
Data optimization strategies for collaborative perception
Besma Abdali 1; Quentin Picard 1; Maryem Fadili 1

1Institut VEDECOM; 23 bis Allée des Marronniers, 78000 Versailles, France

Abstract
Collaborative perception for autonomous vehicles aims to

overcome the limitations of individual perception. Sharing infor-
mation between multiple agents resolve multiple problems, such
as occlusion, sensor range limitations, and blind spots. One of
the biggest challenge is to find the right trade-off between per-
ception performance and communication bandwidth. This arti-
cle proposes a new cooperative perception pipeline based on the
Where2comm algorithm with optimization strategies to reduce the
amount of transmitted data between several agents. Those strate-
gies involve a data reduction module in the encoder part for effi-
cient selection of the most important features and a new represen-
tation of messages to be exchanged in a V2X manner that takes
into account a vector of information and its positions instead of
a high-dimensional feature map. Our approach is evaluated on
two simulated datasets, OPV2V and V2XSet. The accuracy is in-
creased by around 7% with AP@50 on both datasets and the com-
munication volume is reduced by 89.77% and 92.19% on V2XSet
and OPV2V respectively.

Introduction
Collaborative perception in a V2X (vehicle-to-everything)

manner aims to overcome the challenges of individual perception
with a shared perception by integrating information from other
agents, such as road infrastructure or other connected vehicles that
improves the accuracy of detection and the robustness of the per-
ception system [2]. It solves problems of individual perception,
which are often limited by the embedded sensors and face chal-
lenges such as occlusions and blind spots [1, 5, 8, 20]. Although
collaborative perception overcomes the limitations of individual
perception, it introduces a major new challenge, the increase of
bandwidth consumption due to the need of frequent and volu-
minous data communications between vehicles and other agents.
[4, 9, 10, 11, 14, 18, 19].

The efficient use of communication resources is essential for
collaborative perception. In order to minimize communication
costs, a naive solution is the use of late collaboration, where each
agent makes their own predictions and shares their outputs with
other agents [2]. Late collaboration saves bandwidth but can re-
sult in lower perception performance, due to potentially noisy or
incomplete individual outputs [2]. Recent works take into ac-
count the intermediate collaboration to optimize the perception
and communication trade-off. It involves transferring features
generated by deep neural networks from other agents to the ego-
vehicle, which fuses these features to make predictions. It pro-
vides a trade-off between perception performances and bandwidth
consumption, but can lead to information loss and redundancy [2].

Previous works make a hypothesis that once two agents col-
laborate, they are forced to share perceptual information about
all spatial areas. This assumption consumes bandwidth because

of a large proportion of spatial areas that may contains informa-
tion that is not relevant to the perception task. Where2comm [4]
has proposed a strategy that only transmits messages over con-
strained spatial areas. While this method reduces the communi-
cation costs, it still requires the transmission of high-dimensional
feature maps. To address one of the limitations of intermediate
collaboration, our main contributions optimize the collaborative
exchanges focusing on three key aspects:

• First, a new cooperative perception pipeline based on the
Where2comm algorithm with data optimization strategies

• Then, the addition of a data reduction module that impacts
the backbone process.

• Finally, an innovative message representation to be trans-
mitted between the connected agents.

This article is structured as follows: First, the related works are
described on collaborative perception. Then, the new pipeline
with optimization strategies to reduce the amount of data trans-
mitted between the road users is detailed. The applied methodol-
ogy and experimental results to evaluate the performances on two
different datasets are presented. Finally, the findings of this work
are detailed and discussed.

Related works
Communication in multi-agent environments is a well-

established field where strategies have evolved from predefined
protocols to the adoption of machine learning methods to handle
complex situations. CommNet [13] and similar works explored
continuous communication in multi-agent systems. Vain [3] in-
troduced the use of attention mechanisms for selective merging
of information between agents. These studies have mainly dealt
with decision-making tasks using reinforcement learning, a ne-
cessity in the absence of direct supervision.

Collaborative perception is an emerging field in the develop-
ment of multi-agent communication systems for perception tasks.
It is reinforced by high-quality data and collaborative methods
that optimize the trade-off between performance and bandwidth
consumption. Works such as V2VNet [14], which uses multi-turn
message passing through graphical neural networks and DiscoNet
[12], which applies knowledge distillation, have shown significant
improvements in perception and prediction performance. V2X-
ViT [15] demonstrates the effectiveness of a new multi-agent at-
tention module to integrate heterogeneous information.

