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Abstract
As AI becomes more prevalent, edge devices face challenges

due to limited resources and the high demands of deep learning
(DL) applications. In such cases, quality scalability can offer sig-
nificant benefits by adjusting computational load based on avail-
able resources. Traditional Image-Signal-Processor (ISP) tun-
ing methods prioritize maximizing intelligence performance, such
as classification accuracy, while neglecting critical system con-
straints like latency and power dissipation. To address this gap,
we introduce FlexEye, an application-specific, quality-scalable
ISP tuning framework that leverages ISP parameters as a con-
trol knob for quality of service (QoS), enabling trade-off between
quality and performance. Experimental results demonstrate up to
6% improvement in Object Detection accuracy and a 22.5% re-
duction in ISP latency compared to state of the art. In addition,
we also evaluate Instance Segmentation task, where 1.2% accu-
racy improvement is attained with a 73% latency reduction.

Introduction
With AI becoming ubiquitous, vision system designers are

challenged by the resource limitations of edge devices and the
resource-intensive nature of deep learning (DL) applications.
Emerging computing paradigms such as Green Edge AI advo-
cate a resource-conscious approach to edge AI ensuring sustain-
able performance [1]. This approach shifts the design objective
from solely maximizing intelligence performance (e.g., classifi-
cation accuracy) to adopting a flexible and quality-scalable com-
pute paradigm that jointly optimizes both accuracy and key de-
sign constraints, such as latency and energy budgets. Techniques
adopted for incorporating QoS include adaptive selection of ML
model depending upon the system constraints [2,3] and changing
the input resolution to tradeoff for energy efficient visual comput-
ing [4]. Software-Defined Imaging (SDI) [5], a recently proposed
computing paradigm, uses software to control imaging hardware,
enabling flexible image processing and real-time adjustments to
algorithms, sensor configurations, and workflows. SDI aims to
design the hardware–software stack from the sensor, Image Sig-
nal Processor (ISP), compute architecture, and OS to allow for
reconfigurability and programmability driven by the end applica-
tions and device constraints. An ISP converts RAW sensor data
to a high-quality image and comprises multiple processing blocks
that can be configured via an ISP configuration. As an example
Table 1 provides ISP configurations for Fast-OpenISP [6]. This
configuration controls the structure, i.e., the number of active ISP
blocks and their tunable parameters, and hence provides a poten-
tial quality control knob, provided SDI provides ISP reconfigura-
bility. Traditionally, the ISP parameters are fixed after a manual
tuning process or optimized automatically [7] aimed at produc-
ing the best image quality for humans. With the advent of AI

and Deep Learning, there are now a growing number of cameras
whose outputs are no longer viewed by humans but rather by AI
algorithms such as Image Classification, Object Detection, Seg-
mentation, etc. Thus, an ISP tuned for human perception may not
provide optimal results for high-level computer vision tasks [8].
Therefore, there has been a growing interest in tuning the ISP
parameters for high-level computer vision tasks. These works in-
clude efforts to design end-to-end learnable ISP pipelines [9–11],
optimization of ISP for a particular set of CV tasks using genetic
algorithms [12, 13], and empirical studies [14–16] on effects of
various ISP blocks, possible reductions in ISP blocks and min-
imum ISP search for a CV task [17]. In Shi et al. [17], ISP
structure and parameters are optimized to achieve compact and
efficient configurations, improving accuracy and reducing ISP la-
tency under challenging conditions like low-light and noisy im-
ages. Almost all of the schemes aim at providing an ISP setting
tuned for either human perception or a particular CV application
and do not formally consider utilizing the ISP configurations as a
quality control knob to provide quality scalable ISP tuning.
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Figure 1: The ISP design space is defined by ISP Latency T (in
sec.) and accuracy, evaluated across various ISP configurations
for two different resolution settings. This design space allows

exploration of the trade-offs between processing speed (latency)
and quality (accuracy) for each configuration.

