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Abstract

This survey provides a comprehensive overview of LiDAR-
based panoptic segmentation methods for autonomous driving.
We motivate the importance of panoptic segmentation in
autonomous vehicle perception, emphasizing its advantages over
traditional 3D object detection in capturing a more detailed and
comprehensive understanding of the environment. We summarize
and categorize 42 panoptic segmentation methods based on
their architectural approaches, with a focus on the kind of
clustering utilized: machine learned or non-learned heuristic
clustering. We discuss direct methods, most of which use single-
stage architectures to predict binary masks for each instance,
and clustering-based methods, most of which predict offsets to
object centers for efficient clustering. We also highlight relevant
datasets, evaluation metrics, and compile performance results on
SemanticKITTI and panoptic nuScenes benchmarks. Our analysis
reveals trends in the field, including the effectiveness of attention
mechanisms, the competitiveness of center-based approaches,
and the benefits of sensor fusion. This survey aims to guide
practitioners in selecting suitable architectures and to inspire
researchers in identifying promising directions for future work in
LiDAR-based panoptic segmentation for autonomous driving.

Introduction

To operate safely, autonomous vehicles need to perceive
and interpret complex real-world scenes in real time. Perception
is tasked with this crucial responsibility. Many downstream
subsystems in an autonomous vehicle software stack, such as
localization and planning, rely on it. Most perception systems
use LiDAR sensors because they provide high-resolution, three-
dimensional point cloud data that captures the geometry and
spatial distribution of objects in the environment. Most also
use 3D object detection methods to identify and localize objects
like cars and pedestrians with 3D bounding boxes. However,
bounding boxes are coarse and may contain irrelevant background
points (e.g., parts of the road or nearby objects) within the box.
This can cause undesirable behavior from the autonomous vehicle
around out-of-distribution or abnormally shaped objects, like the
side supports of a crane or a long L-shape connected barrier as
shown in figure 1. In that figure, small errors in the predicted
bounding box lead to harsh and unnecessary braking.

An alternative richer representation of the environment is
gaining popularity: panoptic segmentation. As we show in
figure 2, this representation consists of classifying each point
in a scene into 1 of 2 categories: “things” (distinct objects like
cars, pedestrians, and cyclists) and “stuff” (background classes
like road surfaces and vegetation) while also associating different
points belonging to the same object to create an instance. This no
longer limits our representation to cuboids and allows for a more
free form, geomety-centric representation. In addition, it can
be a more straightforward task than predicting bounding boxes.
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With segmentation, a network just has to pick one of a number
of possible classes compared to regressing many attributes for
bounding boxes, some of which are difficult to discern such as the
orientation of an object. Semantic segmentation is an approach
prioritized by Tesla in their occupancy network [1]. Instance
segmentation is also important because, for the downstream tasks
of tracking, prediction and planning, we want to discriminate
between different instances of objects of a particular class for
object association.

(a)

Figure 1: Pitfalls of using a bounding box as a universal
representation. In this scenario, ego needs to make a lane change
to avoid the barrier. Subfigure (a) the intended behavior, (b) what
happens when barriers are detected as boxes and have some minor
orientation errors and (c) how semantic and instance segmentation
can aid in this scenario via per voxel prediction. Different colors
represent different instances.

(c) Semantic

segmentation (d) Panoptic segmentation output.
output. White is the background White is the stuff class. Different
class. colors represent different things.

Figure 2: Example of point-level panoptic segmentation. The

image and pointcloud are adapted, with permission, from Ref. [2].

Most surveys on panoptic segmentation focus on images
[3, 4, 5] and superficially discuss applications in autonomous
driving. Ref. [6] focuses on autonomous driving, but is
not as comprehensive and detailed as this survey in analyzing



and categorizing different LiDAR-based panoptic segmentation
methods. They only discuss 5 LiDAR-based networks compared
to 42 in this article. Our main contributions include providing a
summary of most LiDAR based panoptic segmentation methods
in the literature and comparison of these methods on the
SemanticKITTI and panoptic nuScenes datasets. We also
showcase key performance trends.

