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Abstract
This paper presents a comparative study of Neural Radiance

Fields (NeRF) and 3D Gaussian Splatting (3DGS) models within
the context of automotive and edge applications. Both models
demonstrate potential for novel view synthesis but encounter chal-
lenges related to real-time rendering, memory limitations, and
adapting to changing scenes. We assess their performance across
key metrics, including rendering rate, training time, memory us-
age, image quality for novel viewpoints, and compatibility with
fisheye data. While neither model fully meets all automotive re-
quirements, this study identifies the gaps that need to be addressed
for each model to achieve broader applicability in these environ-
ments.

Introduction
Novel 3D scene reconstruction models, such as NeRF (Neu-

ral Radiance Fields) [5] and 3DGS (3D Gaussian Splatting) [6],
have shown significant promise in automotive and edge applica-
tions due to their ability to render novel views from trained scenes.
However, applying these models in such contexts presents several
key challenges, as discussed below:

• Real-time Rendering: Many automotive applications such
as parking assistance systems require real-time rendering of
novel views to ensure seamless user experience. These sys-
tems rely on a high model rendering rate, defined as the
speed at which a trained model can generate images from
new viewpoints, .

• On-vehicle Rendering: In automotive systems, novel views
often need to be rendered directly on embedded hardware
within the vehicle. This introduces the challenge of model
memory requirements, i.e., the amount of memory neces-
sary to load and operate the model on specific hardware plat-
forms.

• Changing Scenes: As vehicles navigate through dynamic
environments, the surrounding scenes change continuously.
Therefore, the 3D reconstruction model must be capable of
retraining/adapting on new scene data, emphasizing the im-
portance of training time. If training occurs on the vehicle’s
embedded hardware, the training data memory requirements
also become a critical consideration.

• Novel View Rendering: In many automotive scenarios, the
required novel viewpoints may lie outside the range of the
original dataset, such as a bird’s-eye view or a viewpoint not
mounted on the vehicle. This requires careful consideration
of model rendering quality for both validation datasets and
novel viewpoints beyond the dataset’s original range.

• Fisheye Cameras: Vehicles and robotic systems frequently

utilize fisheye cameras due to their wide field of view. How-
ever, fisheye lenses introduce significant optical distortion
and add complexity to the camera model, raising the ques-
tion of how effectively 3D models can accommodate fisheye
camera inputs.

This study evaluates and compares NeRF and 3DGS models
based on these criteria to determine their suitability for automo-
tive and edge applications. Additionally, it highlights the current
limitations that need to be addressed for these models to fully real-
ize their potential in these contexts. While both NeRF and 3DGS
learn 3D scene representations from images and associated cam-
era poses, they differ fundamentally in how they represent and
train these scenes. The following section provides a brief com-
parison of these key differences as they pertain to this study.

Figure 1: NeRF vs 3DGS model represenation

NeRF 3DGS
- Uses a neural network

model to learn a continuous
function that represents the
density and color of every

point in space.

- Uses a number of
Gaussian blobs (millions)

placed throughout the scene
to represent color and

density.
- Is an implicit

representation of the 3D
scene.

- Is an explicit
representation of the 3D

scene.
- Is a continuous

representation of the space.
- Is a discrete

representation of the space.
- Ground truth used for

training NeRF is the RGB
pixel value.

- Ground truth used for
training 3DGS is the
undistorted image.

Table 1: Brief comparison between NeRF and 3DGS
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Prior Art
NeRF (Neural Radiance Fields)[5]: Introduced in 2020 by

Mildenhall et al., NeRF uses neural networks to learn continu-
ous volumetric scene representations. It maps 3D coordinates and
viewing directions to RGB colors and densities, enabling high-
quality novel view synthesis. 3DGS (3D Gaussian Splatting)[6]:
Proposed in 2023 by Bernhard Kerbl et al., 3DGS accelerates ren-
dering by representing scenes with discrete Gaussian blobs. It
offers greater efficiency in real-time rendering by using explicit
scene representation and rasterization techniques.