Other works such as When2com [10] and Who2comm [11]
use an attention mechanism to select information from relevant
collaborators. In addition, Where2comm [4] and CoCa3D [6]
extend the selection process to incorporate spatial dimensions.
How2comm [17] uses a mutual information-aware communi-
cation mechanism to preserve informative features, a spatial-
channel filtering for efficient sparsification and a flow-guided de-
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Figure 1. Cooperative perception pipeline based on the Where2comm algorithm with data optimization strategies highlighted in orange. The data filtering

module reduces the backbone’s dimension and keeps the most important features. The message representation and received modules optimizes the amount of

data to be transmitted between multiple road agents.

lay compensation strategy to predict future features and eliminate
temporal misalignment. A pragmatic collaboration transformer
integrates spatial and contextual semantics among agents. Prag-
Comm [7] is based on three main strategies: a pragmatic selection
of messages to choose critical data, a representation of messages
to allow communication with entire clues and a selection of col-
laborators to prune unnecessary communication links. It includes
two key components: the single-agent detection and tracking and
the adaptive pragmatic collaboration to various communication
conditions.

Despite these advances, a large part of current methods still
transmit superfluous data, resulting in unnecessarily high com-
munication costs. In this study, we seek to optimize the exchange
of information by transmitting only features to object recognition,
thus reducing the volume of data exchanged and improving the ef-
ficiency of the collaborative process. We propose a method where
each agent sends a reduced vector of essential information and its
spatial position.

Data optimization strategies
This section details the proposed collaborative perception

pipeline designed around two main strategies as shown in Fig-
ure 1. Our approach is based on the Where2comm algorithm [4],
which includes the encoder with the data filtering module. It se-
lects the most relevant and sufficient information for object de-
tection. The second strategy impacts the spatial confidence-aware
communication that is responsible for the communication and the
fusion of messages from multiple agents. The messages repre-
sentation module focuses on optimizing the representation of the
transmitted messages.

Data Filtering
The data filtering module is located between the Pillar Fea-

ture Net (PFN) and the backbone in the encoder part [8]. This
module influences the collaborative object detection process from
point cloud data. The backbone, which transforms the extracted
features by the PFN in an abstract representation, uses a 2D con-

volutional network to process the pseudo-image computed by the
PFN. The data filtering module modifies and reduces the net-
work backbone’s dimensions relative to the original input pseudo-
image while maintaining essential features. This module influ-
ences the spatial confidence-aware message fusion module, where
each instance of fused attention is initialized with a feature dimen-
sion from the data filtering method. This ensures that the fusion
from different agents operates with reduced dimensions feature
maps to improve data aggregation.

Several experiments have been carried out to reduce the
backbone size by powers of two:

[
2x,22x,23x] where x varies

from 0 to 6. The following two configurations were taken into ac-
count to achieve an optimal trade-off between accuracy and con-
sumption: [8, 32, 64] and [8, 64, 128].

Message representation
The second optimization strategies is the message represen-

tation module to optimize the transmission of the selected feature
maps. Each agent employs this message representation based on
an information vector F which contains the data used for object
detection, with its position vector P. The approach allows to take
into account only non-zeros data. Therefore, it is only necessary
to transmit the information and position vector, rather than the en-
tire feature map consisting of floating-point numbers and zeros.

Experimental results
In this section, we present the experimental results. First, we

describe the evaluation method and then we compare the perfor-
mances of our approach with the baseline Where2comm and two
other fusion methods, early and late fusion. Early fusion aggre-
gates raw data from different agents while late fusion fuses the 3D
bounding boxes predictions computed by each connected agents.

Methods
Our experiments cover two simulated datasets with point

cloud processing: V2XSet [15] and OPV2V [16]. The cooper-
ative 3D object detection task is performed with the use of 2 to 7
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Figure 2. Average precision at 0.30 IoU threshold (AP@30) in relation to

the volume of communication from equation 1.

connected agents. They are characterized as connected vehicles
and infrastructure.

The results are evaluated using three metrics. First, we com-
pute the traditional Average Precision (AP) at three Intersection
over Union (IoU) thresholds : 0.30, 0.50 and 0.70. Then we eval-
uate the communication volume [4] which counts the size of the
message per byte in logarithmic scale with base 2 as described in
equation 1.

log2

(
M(k)

i, j ×D× 32
8

)
(1)

M(k)
i, j is the selection matrix, D denotes the channel dimension, 32

is multiplied as float32 data type is used to represent each number,
8 is divided as the metric byte is used.

The final evaluated metric is the execution time in millisec-
onds (ms) for each part of the pipeline.

Training Details: the model has been trained for 5 epochs with a
learning rate of 10−3 on NVIDIA GeForce RTX 2080 Ti with the
OpenCOOD framework [16]. The basic settings of the backbone
are used in the encoder block which corresponds to the size of
filters and is fixed to [64,128,256]. This setting is changed in our
experiments according to both configurations used.

Performance Analysis
To evaluate the impact of our approach on object detection

accuracy and bandwidth consumption, three algorithms have been
identified and selected: early fusion collaboration [2], late fusion
collaboration [2], and Where2comm [4]. Those algorithms has
been selected based on the best trade-off between detection accu-
racy and bandwidth consumption.