Datasets

Many LiDAR based panoptic segmentation datasets for
autonomous driving exist, such as the Waymo open dataset [7]
and WADS [8]. In this paper, however, we present details on
the two datasets which are the most widely used to benchmark
LiDAR panoptic segmentation.

SemanticKITTI

SemanticKITTI [9] is a large scale dataset with semantic
labels for point clouds with 360° field of view around the vehicle.
22 scenes are provided, 11 for training and 11 for test, comprising
of 23201 and 20351 samples respectively. There are 28 classes
for semantic segmentation.

nuScenes

nuScenes [10, 11] comprises of 1000 scenes with 23 classes
for detection and 32 classes for LIDAR panoptic segmentation.
The scenes consist of 28130 samples for training, 6019 samples
for validation, and 6008 samples for testing.

Metrics

Panoptic Quality (PQ) is the most commonly used metric to
compare the performance of LiDAR-based panoptic segmentation
methods. Other metrics used include average precision, average
recall and mean intersection over union, but we only use PQ in
this work because it is the most widely reported metric.

Panoptic Quality

Panoptic quality (PQ) is a single number aggregated over all
classes that provides an overview of the panoptic segmentation
performance of a model.

PQ— Z(p,g)eTPIOU(p:g) % |TP| )
|TP| |TP|+ 3|FP|+ }[FN|’
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where p is a predicted set of points belonging to the same instance
and category, and g is a set of points belonging to a ground-truth
instance of the same category. SQ and RQ are segmentation
quality and recognition quality, respectively. Intersection over
union (IoU) is defined as

ToU = Lﬁg )

rug

A pair (p,g) is said to be a true positive (TP), if the IoU between
the ground truth and predicted set of points is > 0.5. False
positives (FP) are all predicted segments that don’t have a ground
truth to match to, and false negatives (FN) are all ground truths
that don’t have a prediction matched to them. |TP|, |FP|, |FN| are
the number of TP, FP, and FN, respectively.

We also report PQ* and PQ™ which refer to the panoptic
quality of things and stuff, respectively.

Direct Methods

Direct methods perform panoptic segmentation with
minimal post-processing and usage of heuristic algorithms. Such
methods fall into two major categories: two-stage and single-
stage methods.

Two-stage methods

Two-stage methods first propose regions of interest, and then
process these proposals to obtain semantic and instance labels.
MOPT [12] and EfficientLPS [13] build on EfficientPS [14] and
the popular two-stage Mask R-CNN [15] architecture to perform
panoptic segmentation. Mask R-CNN processes a feature map
to generate region proposals for objects. A branch processes
the proposals to predict a binary mask of the object’s shape.
Mask R-CNN only provides instance level labels. To obtain
panoptic labels, MOPT and EfficientLPS use the same strategy
as EfficientPS [14]. An additional head computes semantic
segmentation logits, which are combined with instance level
logits through a panoptic fusion module.

MOPT introduces the novel task of multi-object panoptic
tracking, which unifies semantic segmentation, instance
segmentation, and multi-object tracking into a single framework.
EfficientLPS uses many of the same architecture components
as MOPT such as 2-way Feature Pyramid Networks [14] and
separable convolutions.  EfficientLPS also introduces many
techniques to address challenges in LiDAR data, such as
distance-dependent sparsity, scale variation, and occlusions.
One such technique is a panoptic periphery loss that refines the
boundaries between objects, ensuring more accurate separation
of foreground objects from the background.

(a) Sem. seg. and detection bboxes.  (b) Panoptic segmentation output.
Figure 3: Using bounding boxes and semantic segmentation to
perform instance segmentation.

Single-stage methods

To reduce complexity and runtime, some methods directly
predict instance IDs in a single stage. Most architectures are
inspired by MaskFormer [16] and use learnable queries to directly
predict binary masks and semantic classes for each instance.

One exception is Panoster [17] which directly predicts
instance ids and semantic labels from a traditional CNN
architecture and with loss functions inspired by confusion
matrices. PUPS [18] also uses a unique architecture consisting
of point-level classifiers. PUPS uses bipartite matching during
training to ensure unique assignments for each instance without
the need for post-processing. Transformer decoders refine the
classifiers by querying point features.

