

TIOVX Apps – A new approach to development with OpenVX

Rahul Ravikumar, Abhay Chirania, Shyam Jagannathan, Villarreal Jesse; Embedded Processors Business, Texas Instruments

Abstract
OpenVX is an open standard for accelerating computer vision

applications on a heterogeneous platform with multiple processing

elements. OpenVX is accepted by Automotive industry as a go-to

framework for developing performance-critical, power-optimized

and safety compliant computer vision processing pipelines on real-

time heterogeneous embedded SoCs. Optimizing OpenVX

development flow becomes a necessity with ever growing demand

for variety of vision applications required in both Automotive and

Industrial market. Although OpenVX works great when all the

elements in the pipeline is implemented with OpenVX, it lacks

utilities to effectively interact with other frameworks. We propose a

software design to make OpenVX development faster by adding a

thin layer on top of OpenVX which simplifies construction of an

OpenVX pipeline and exposes simple interface to enable seamless

interaction with other frameworks like v4l2, OpenMax, DRM etc....

Introduction
A typical end-to-end computer vision pipeline starts with

capture, followed by multiple levels of pre-processing data that

feeds into a computer vision algorithm or a deep learning network,

and finally visualize and display the result or take some decisions.

In real use cases, multiple pipelines may be implemented on an SoC

with heterogeneous architecture. For example, common modern

ADAS systems have features like 360-degree surround view, driver

monitoring, obstacle detection, camera mirrors, front camera and

other advanced features. Such features are amalgamation of various

capture and compute blocks including but not limited to, capture

from multiple cameras with varying resolutions and framerates,

vision processing and deep learning. These applications often have

very strict latency and throughput requirements and are required to

run on power and resource constrained embedded SoCs. Different

parts of the pipeline need to be efficiently mapped to DSPs,

Hardware Accelerators and Compute Cores to get the desired

throughput. An automotive use case on such diverse compute

landscape can take many man-months to realize and can prove to be

quite an entry barrier for users to quickly evaluate and prototype. It

also requires a ramp on learning the middleware to even put together

a simple capture-inference-display chain. The proposed approach

implements a layer on top of OpenVX [3], which makes the

development much faster with simple APIs inspired by Gstreamer

[2], a popular pipeline-based multimedia framework.

OpenVX Development Flow
Implementing a computer vision pipeline using OpenVX

involves creating and connecting multiple nodes in a graph based on

the processing elements in the pipeline and also managing the data

exchange with the graph. A graph in OpenVX is set of nodes

connected to each other in directed acyclic fashion to achieve a

given functionality. A node in OpenVX is a processing element

which takes in one or multiple inputs of certain type and generates

one or multiple outputs of certain type. Inputs can come from either

graph input interface or from another node output, similarly output

can be consumed by user or given out via graph output interface.

Exemplars in OpenVX are sample data objects which

represents the type of data that node will be handling and need to be

provided by the application during node creation. To connect two

node interfaces, application needs to provide same exemplar to both

the nodes during creation. Nodes are instatiations of OpenVX

kernels. Kernels implements a specific functionality and registered

on targets on which the particular functionality can be run optimally.

Figure 1. Illustration of an OpenVX Graph

Gstreamer Development Flow
Gstreamer is a framework for developing streaming

applications centered around multimedia use cases. Due to its

flexibility and ease of use it has gained traction in computer vision

applications as well. A typical Gstreamer application involves

creating a pipeline, which contains multiple elements connected to

each other via pads. Element in Gstreamer represents an entity

which produces or consumes data. Some elements can only produce

data and are called source element, some elements only consume

data and are called sink elements. Filters are the elements that can

transform data. Pads in Gstreamer are entities via which data is

exchanges between elements. There are two kinds of pads, Source

pads and Sink pads. Source pads produces the data and Sink pad

consumes the data. Each Sink pad can only be connected to one

Source pad. Elements are instantiated using plugins. Each plugin

implements a given functionality and defines the number of pads

and caps they can handle. Caps in Gstreamer is used to specify the

type of data a pad can handle. A source and sink pad should support

at least one common set of caps for them to be able to connect.