Since the original NeRF paper, numerous improvements
have been made to enhance NeRF’s rendering time. One no-
table development is Instant-NGP [7](2022), by Thomas Müller
et al., which achieved real-time rendering on NVIDIA GPUs. A
key feature of Instant-NGP is its fully fused MLP, a single-kernel
CUDA-optimized implementation that minimizes the time re-
quired for transferring data between neural network layers. How-
ever, while this approach is effective on NVIDIA GPUs, it lacks
portability for other embedded platforms used in automotive ap-
plications. Another improvement is FastNeRF[9] (2021), by
Stephan J. Garbin et al., which precomputes a cache after training
the NeRF model to render novel views efficiently. While Fast-
NeRF achieves real-time performance, the cache size required
(e.g., 7GB for n=512) is impractical for embedded systems, lim-
iting its use in applications with memory constraints.

Although significant advancements have been made in
NeRF, direct comparisons between NeRF and 3DGS for 3D re-
construction remain relatively scarce. These comparisons are cru-
cial for understanding the trade-offs between the two technolo-
gies, particularly in real-world applications such as automotive
and robotics. One recent comparative study, ”Evaluating Mod-
ern Approaches in 3D Scene Reconstruction: NeRF vs Gaussian-
Based Methods” [10](2024) by Yiming Zhou et al., contrasts
NeRF and Gaussian Splatting within SLAM systems. The study
evaluates mapping accuracy, localization precision, and real-time
adaptability but does not address the unique challenges faced in
automotive and edge applications, such as memory limitations,
on-target training, and handling fisheye data. This leaves a gap
for more application-specific research, which this paper aims to
address.

Methodology
This study utilizes the Nerfstudio framework [1] as the foun-

dation for experiments, extending it where necessary to incor-
porate additional metrics. The Nerfacto model [2], with its Py-
Torch implementation, is used as the NeRF-based model, while
the Splatfacto model [3] serves as the 3DGS-based model. The
datasets employed include the Nerfstudio dataset [1] for recti-
linear images and the open-source KITTI 360 automotive dataset
[4] for outdoor morning scenes for fisheye images use case. The
study encompasses multiple experiments designed to comprehen-
sively analyze and compare NeRF-based and 3DGS-based solu-
tions in real-world automotive and edge computing scenarios. The
comparison focuses on capturing key metrics for each model, as
outlined below:

1. Model Training Time: Measured over 30,000 iterations us-
ing the Nerfstudio training log, with time recorded in min-
utes.

2. Model Rendering Rate: Assessed for the trained mod-
els via the Nerfstudio evaluation script, with rendering rate
measured in frames per second (FPS). The resolution of the
rendered images is 270×480 (portrait) and 480×270 (land-
scape)

3. Model Memory Requirements: Monitored at various
checkpoints, with memory usage calculated based on the
number of parameters in each model, assuming 4-byte float-
ing points. The metric is recorded in megabytes (MB).

4. Training Data Memory Requirements: Evaluated for the
rectilinear dataset, assessing the memory footprint for both
Nerfacto and Splatfacto training data samples, captured in
megabytes (MB).

5. Validation Subset Image Quality: Model rendering qual-
ity is evaluated on a validation subset using Structural Sim-
ilarity Index (SSIM) [11], Learned Perceptual Image Patch
Similarity (LPIPS) [12], and PSNR metrics.

6. Novel Viewpoint Rendering Quality: Analyzed for view-
points outside the training dataset range. For the rectilinear
dataset, this involves a virtual camera path slightly elevated
from the training path. For the fisheye automotive trace,
a virtual camera path simulates a front camera view. The
Fréchet Inception Distance (FID) [8] [13] metric is used for
quality measurement.

7. Use of Fisheye Dataset: Due to the rectilinear differen-
tiable renderer used in 3DGS training, undistorted images
are required for training the Splatfacto model. For the fish-
eye use case, images are undistorted before being processed
with Splatfacto, while the original fisheye images are used
in the NeRF-based model (Nerfacto), utilizing the OpenCV
fisheye camera model for ray casting. Image quality for both
validation and novel view rendering is assessed using SSIM,
LPIPS, and PSNR for the validation subset, with FID ap-
plied to novel viewpoint rendering.

Experiment Setup
• Software: Nerfstudio framework [1], Git revision 0e889f7,

with additional metrics and KITTI 360 Dataset [4] inte-
grated for this study.

• Hardware: PC: Lenovo ThinkPad 21FBS1MX0A, GPU:
NVIDIA RTX 3500 Ada Generation Laptop GPU (12 GB
RAM).