MaskRange [19] uses the range view to transform the LIDAR
pointcloud to a pseudo-image that can be directly processed by a
MaskFormer like architecture with small modifications (such as a
novel data augmentation technique). Range view is a dense and
compact 2D representation of pointclouds. Unlike bird’s eye view
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(BEV) methods, its runtime does not increase with the detection
range. However, in the range view, object shapes are not distance-
invariant, and objects may overlap heavily with each other making
occlusion harder to deal with.

The following methods employ different strategies to tailor
MaskFormer to LiDAR pointclouds. MaskPLS [20] (and its
extension to tracking Mask4D [21]) map multi-scale voxel
features into point features that go into transformer decoders.
P3Former [22] leverages novel position embeddings, that are a
mixture of cartesian and polar coordinates, to better differentiate
objects (especially small objects). 4D-Former [23] uses fusion
with images to improve performance. DQFormer [24] initializes
things and stuff queries differently because things are typically
concentrated in local regions whereas stuff have distributed
pointclouds with distinct geometries (e.g. cars vs road surface).

These methods have limitations. There is a limit on the
number of masks and instances that the network can predict.
Moreover, methods based on the MaskFormer architecture might
require network pruning, quanitization or compression steps
before they can be deployed on the car. Perception from LiDAR
point clouds for autonomous driving utilize networks that have
to balance multiple tasks, such as object detection and 3D map
element detection, on a strict runtime budget. Thus, adding a large
panoptic segmentation head might be infeasible. Furthermore,
image based methods have to deal with perspective projection,
whereas BEV LiDAR methods have the advantage of preserving
object sizes. Methods that leverage clustering algorithms in one
form or another can take advantage of the geometric properties
of pointclouds, have competitive performance, and can be added
to existing LiDAR-based networks without adding too much
overhead.

Clustering-based Methods

In this section, we categorize methods that perform any kind
of clustering as a heuristic post-processing operation that is not
part of a neural network.

Proposals from bounding boxes

The earliest panoptic segmentation methods leveraged
existing semantic segmentation and object detection methods to
obtain simple baselines. Figure 3 captures the main idea of such
methods, which first generate proposals from 3D bounding boxes
and then group points based on their features. The simplest
methods, Refs. [25] and [26], choose the features to be the
semantic label of each point and the distance of each point to the
center of the proposal region.

To improve performance and showcase the capability of
weakly supervised methods, VIN [27] adds an additional post-
processing step to resolve inconsistencies between bounding
box and semantic segmentation predictions. LidarMultiNet [28]
refines the semantic segmentation and bounding box classification
scores through a second stage network which uses BEV and
sparse voxel features from the first stage.

Non-learned heuristic clustering

A simple baseline is to cluster a pointcloud with heuristic,
non-learned, algorithms. Ref. [29] surveys a few such algorithms.
The algorithms make use of per point class labels obtained from a
neural network, Cylinder3D [30], to filter out background points
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so that only foreground points are fed to the clustering algorithms.
The same authors in Divide-and-Merge [31] propose a range view
based clustering algorithm. They divide the image into small
regions and perform local clustering. By voting on the edges of
objects, they decide if different object clusters should be merged.

Such algorithms can be easy to implement. However, they
can have a lot of parameters to tune. Performance is also limited
and, unlike some of the learned methods we present later, does
not improve with higher volume of data.

In the coming section, we will discuss methods that mitigate
these drawbacks by producing learnable features that can be more
easily clustered with heuristic algorithms.

Clustering with center offsets

Many methods predict center offsets to help cluster
instances. Center offsets are 2D or 3D vectors predicted per pillar
or voxel or point to the center of an object, which is typically the
center of the bounding box of the object.

With center heatmap
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Figure 4: The most common auxiliary tensors predicted by

LiDAR based networks for panoptic segmentation. For ease
of illustration, we choose pillars as the output modality. The
different shades of green in the center heatmap represent the
confidence of the network in a pillar being the center of a thing
with darker shades denoting higher confidence. We do not show
all center offsets to reduce clutter.