- Figure 2. Illustration of a Gstreamer Pipeline

IS&T International Symposium on Electronic Imaging 2025
Autonomous Vehicles and Machines 2025 111-1

https://doi.org/10.2352/EI.2025.37.15.AVM-111
© 2025 Society for Imaging Science and Technology

Similarities between OpenVX and Gstreamer
OpenVX and Gstreamer have lot of similarities in their design.

Below table summarizes the similar concepts from both

OpenVX Gstreamer

Graph Pipeline

Node Element

Kernel Plugin

Shared Data Object Caps and Pads

Graph Input/Output Interface AppSrc and AppSink

OpenVX lacks some useful Gstreamer concept that makes

development easier and interfacing with other framework simpler.

For example, pads are not explicitly modeled in OpenVX, instead

shared exemplars are used to connect nodes. Pads could simplify

connecting and managing nodes in the application. The concept of a

Buffer pool, is missing in OpenVX as well. Buffer pool helps in

easily managing buffer allocation, acquiring/releasing buffers and

pipeline the interaction between multiple frameworks.

It is possible that an OpenVX kernel might not be available for

some kind of custom processing or a different framework is used for

certain tasks. For example, v4l2 is used for camera capture and

encode/decode, DRM is used for display, OpenGL is used for

accessing GPU in Linux. In this case there are two options, first is

wrapping these frameworks or custom code under custom OpenVX

kernels, another is splitting the graphs and managing the data

exchange in the application. Both of these options need a deeper

understanding of OpenVX framework and might take quiet a bit of

time and effort for development and optimization. Modeling these

Gstreamer concepts like Pads, Buffer Pools, etc. can help tackle the

problem in a better way.

TIOVX Apps Layer
The objective of TIOVX Apps Layer is to make it easier to

realize complex pipelines involving custom code and different

frameworks, which is optimized for memory and throughput and

without involving any buffer copy. TIOVX Apps Layer provides a

simplified solution for the construction and management of

OpenVX pipelines by giving Gstreamer-like interface to the

application. It imagines a new way of writing an OpenVX

application by incorporating some of the best concepts from

Gstreamer. It implements data structures and APIs which makes it

simpler to create and connect compatible nodes, exchange

input/output data via Pads, automatically create and manage shared

buffer pools and provide a structured way of connecting custom

processing blocks as Modules. The layer abstracts some of the steps

required in traditional OpenVX application, to avoid writing lot of

boilerplate code. At the same time, it gives access to all the

underlying OpenVX data objects, in-case user wants to call some

OpenVX API directly.

Key concepts implemented in the layer
Graph Object: Graph object is a wrapper around OpenVX

Graph. Along with OpenVX graph it also stores additional

information like list of nodes in the graph, graph parameter indexes,

OpenVX context etc.

Node Object: Node object is a wrapper around OpenVX node.

Along with OpenVX Node it will have a sink-pad for each input and

source-pad for each output. Two node objects are connected via

Pads.

Pads: Pads represents the input/output to a node. There are two

types of pads, sink-pad - for input parameter, source-pad - for output

parameter. Pad manages things like node parameter index, data

objects for corresponding node parameter, number of channels etc.

A source-pad can be linked to a sink-pad to connect two nodes or

left floating to expose them as graph parameter, which can be

managed by the application

Buffers and Buffer pools: Application need to

enqueue/dequeue buffers for all the pads exposed as graph

parameter. To make this easier, a pool of buffers is allocated for all

floating pads. Application can acquire buffers form buffer pools and

use it and release it back when done

Modules: Each module is a wrapper around an OpenVX

kernel, which encapsulates the code for Creating data objects for

inputs and outputs, Initialize Pads based on number of inputs and

outputs Create the OpenVX node, and exposes a simple config data

structure for user

Figure 3. Illustration of an OpenVX Application written using TIOVX Apps

Application development Flow
The figure summarizes the application development flow with

introduction of TIOVX Apps Layer on top of OpenVX

.
Figure 4. Application development flow using TIOVX Apps

 111-2
IS&T International Symposium on Electronic Imaging 2025

Autonomous Vehicles and Machines 2025

Interaction using Pads and Buffer Pool
Let’s take an example of simple Capture Display pipeline to

showcase how we can use TIOVX Apps Layer to simplify the

application code. As shown in the figure below, simple Capture

Display pipeline involves 3 frameworks, v4l2 for capture, OpenVX

for Image Signal Processing (ISP) and DRM for Display.