Experiment Configuration
• Nerfacto Model Configuration: Default configuration

with the following modifications:

– Image resolution scale = 0.5
– Model implementation = PyTorch
– Number of rays per chunk for evaluation = 24,576
– Number of saves between iterations = 5,000

• Splatfacto Model Configuration: Default configuration
with the following modification:

– Image resolution scale = 0.5
– Number of saves between iterations = 5,000

Datasets
• Nerfstudio Dataset [1]: For the rectilinear use case, the

used scenes include poster, library, redwoods2, bww en-
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trance, and Egypt.
• KITTI 360 Dataset [4]: For the fisheye use case, the spe-

cific trace used is 2013 05 28 drive 0000 sync, with camera
IDs 2 and 3 (two side fisheye cameras). The dataset includes
200 frames, starting at frame 950 and ending at frame 1250.

Figure 2: The virtual camera path used for novel view rendering in
comparison with the training data for the poster rectilinear trace.

Figure 3: The virtual camera path used for novel view rendering
in comparison with the training data for the fisheye data.

Results
1. Training time

Model Poster LibraryRedw. BWW Egypt Avg.
Nerfacto 89.65 88.53 90.54 95.23 88.28 90.45
Splatfacto 13.71 14.69 16.29 14.38 26.86 17.19

Table 2: Dataset Scene Training Time (minutes)

Figure 4: Avg. training time in minutes Nerfacto vs. splatfacto

2. Rendering rate

Model Poster LibraryRedw. BWW Egypt Avg.
Nerfacto 0.39 0.39 0.39 0.39 0.39 0.39
Splatfacto 26.19 24.22 19.36 22.57 19.6 22.38

Table 3: Dataset Scene rendering rate (fps)

Figure 5: Avg. rendering rate in fps Nerfacto vs. splatfacto

3. Model memory requirements

Model Iter. Poster LibraryRedw. BWW Egypt
Nerfacto 5k 74.0 74.0 74.0 74.0 74.0

10k 74.0 74.0 74.0 74.0 74.0
15k 74.0 74.0 74.0 74.0 74.0
20k 74.0 74.0 74.0 74.0 74.0
25k 74.0 74.0 74.0 74.0 74.0
30k 74.0 74.0 74.0 74.0 74.0

Splatfacto 5k 47.7 113.2 138.9 99.1 426.4
10k 51.3 160.5 204.5 128.2 463.9
15k 49.8 184.4 213.3 132.3 561.3
20k 41.2 141.2 167.4 105.3 415.7
25k 37.8 127.5 154.1 96.5 368.9
30k 36.1 119.9 148.2 92.1 347.1

Table 4: Dataset Scene Memory Size (Mbytes) by Iterations

Figure 6: Model memory requirements (Mbytes) for splatfacto
for different scenes per training iteration

Figure 7: Model memory requirement (Mbytes) for Nerfacto for
different scenes per training iteration

4. Training data memory requirements
Nerfacto:

Training data size = (5×S+3)×Nr ×b
where 5 represents the input features per spatial point (x, y,
z, θ , and φ ); 3 corresponds to the ground truth color values
per pixel (R, G, and B); Nr is the number of rays per batch
(with each ray representing one pixel); S is the number of
samples taken along each ray; and b is the number of bytes
per data type.
Splatfacto:

Training data size = ((H ×W ×3)+2)×b×B
where 3 represents the pixel color values (R, G, and B), 2
represents the network input features (θ and φ ), H is the
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image height, W is the image width, b is the number of bytes
in the datatype used and B is the batch size.

Model Poster Library Redw. BWW Egypt
Nerf. (1 ray) 9.2e-4 9.2e-4 9.2e-4 9.2e-4 9.2e-4
Nerf. (4K rays) 3.79 3.79 3.79 3.79 3.79
Splatfacto 5.93 5.93 5.93 5.93 5.93

Table 5: Training data memory requirements (MBytes). The
datatype used for the measurements is float 4 bytes, for Nerfacto
the number of samples per ray used is 48 samples, for Splatfacto
the undistorted image resolution is 540x960 and the batch size for
Splatfacto is 1

Figure 8: Comparison of the training data content between NeRF
and 3DGS models. Nr represents the number of rays per batch, S
represent the number of samples per ray and B is the batch size.