As we show in figure 4, many approaches predict a
center heatmap along with center offsets. A center heatmap
is a probability distribution across all locations, indicating the
likelihood of the center of an object being present at each point.
These centers can be used to associate different voxels, pillars, or
points to a single instance.

Panoptic-PolarNet [32] is one of the first methods that
applies predicted center offsets to each BEV pillar, and then
groups the displaced pillars based on the closest center heatmap
peak. They were inspired by Ref. [33] which first applied this
idea to images.

In addition to center offsets and a center heatmap, EVLPSNet
[34] predicts uncertainties in the semantic output per voxel.
To reduce discretization errors due to the BEV grid structure,
EvLPSNet then selects the most uncertain voxels and refines their
labels with a KPconv-based network [35].

With temporal tracking of panoptic segmentation IDs as their
main aim, Ref. [36] presents a technique to modify a network so
it better satisfies the symmetries of center heatmaps and center
offsets. Specifically, if we rotate the pointcloud of an object, the



object’s center remains the same, and the center offsets at each
point of the object form an equivariant field which rotates in the
same way as the object’s pointcloud.

To reduce oversegmentation, GMM-PanopticSeg [37]
presents a method that can be integrated into networks that
predict center offsets and instance centers. Oversegmentation
is the issue where a single object (such as a bus) is divided up
into multiple clusters. GMM-PanopticSeg models intra-instance
variance through Gaussian mixture models (GMM). This enables
the model to handle challenges like noise and occlusion more
effectively. Clustering is done by associating points with the most
likely instance on the basis of their GMM distribution.

Some methods leverage range view for panoptic
segmentation. In P-RangeFormer [38], the authors propose
novel augmentations to address the dearth of data. Their
contributions include the idea of splitting one range image into
multiple non-overlapping sub-images, and a novel rasterization
method to mitigate deformation issues in the range image. Ref.
[39] produces centerness and center offsets which are used by
an iterative algorithm for instance segmentation. They also
propose two modules. One helps with label assignment for object
detection. The second is an additional BEV regression head to
improve 3D bounding box predictions.

Multi-modal sensor fusion between LiDAR and cameras
helps overcome pitfalls of each sensor. Images are rich in
semantic information but lack depth whereas pointclouds provide
accurate geometry and depth but lack color and texture. LCPS
[40] proposes different feature alignment modules to fuse camera
features to voxelized LiDAR features. These are learnt modules
as opposed to the heuristic modules conventionally employed in
sensor fusion works. In addition to just using sensor fusion, there
are methods that utilize multiple LIDAR views. Multi-view fusion
improves performance by providing the network complementary
information from multiple perspectives of the pointcloud, such as
range view and cartesian voxels. UniSeg [41] leverages multi-
modal sensor fusion (camera and LiDAR) and multi-view fusion
to predict a center heatmap, center offsets and class labels.

Without center heatmap

Some methods do not directly predict a center heatmap but
instead, predict offsets to the instance center, and use them, if
needed, to find instances’ centers.

Ref. [61] encodes a pointcloud into a bird’s eye view feature
map, and then predicts for each cell offsets to the center of the
nearest object. If two cells predict offsets to nearby centers, then
the points inside these two cells are merged into the same instance.

LPS [42] predicts center offsets and semantic labels in the
range view. For each pixel in the range view, they predict
an embedding vector, center offsets and a radius to be used
for clustering. Things points are then sampled iteratively and
the embedding vector and center offsets are used to perform
clustering in a given radius

Panoptic PH-Net [47] utilizes a voxel encoder as well as a
BEV encoder. A k-NN transformer is applied to estimate instance
center offsets per voxel. Centers are derived from these offsets.

SMAC-Seg [44] proposes a clustering architecture that is
computationally efficient, and that mitigates the information loss
from projecting a pointcloud to the range view. SMAC-Seg first
applies an instance mask to keep only foreground points, and

then predicts center offsets for these points. Foreground points
are shifted using the predicted offsets, and then projected to the
BEV because it preserves spatial relationships making it easier to
cluster points. The shifted points are then further refined through
an attention module. A breadth-first search algorithm is finally
applied to obtain object clusters. To ensure that the clusters
are well-separated, SMAC-Seg introduces a centroid-aware repel
loss. The loss penalizes points that are too close to the centroids
of neighboring objects, and pulls objects closer to their respective
object centroids.