Figure 5. Frameworks involved in Capture Display Pipeline

Writing an optimized application for this pipeline involves

managing the pipelining between v4l2, OpenVX and DRM by

creating multiple threads for buffer enqueue/dequeue at each

interface. The figure below showcases how this is made simpler

with the TIOVX Apps layer

Figure 6. Multiple frameworks interacting with TIOVX Apps Layer

In this example, four threads are required for optimally

realizing the pipeline, 1) Dequeue from v4l2 and enqueue input to

Graph 2) Dequeue processed Graph input and release it to pool 3)

Dequeue output from Graph and enqueue to DRM and 4) Dequeue

rendered buffer from DRM and release to pool. Each thread just

needs a Pad handle to enqueue/dequeue buffers, and concurrency is

handled in buffer pool APIs, making buffer management easier for

the users. Buffer pool helps in writing module for interfacing with

non OpenVX frameworks, as it defines a simpler way to acquire and

release buffers.

TEE Module for one to many connections
OpenVX allows connecting an output of the node to inputs of

multiple nodes. When using OpenVX directly, this can be done

using same shared exemplar for all node parameter that user wants

to connect. TIOVX Apps Layer uses pads to connect nodes which

supports only one to one connection i.e. one sink pad can only be

connected to one source pad. To address this problem, TIOVX Apps

introduces a special module called TEE, which can replicate a give

sink pad into multiple sink pad that can be connected to multiple

nodes. TEE module is not backed by an actual OpenVX kernel, it

just ref counts the exemplar of input sink pad and shares it with the

replicated source pad. Number of replicated pads is configured

during node creation. Below figure illustrates the usage of TEE

node.

Figure 7. Usage of TEE module

In the figure above, output of node0 is connected to input of

node1 and node2 via a TEE. A pad is also exposed as graph

parameter which can be managed by application using pad handle.

Support for multi graph execution
Lot of times there is a need to split the OpenVX pipeline for

some custom processing in between, such as in place transformation

like text overlay, adding logo or even drop buffer based on some

condition. For such cases, a seamless management of buffers needs

to be implemented between two graphs for optimal performance.

This requires a lot of additional effort while using OpenVX directly.

TIOVX Apps layer makes it simpler with pads and buffer pools.

Also, there is support for memory handle exchange between two

buffers, which is useful for in-place update or dropping the buffer.

The figure below illustrates the multi graph use case.

Figure 8. Multi graph execution

Results
We are comparing the proposed solution against development

using direct OpenVX and the work done in [1], which proposes to

wrap around OpenVX nodes as Gstreamer plugins. We are using

performance, effort for automotive safety qualification, flexibility,

operating system support and effort to add new kernel as metrics for

comparison. We have taken multi-channel camera-based object

detection application running on Sitara AM62A [4] SoC from Texas

Instruments as reference to get the performance metrics. Pipeline is

shown in the figure below.

Figure 9. Multi-channel object detection pipeline

IS&T International Symposium on Electronic Imaging 2025
Autonomous Vehicles and Machines 2025 111-3

The table shows the comparison between the Gstreamer approach

[1], TIOVX Apps Layer and OpenVX.

Gstreamer [1] TIOVX

Apps Layer

OpenVX

Performance A53 ~ 35%

DDR BW ~

2250 MB/s

IPC Interrupts

~ 28433

A53 ~ 28%

DDR BW ~

2050 MB/s

IPC

Interrupts ~

15944

A53 ~ 28%

DDR BW ~

2050 MB/s

IPC Interrupts

~ 15944

Effort

For

safety

qualification

Hard to get

safety certified

since

• Open

Source

• large

evolving

code

• Linux

centric

Minimal

extra effort

required for

safety

certification

as this is a

thin layer on

top of

OpenVX

Little less

effort, when

compared to

TIOVX Apps

approach.