5. Validation subset image quality

model Poster LibraryRedw. BWW Egypt Average
SSIM

Nerfacto 0.84 0.9 0.84 0.77 0.77 0.82
Splatfacto 0.97 0.93 0.93 0.955 0.7 0.89

LPIPS
Nerfacto 0.11 0.04 0.08 0.08 0.12 0.08
Splatfacto 0.03 0.07 0.05 0.03 0.22 0.08

PSNR
Nerfacto 20.46 27.64 24.21 22.62 23.55 23.69
Splatfacto 35.85 24.77 28.59 31.02 19.7 27.98

Table 6: Nerfacto vs spaltfacto quantitative results for validation
subset

Figure 9: Nerfacto vs spaltfacto qualitative results for validation
subset

6. Novel view image quality

FID
Model Poster Library Redw. BWW Egypt
Nerfacto 195.22 181.84 109 194.55 176.83
Splatfacto 212.06 220.15 117.34 188.81 183.92

Table 7: Nerfacto vs spaltfacto quantitative results (FID) for novel
view rendering

Figure 10: Nerfacto vs spaltfacto qualitative results for novel view
rendering

7. Fisheye dataset

Validation Metrics NV Metric
Model SSIM LPIPS PSNR FID
Nerfacto 0.66 0.2 18.35 187.05
Splatfacto 0.71 0.24 18.5 377.18

Table 8: Nerfacto vs spaltfacto quantitative result for the fisheye
scene for the validation subset and the novel view rendering

Figure 11: Nerfacto vs spaltfacto qualitative results for fisheye
scene validation subset

Figure 12: Nerfacto vs spaltfacto qualitative results for fisheye
scene novel view rendering
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Discussion
1. Training Time

The results indicate that the NeRF (Nerfacto) model requires
around five times the training time compared to the Gaussian
Splatting (Splatfacto) model. This difference is a critical
factor, particularly when on-device training is necessary.

2. Rendering Speed
NeRF: Rendering with NeRF involves sampling the neural
network multiple times for each pixel to obtain density and
color values for points in space along the camera ray cast
through the pixel, which are then integrated to determine the
pixel’s RGB value. Consequently, the rendering rate for the
Nerfacto model is very slow, as shown in the results. 3DGS:
Due to its explicit scene representation, Gaussian Splatting
can employ rasterization techniques for rendering. As a re-
sult, the 3DGS model achieves near real-time rendering, as
demonstrated in the results.

3. Model Memory Requirements
NeRF: NeRF models typically have a fixed memory require-
ment determined by the architecture of the neural network.
This requirement remains consistent regardless of the num-
ber of training iterations or scene complexity, which is ad-
vantageous for embedded systems with limited memory that
need predefined allocation to avoid dynamic adjustments.
3DGS: Instead of a neural network, 3DGS represents the
environment as a set of 3D Gaussian blobs, optimizing pa-
rameters such as the mean and covariance of each Gaus-
sian during training. The number of Gaussians used can
vary to better represent the scene, leading to dynamic mem-
ory requirements that fluctuate with the number of iterations
and/or the scene’s complexity (as illustrated in fig. 6). A po-
tential solution for fixing a maximum value for the memory
requirements is to cap the number of Gaussians, though this
would likely impact the quality of scene representation.

4. Training Data Memory Requirements
NeRF: Training in NeRF involves casting rays through each
pixel and sampling points along the ray, predicting color and
density values for each point. These values are then in-
tegrated to produce a pixel prediction, which is compared
to the ground truth pixel value. This setup allows some
flexibility in adjusting memory requirements by changing
the number of rays per batch and the number of samples
per ray, though reductions could compromise model quality
and training time. 3DGS: 3DGS uses undistorted images
as ground truth, with the camera viewing angle as input.
Even with the minimum batch size, memory must accom-
modate at least one image and its input data, making 3DGS’s
training data memory requirements somewhat inflexible and
more demanding compared to NeRF.

5. Validation Subset Quality
Qualitative Results: In many cases, 3DGS (Splatfacto) pro-
duces vibrant colors and sharper details where Gaussians are
accurately placed. However, when Gaussian placement is
inaccurate, the rendered images can appear distorted or un-
recognizable (as shown in fig. 9). Quantitative Results:
Quantitatively, 3DGS generally outperforms NeRF across
most metrics, providing better scores on various image qual-
ity measures.