A contrastive loss can be added to ensure that features of
voxels belonging to the same instance have similar features as
compared to objects of another instance. Authors in PVCL [48]
apply a contrastive loss with an anchor, positive and negative to
the output features. Positives and negatives are picked based on
semantic segmentation outputs. This is akin to a triplet loss.

DS-Net [46] addresses the limitations Mean Shift faces in
dealing with non-uniform point clouds and varying instance sizes
(for example, compare the size of a compact car to that of a truck),
which often results in oversegmentation. In Mean Shift, a fixed
kernel is applied to iteratively shift points toward cluster centers.
Instead of using a single kernel, DS-Net adaptively selects kernel
bandwidths for each point. DS-Net learns multiple candidate
bandwidths and combines them based on learned weights to shift
each point toward their correct instance centers.

Authors in Contrastive instance association [62] use the same
backbone as in DS-Net [46] but propose a contrastive learning
module to better track and associate instances across different
frames, improving temporal consistency of dynamic objects.

In CFNet [49], the network predicts center offset and center
offset confidence scores to denote the accuracy of the center
offsets regression. Instance centers are estimated from offsets
which are then used to generate final clusters. An iterative center
de-duplication module is applied to associate points to an instance
and suppress low confidence centers.

In order to better cluster large objects which only have
points on their surface, far from the object’s center, SCAN [45]
voxelizes and processes a point cloud to produce features at
different scales. SCAN then uses a novel attention mechanism
to align these features. It also uses a sparse representation, and
sparse convolutions, to maintain computational efficiency.

4D-PLS [43] efficiently performs panoptic segmentation
and tracking by dividing 4D (temporal 3D) point clouds into
overlapping 4D volumes that are processed in parallel. For
each point in the 4D volume, 4D-PLS predicts its proximity
to its instance center which they define to be the mean point
of all thing points in it. They then use learned embeddings
to cluster the points in a single volume, followed by greedy
association across volumes. 4D-StOP [63] uses KP-conv to
extract rich features per point. Unlike 4D-PLS, which models
instances as Gaussian probability distributions in 4D space-time,
4D-StOP generates instance proposals through a per-point voting-
based mechanism. Finally, 4D-StOP aggregates these instance
proposals using learned geometric features and DBSCAN.

Other methods

In this section, we discuss works that do not fall into the
categories mentioned above.

PillarAffinity [52] uses a lightweight head and a novel
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Table 1: Panoptic Quality of different methods on SemanticKITTI and panoptic nuScenes val and test set. We report panoptic quality
(PQ), panoptic quality for things class (PQ™) and panoptic quality for stuff class (PQ™). Methods are grouped together and categorized.
Methods of each category are also sorted in chronological order. Numbers in bold denote the best performance on a given metric
(column).