Figures 2, 3 and 4 show the average precision (AP@30,
AP@50 and AP@70 respectively) in relation to the volume of
communication in log2. The baseline is drawn in a diamond
shape, early fusion in a triangle, late fusion in square and our con-
tributions in stars and in a plus shape. The results on V2XSet are
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Figure 3. Average precision at 0.50 IoU threshold (AP@50) in relation to

the volume of communication from equation 1.
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Figure 4. Average precision at 0.70 IoU threshold (AP@70) in relation to

the volume of communication from equation 1.

based on fill markers and on empty markers for OPV2V. Config-
uration 1 (Config. 1) takes into account the data filtering module
with a channel dimension of [8,32,64] instead of [64,128,256].
Configuration 2 (Config. 2) takes into account a channel dimen-
sion of [8,64,128]. Both configurations take into account the
new message representation format to be exchanged between con-
nected agents.

The results highlight that late fusion provides higher accu-
racy than the baseline for all average precision thresholds with a
median communication volume of around 29 bytes (B). The AP
is close to the same accuracy as the early fusion (EF) on both
datasets. The communication volume for the EF configuration is
much higher with around 221B. In AP@70, the accuracy of late
fusion decreases by 10% compared to the early fusion approach
but sill higher than the baseline by around 10% to 20% depending
on the dataset.
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Comparison of execution times in ms for each part of the proposed pipeline compared to the baseline [4]. The first two best results
for each datasets are highlighted in bold.

Model Dataset Encoder Confidence Generator Message Exchange Message Packing Decoder

Where2comm [4] V2XSet 4.82 0.45 31.05 0.12 0.14
OPV2V 5.25 0.44 34.59 0.12 0.15

Config. 1 V2XSet 4.74 0.46 15.39 0.12 0.15
OPV2V 5.17 0.46 18.10 0.13 0.16

Config. 2 V2XSet 5.25 0.45 19.26 0.10 0.15
OPV2V 5.57 0.43 25.57 0.12 0.15

Our contribution yields results comparable to those of inter-
mediate fusion, aiming to achieve a communication volume sim-
ilar to late fusion while maintaining an average precision close to
that of early fusion. The first configuration reduces the commu-
nication volume of the baseline by 91% on both datasets and the
second configuration by 86% and 90% on V2XSet and OPV2V
respectively. Those results are based on the log2 base conver-
sion to bytes. In terms of accuracy, a lower channel dimension to
extract the most relevant features as in the first configuration in-
creases the AP@30 and AP@50 up to 7% reaching 78% and 73%
on V2XSet respectively. The accuracy on the OPV2V dataset has
not been impacted and is similar to the baseline. On the other
hand, the accuracy with the second configuration decreases on
OPV2V by 9%, 3% and 9% on AP@30, AP@50 and AP@70
respectively.

Both configurations brings a trade-off between volume of
communication and accuracy of 3D object detection. It highly
depends on the use case and the type of classes to predict. For
smaller objects, the configuration one is preferable, whereas for
bigger objects, such as trucks, the configuration two is the one to
choose.

Table 1 provides the execution time (in milliseconds) of each
part of the proposed pipeline with both configurations compared
to the baseline Where2comm. While the data filtering in the en-
coder does not significantly impact the execution time of the en-
coder part, the message representation module reduces the latency
of the message exchange part by 50%. The whole pipeline runs
on NVIDIA GeForce RTX 2080 Ti GPUs with a latency of around
20.86ms compared to 36.58ms for the baseline, which represents
a processing of 48 FPS compared to 27 FPS respectively.

Conclusion and perspectives
This work proposes new optimization strategies for the data

exchange in the context of collaborative perception in a V2X man-
ner. The developed pipeline, based on the Where2comm algo-
rithm, reduces the bandwidth consumption while maintaining the
performances of 3D object detection with two key components:
the data reduction module and the representation of messages to
be transmitted between agents.

Experimental results show that the proposed approach
achieves a trade-off between accuracy and consumption based on
LiDAR processing with a data reduction of 89.77% and 92.19%
on V2XSet and OPV2V respectively. The accuracy of the percep-
tion performances have been increased by 5% on AP@50 com-
pared to the baseline. Real-time performance for 3D object de-
tection has been achieved using a NVIDIA GeForce RTX 2080
Ti GPU with a latency of 20.86ms for the whole pipeline, which

reduces the baseline execution time by 15.72ms.
Future works will be focused on the development of a more

robust strategy that optimizes bandwidth usage even with a large
volume of data, while maintaining high perception performance.
Indeed, our method shows a significant advantage in terms of
bandwidth consumption when the amount of information to be
transmitted is limited. However, as this number increases, so does
the bandwidth consumption. It is also essential to conduct an in-
depth study to compare the state-of-the-art recommended data fu-
sion methods with those emerging from our experiments. Such
an analysis would make it possible to identify the most efficient
approaches in terms of bandwidth management according to the
volume of information processed. The literature suggests that in-
termediate fusion is efficient for its accuracy and consumption
trade-off. Our works indicate that late fusion is preferable on the
simulated datasets used. Proposed collaborative approaches need
to be tested on real-world datasets to assess their impact on a col-
laborative system performance.Therefore, there is a strong need
for available real-world datasets that cover both V2I and V2V sce-
narios.
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