6. Novel View Rendering Quality

Qualitative Results: NeRF (Nerfacto) tends to perform bet-
ter with unseen viewpoints, while 3DGS (Splatfacto) often
displays significant artifacts when viewed from new angles
(as shown in fig. 10). Quantitative Results: The quantita-
tive data aligns with the qualitative observations, with Ner-
facto achieving superior metrics compared to Splatfacto for
novel view rendering.

7. Fisheye Dataset
NeRF: NeRF models, which use pixel-level data, can di-
rectly utilize fisheye camera models, allowing the entire
field of view to be used without modification. This capabil-
ity enables NeRF to fully leverage the information in fisheye
images. 3DGS: In contrast, 3DGS requires undistorted im-
ages as ground truth, meaning fisheye images must be cor-
rected and undistorted prior to training. This process intro-
duces several issues:

• Field of View Reduction: The undistortion process
necessitate cropping parts of the image, particularly
in the corners where distortion is most severe, leading
to data loss.

• Geometry Alteration and Resolution Loss: Edge
pixels must be stretched to fit a rectilinear image for-
mat, which can distort objects and reduce resolution
at the edges.

• Artifacts: Depending on the correction method, arti-
facts such as aliasing or blurring may occur.

Validation Subset Image Quality: Quantitative measures
indicate that Splatfacto generally achieves higher image
quality. However, these results should be interpreted care-
fully, as 3DGS uses undistorted ground truth images for the
validation subset missing substantial areas of information
compared to the fisheye images data used by Nerfacto.
Novel View Rendering Quality: Since undistorted images
have a smaller field of view than the original fisheye images,
3DGS struggles with rendering novel views, especially in
occluded or unseen areas. This issue highlights the limita-
tions of the discrete nature of 3DGS, with both qualitative
and quantitative results clearly reflecting this shortfall.

Figure 13: Fisheye images (used in nerfacto) vs undistorted im-
ages (used in splatfacto)

Conclusion
Both NeRF-based and 3DGS-based models offer distinct

strengths and limitations for automotive and edge applications.
3DGS excels in rendering speed and training time, making it ideal
for scenarios requiring instantaneous feedback, such as parking
assistance and autonomous driving visualization. It also produces
high-quality images for viewpoints within the training range,
making it suitable when virtual camera deviations are minimal.
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In contrast, NeRF outperforms 3DGS in novel viewpoint render-
ing due to its continuous representation, effectively handling oc-
clusions and unseen areas. This makes NeRF more suitable for
applications requiring significant virtual camera movement, such
as complex parking scenarios.

In terms of memory, 3DGS faces challenges due to its dy-
namic memory requirements, which fluctuate with scene adapta-
tion, limiting its use in memory-constrained systems. NeRF, with
its constant and predictable memory usage, is better suited for
applications with strict memory constraints. Moreover, the high
memory usage per training sample in 3DGS restricts its effective-
ness for on-target training in adapting to changing scenes, while
NeRF remains flexible in such environments.

A key distinction is their handling of fisheye data. NeRF can
natively process fisheye images without field-of-view loss or dis-
tortion. In contrast, 3DGS requires pre-processing into rectilinear
images, leading to quality degradation and reduced field of view.

Model Rendering
Rate

Training
Time

Model
Mem.
Req.

Training
Mem.
Req.

N.V.
Qual-
ity

FE
data

NeRF x x x x
3DGS x x

Table 9: NeRF vs 3DGS: metric-based performance comparison

While neither model fully meets the requirements of auto-
motive applications, their complementary strengths suggest po-
tential for a hybrid model. Adapting 3DGS to handle fisheye
data directly through a differentiable fisheye renderer, the use of
augmented datasets (e.g., bowl-view images), or improved fisheye
correction, could enhance image quality by reducing field-of-view
loss and artifacts. Alternatively, a pre-trained NeRF model could
model the continuous background, while 3DGS adapts dynami-
cally to scene changes, improving novel view rendering. These
strategies highlight the potential of combining these technologies
to advance automotive applications and bridge the gap between
research and real-world deployment. We hope this work provides
valuable insights into the strengths, limitations, and future im-
provements of NeRF and 3DGS.
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