Dataset SemanticKITTI Panoptic nuScenes
Method® Val Test Val Test® | Attn.9
PQ \ PQM \ PQSt \ PQ \ PQM \ PQSt \ PQ \ PQM \ PQSt \ PQ \
KITTI Panoptic? [25] — — — 445 | 327 | 53.1 — — — — x
LidarMultiNet [28] - - - - - - 81.1 — - - v
PanopticTrackNet ¢ [12] 40 | 299 [ 474 — — — — — — — X
EfficientLPS [13] 59.2 58 60.9 || 574 | 53.1 | 60.5 - - - — X
LPS *[42] - - - 38 25.6 | 47.1 - - - - X
4DPLS [43] - — 50.3 - - — — - - - X
SMAC-Seg [44] - - - 56.1 53 58.4 - - - - v
SCAN [45] — — — 61.5 | 614 | 61.5 65.1 60.6 | 72.5 — v
DS-Net [46] 577 | 61.8 54.8 559 | 55.1 56.5 — - — - X
Panoptic PH-Net [47] 61.7 | 69.3 - 61.5 | 63.8 59.9 74.7 74 75.9 80.1 v
PVCL [48] — — — 59.1 59.8 58.6 649 | 59.2 | 67.6 — X
CFNet [49] 62.7 70 57.3 — — — — — — — X
Panoster " [17] 556 | 566 | — 527 | 494 | 55.1 - = - - X
MaskRange [19] - — — 53.1 | 449 | 59.1 — - — - v
MaskPLS-M [20] - - - - - - 582 | 55.7 60 - v
MaskPLS-C [20] - - - - — — 574 | 63.6 | 529 - v
PUPS [18] 64.4 73 58.1 62.2 65.7 59.6 74.7 75.4 73.6 — v
P3Former [22] - — - 64.9 | 67.1 63.3 759 | 76.9 75.4 — v
4D-Former [23] — — — — — — 71.3 — — 78 v
DQFormer [24] 63.5 — — 63.1 — — 77.7 77.8 | 711.5 73.9 v
Panoptic-PolarNet T [32] 59.1 | 657 | 543 [ 54.1 | 533 | 54.8 — — — — X
EvLPSNet [34] 58 | 627 | 54.6 - - - - - - - v
P-RangeFormer [38] - — - 64.2 | 63.6 | 64.6 — — — — v
Eqg-4D-StOP [36] 61.2 | 66.1 | 57.5 - - - - - - - X
LCPS (Baseline)® [40] 55.7 — - - — — 729 | 7128 | 73 72.8 v
LCPS (Full) [40] 59 - - - - - 79.8 | 82.3 | 75.6 || 79.5 v
UniSeg [41] - — - 67.2 | 67.5 67 — - — 78.4 v
Panoptic-PolarNet+DEM [37] 60.3 | 68.6 | 543 - — — 69.6 | 68.3 71.8 68.9 X
GP-S3Net v [50] 63.3 | 70.2 | 58.3 60 65 56.4 — - — - v
CPSeg [51] = - = 56.9 | 54.7 | 585 - = - 732 v
(Cartesian) affinity [52] — — — — — — 76.7 | 785 | 73.6 — X
(Polar) affinity [52] — — — — — - 77.9 80 74.3 — X
PANet [53] 61.7 — — 58.5 59.7 57.6 69.2 69.5 68.7 — v
SAL? [54] 248 | 174 | 302 — — — 384 | 475 | 29.2 — v
Cylinder3D ¥ [30] 56.4 | 58.8 | 54.8 - - - - - - - X
LRPS [55] — - - 54.6 54 55.1 - - - - X
SoftGroup++ [56] - — - 572 | 57.1 | 573 — — — — v
AOP-Net [57] — - - - - - - - - 68.3 X
TARL [58] 56.6 - - - - - — - — - v
LPST [59] 63.1 68.7 58.9 61 58.1 63.2 77.1 79.3 73.6 76.1 X
Cylinder3D+SLR © [29] - - - 56.0 | 51.8 | 59.1 - - - - X
Divide-and-Merge [31] — — — 56.5 | 52.9 | 59.1 — — — — X

AModel without image features, features fusion module and foreground object selection module. "Note that for better call SAL, we
report zero shot results. © For panoptic nuScenes test set, we only report PQ as that is most widely reported. ¢ Use of attention as
described in Attention Is All You Need [60] ¢ Category of a method- t: Center offsets and heat map , %: Center offsets only, ¢: Proposal
from bounding box, 0: Two-stage, \: Single-stage, ©: Non learnt heuristic clustering, V: Others, %: Not categorized in this paper but
added to show metrics.

Caveats: Some works, such as EfficientLPS [13], report results on the original nuScenes dataset which was released without instance segmentation
labels [10]. We exclude such results, and only report results on the panoptic nuScenes dataset because it is the official source for panoptic
segmentation annotations. We also exclude results on autonomous driving datasets that are rarely used for panoptic segmentation. Moreover, although
computationally efficiency is an important requirement for autonomous vehicles, we do not present methods’ inference time latency because it is
seldom reported and is hardware dependent which makes it hard to normalize across different papers.
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decoding algorithm. The network outputs a flag signaling the start
of a new instance, and a zigzag decoding is then used to group
pillars to an instance.

