerful 
computing unit like a server for advanced operations such as AI-
based analysis. 

Communication Interface 
A Communication Interface integrates the camera into an 

automated system. A vision system must efficiently transmit data 
between the camera and the processing unit. Standard 
communication interfaces include USB 3.0, GigE (Gigabit 
Ethernet), and Camera Link. 

Remote Communication 
 A reliable network connection is required to transmit data from 
the camera system to external systems. Depending on the 
application, this may involve Ethernet protocols, wireless 
communication, or cloud integration for remote processing and 
monitoring. 

Camera Lens 
 An appropriate camera lens ensures that all relevant objects and 
details are visible in the image. It can also control the amount of 
light entering the lens. 

Lighting 
 Proper lighting is important for obtaining high-quality images. 
An additional light source may be needed if the required wavelength 
is insufficient or completely unavailable in the measuring 
environment. 

Image Acquisition Techniques 
 As shown in Figure 4, the most common types of industrial 
cameras are RGB, multispectral, hyperspectral, and thermal 
cameras. 

Figure 4: Overview of the common camera types [19]. 

Each type has distinct characteristics and applications in precision 
agriculture and other fields. RGB imaging is widely used for 
capturing visible light and for various precision agriculture 
applications such as vegetation indices or disease detection. 
Multispectral imaging collects a few discrete spectral bands, 
typically less than 10, typically near- and short-infrared. 
Multispectral imagery can be used to identify stresses in crops early. 
Hyperspectral Imaging consists of continuous narrow bands with a 
10-20 nm spectral resolution. Hyperspectral images can contain 
hundreds of electromagnetic spectrum bands and have more 

informational content than multispectral imaging, but complexity is 
escalated due to redundant information. Hyperspectral imaging is 
mainly used for crop classification and weed identification. Thermal 
imaging senses infrared radiation emitted by an object to produce a 
thermal image of the corresponding object. It can be used to detect 
water stress in crops, considering that the temperature for the plants 
under water stress is higher than that of unstressed plants [19]. 

Figure 5: Different modes of image acquisition based on the hyperspectral camera 
[24]. 

All four camera types can be further classified into point scan, line 
scan, and snapshot systems. The different modes of image 
acquisition based on the hyperspectral camera are illustrated in 
Figure 5. Each acquisition mode has advantages and disadvantages 
for real-time applications, data collection, analysis, and 
management. While a point scan sensor collects data at discrete 
points, providing very high spectral resolution, a line scan sensor 
acquires data in a push-broom pattern and requires either the sensor 
or the observed object to move to capture a complete image. Line 
scan sensors are known to record distorted images once vibrations 
are introduced in the sensor or the object while data capture is in 
process, particularly when mounted on autonomous platforms such 
as aerial drones. Wavelength scan sensors require an additional filter 
that distributes specific wavelengths. Snapshot sensors acquire data 
simultaneously over the entire scene, requiring large amounts of 
data storage, which can be a limitation in real-time applications. The 
choice of image acquisition mode can impact the data volume, 
processing complexity, and the type of analysis that can be 
performed. Selecting the appropriate method depends on the 
specific application requirements, available hardware, and 
computational resources [24]. 

PlantSens (Prototype) 
 The R&D PlantSens project was one of the initiatives funded 
by Germany's Federal Ministry of Food and Agriculture (ger: 
Bundesministerium für Ernährung und Landwirtschaft, BMEL). 
This study was driven by the lack of a decision-support system for 
remotely monitoring crop water status in real time. The primary 
objective was to develop an automated monitoring system for 
remote water stress detection.  
 The system consists of three components: (1) a measuring 
robot for parallel image acquisition in different wavelengths, (2) a 
central server for data storing, analysis, and alarming functions, and 
(3) a meteorological station recording environmental parameters
[10].
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Figure 6: Prototype of the remote sensing system mounted on a self-driving 
platform. 

The core of the PlantSens monitoring system is the multi-sensor 
measuring robot. The system was initially developed as a rail-based 
construction for kinematic measurements. The measuring unit is 
mounted on a self-driving platform, moving over the crops and 
acquiring images of the top leaves of plants. As illustrated in Figure 
6, the prototype is divided into the operating and control unit, 
located in the upper and the measuring head in the lower part of the 
housing. The measuring head integrates three camera sensors: 
Xenics Bobcat for short-wave-infrared imagery, FLIR Vue Pro for 
thermal imagery, and Raspberry PI NoIR for visible and near-
infrared image acquisition. These sensors operate across a 
wavelength range of 400 to 13,500 nm, enabling redundant water 
stress detection by combining thermal-based and absorption-based 
measuring methods. The acquired image data are transmitted in real-
time to the central server, where they are analyzed to predict optimal 
crop irrigation timing [25]. PlantSens project is a good example of 
integrating advanced multi-sensor technology with automated 
image processing. By enabling real-time water stress detection in 
crops, the PlantSens system provides an efficient solution for 
optimizing irrigation management, ultimately supporting 
sustainable agriculture. 
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