Flexibility • Highly

flexible,

• Wide

variety

plugins

for

multimed

ia

• Plugins

for

integratio

n with

other

framewor

ks

• Fairly

flexible,

• Well

defined

interface

for data

exchang

e

• Minimal

effort for

integrati

ng a new

framewo

rk

Lack of

clearly

defined

interface for

pipelining

buffers with

other

frameworks,

makes it

challenging

Operating

system

Linux OS Agnostic OS Agnostic

Effort to add

custom

kernel

Need to

add support in

multiple layers

• EdgeAI

Gst

Plugins

• EdgeAI

TIOVX

Modules

• OpenVX

Need to

add support in

• TIOVX

App

modules

• OpenVX

Need to

add support in

• OpenVX

Conclusion
In this paper we have proposed a new layer on top of OpenVX

called TIOVX Apps Layer, which has enables faster development

environment for OpenVX, with right balance between flexibility

and control over the lower level components. Some of the key

highlights of having this software design is, faster development

compared to native OpenVX without impacting the performance,

modular code and easy to debug, easier to realize and change the

pipeline by adding, removing or modifying an element as compared

to native OpenVX, simplified integration with other frameworks

like v4l2, DRM, OpenMaxs, easier to safety qualify and go into

production with as compared to Gstreamer. Proposed solution is

implemented and tested on Sitara and Jacinto Analytics SoCs from

Texas Instruments, source code is public and can be found here [5].

References
[1] Shyam Jagannathan, Vijay Pothukuchi, Villarreal Jesse, Kumar

Desappan, Manu Mathew, Rahul Ravikumar, Aniket Limaye, Mihir

Mody, Pramod Swami, Piyali Goswami, Embedded Processors

Business, Texas Instruments, Carlos Rodriguez, Emmanuel Madrigal,

Marco Herrera, "OpTIFlow – An optimized end-to-end dataflow for

accelerating deep learning workloads on heterogeneous SoCs", AVM

track, Electronic Imaging, 2023

[2] Gstreamer-

https://gstreamer.freedesktop.org/documentation/applicationdevelopm

ent/introduction/gstreamer.html

[3] OpenVx - https://www.khronos.org/openvx/

[4] AM62A - https://www.ti.com/tool/SK-AM62A-LP

[5] EdgeAI TIOVX Apps - https://github.com/TexasInstruments/edgeai-

tiovx-apps

Author Biography
Rahul Ravikumar is a Software Engineering Manager working on SDKs for

TI Jacinto devices at Embedded Processors Group, Texas Instruments. His

domains of interests include Edge Analytics, Embedded Linux, Gstreamer,

OpenVX, Yocto, RTOS. He received a master’s degree from BITS Pilani in

the field of Embedded Systems and been with Texas Instruments since 2021

Abhay Chirania is a Software Engineer working on accelerating deep

learning on TI devices at Embedded Processors Group, Texas Instruments.

His domain of interests includes Edge Analytics, Deep learning,

TensorFlow, ONNX, Gstreamer. He received a bachelor’s degree from SRM

Institute of Science and Technology

Shyam Jagannathan is an EdgeAI architect and Senior Member of Technical

Staff at Embedded Processors Group, Texas Instruments. His domains of

interest include DSP architecture, SoC architecture, hardware accelerators,

deep learning, perception, sensor fusion localization, path planning and

overall system optimization He received a master’s degree in the field of

Signal Processing and Communications from Illinois Institute of

Technology, Chicago in 2013

Jesse Villarreal is a software architect for TI’s heterogeneous multicore

SoCs and a Senior Member of Technical Staff (SMTS) at Embedded

Processors Group, Texas Instruments. He received a master’s degree from

the University of Texas at Dallas in Computer Engineering and has been

with Texas Instruments since 2001. His areas of interest include DSP

software optimization, heterogeneous multicore middleware frameworks,

vision and imaging hardware accelerators, and overall system software

scalability, portability, and optimization

 111-4
IS&T International Symposium on Electronic Imaging 2025

Autonomous Vehicles and Machines 2025

https://www.ti.com/tool/SK-AM62A-LP