CPSeg [51] performs instance segmentation on a range
image. They predict semantic labels and an embedding vector
per point. They also have a module that pillarizes the embedding
vectors for foreground points and applies pair wise connectivity
on these pillars to group and associate different pillars to an
instance. These pillar instance IDs are then reprojected back onto
the pointcloud.

PANet [53] also assigns instance IDs in two steps. First,
PANet heuristically clusters the pointcloud by using shifting
algorithms inspired by Mean Shift and DS-Net [46]. Second,
PANet merges certain clusters if their affinity exceeds a pre-
determined threshold. ~ PANet calculates these affinities by
running a k-NN transformer on embeddings from each of the
instances obtained in the first step.

Clustering using only class labels and points’ positions
suffers from oversegmentation. GP-S3Net [50] addresses this by
first using HDBSCAN [64] to cluster a pointcloud. GP-S3Net
then constructs a graph where each cluster is a node. Finally, a
graph convolutional neural network processes the edges of this
graph to decide whether two clusters should be merged.

Some methods leverage self-supervised learning as
collecting panoptic segmentation annotations for pointclouds is
tedious and expensive, and because it might help with detecting
rare objects that are not present in the training set thereby
improving safety for autonomous vehicles. Authors in [65]
clusters non-ground points with HDBSCAN and then refine them
by constructing a graph representation of each instance proposal
region. Self-supervised features extracted from a pre-trained
network are used to weigh the edges between the nodes. Finally,
GraphCut [66] is used on each graph to refine its corresponding
cluster. Autolnst [67] also constructs a graph from a pointcloud
with points as nodes and connectivity as edges. The graph is used
to generate instance proposals, which are then refined through a
self-trained neural network.

Recently, some methods have shown how to use foundational
models to perform panoptic segmenation. Authors in Ref. [54]
use vision foundation models along with text prompts. Using
foundational models like CLIP [68], SAM [69] trains their model
on unlabeled text and image data while using off the shelf models
to perform pseudo-labeling in a zero shot manner, showcasing the
extensibilty of these large models.

Results

Table 1 present results along with caveats of different
LiDAR-based panoptic segmentation methods that report
panoptic quality on any of the validation and test sets of
SemanticKITTI [25], and panoptic nuScenes [11]. This table will
be analyzed in upcoming sections and trends will be highlighted.

Performance Trends

The superiority of data driven approaches is evident in
their performance when compared to fully non-learned heuristic
clustering methods. The best heuristic method, Ref. [31] attains
a PQ of 56.5 on the SemanticKITTI test set, whereas data-driven
methods attain a PQ of up to 67.2 (about 19 % better).

Methods that leverage center offsets are popular, and we

observe that they usually perform well and are close to the best
model, if not the best in most cases (such as Panoptic PH-Net
[47], CFNet [49], SCAN [45]). Analyzing methods that leverage
center heatmap in addition to offsets, Eq-4D-StOP [36], Uniseg
[41], LCPS [40] lead the pack in PQ.

The best performing methods in table 1 use attention as
described in Ref. [60]. Attention can boost the performance of
a model by making it easier to focus on the most critical features
of an object and to capture complex geometric relationships in a
point cloud. This performance gain can come at the cost of higher
compute and memory requirements. Methods like flash attention
[70] can alleviate the memory cost of the attention module. The
best performing methods notably also leverage sensor fusion,
pointing to the benefit of multi-modal inputs. Despite compute
being a limiting factor in the BEV pointcloud representation, most
methods still use it owing to the orthographic geometry of this
representation which leads to better box localization.

Conclusion

In this survey, we provided a comprehensive review of
panoptic segmentation methods for LIDAR point clouds collected
by autonomous vehicles. We summarized the methods, and
categorized them based on whether they use non-learned heuristic
clustering techniques at any point in their architecture. We also
described the most common datasets and metrics currently in use.
We reported performance of different methods on these datasets,
and extracted performance trends.

We hope that our guide helps practitioners choose the most
suitable architecture for their specific requirements, and helps
researchers identify gaps in the field to inspire new innovations.
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