Motivational Analysis: To demonstrate that ISP parameters
indeed provide a reliable QoS control knob, we provide the accu-
racy score (Mean Average Precision (mAP)) for a computer vision
application (Object Detection) in Figure 1 for multiple ISP con-
figurations of Fast-OpenISP [6]. The design points are dictated
by ISP configuration design space, which we state in Table 1.

For each configuration, an image is generated that is subse-
quently passed on to an object detector [18], and its mAP score
is computed. The design points were found by applying a GA-
based optimization for two distinct input resolutions (1164x874
and 582x438). Without the loss of generalizability, we observe
that by tweaking ISP configuration, we can control the QoS of the
CV application. As an example, ISP configuration A provides
a higher mAP score, while point C provides a lower mAP with
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a lower ISP computational time requirement. We also observe
that, as expected, lowering the resolution provides another qual-
ity knob. However, more importantly, an ISP configuration with
low-resolution input may provide a higher mAP than one with
high-resolution input requiring more processing time. For exam-
ple, Point C is inferior compared to Point D.

Required: Thus, there is a motivation to jointly explore the
combined design space of input resolution and ISP configuration.
This enables a graceful degradation of quality as a function of
a constraint, such as the ISP latency for our case. For example,
in Figure 1 traversing the path of A-B-D-E may provide a better
adaptive QoS than a more traditional flow where we switch from
a higher resolution to a lower resolution, which may result in sub-
optimal adaptive QoS (A-B-C-E).

Our Contribution: In this paper, we present FlexEye,
an application-specific, quality-scalable ISP tuning scheme that
provides a set of ISP configurations enabling SDI-ready pro-
grammable ISPs to dynamically adapt their QoS. Our approach
employs a mixed variable GA-based optimization strategy that
navigates a multi-objective design space, considering both CV
task accuracy and processing time across multiple resolutions to
extend the QoS design space. By facilitating adaptive Quality
of Service (QoS), our ISP configurations enable ISPs to transi-
tion to lower-quality profiles while delivering substantial gains in
terms of reducing the ISP latency. The scheme was evaluated for
multiple computer vision tasks, and results were compared with
state-of-the-art.

Methodology
Problem Formulation

The ISP pipeline fISP is characterized by its structure Λ and
parameters Θ. We assume that the ISP modules are indexed from
0 . . .H, where H is the total number of ISP parameters that can
be configured. If module i is on, i.e. Λi = 1(True), Θi represents
the configuration parameter of this module. Given a dataset of
raw sensor images R = {r0,r1, . . . ,rn}, the ISP pipeline is used to
transform these images into Red-Green-Blue (RGB) images I =
{i1, i2, . . . , in}. This transformation is represented as:

I = { fISP(scale(ri, res),Λ,Θ, res)|ri ∈ R} (1)

The scale(ri, res) provides the RAW image at the specified
resolution res. The performance of the targeted downstream task
is denoted as M. For-example, for object detection, M(I) repre-
sents the mAP score for all RGB images in I. We explore the dual-
objective space of performance M and the computation time. The
premise is that we should be able to trade-off performance with
lowering the computation complexity, possibly by turning some
of the ISP modules off. We denote the computation time of the
ISP pipeline as T (Λ,Θ, res).

Our objective is to find the pareto-optimal set of ISP con-
figurations. More concretely, we define the set of all ISP con-
figurations as C = {(Λi,Θi, resi)|i ∈ N0}. The configuration ci
dominates the configuration c j, where i ̸= j, based on the follow-
ing conditions:
Dominance Condition For succinct notation, we denote
fISP(scale(rk, resi),Λi,Θi, resi) as f i

ISP(rk). The dominance rela-
tion is defined as:

ci ≻ c j IFF

M({ f i
ISP(rk)})> M({ f j

ISP(rk)})
AND T (Λi,Θi, resi)≤ T (Λ j,Θ j, res j)

OR
M({ f i

ISP(rk)})≥ M({ f j
ISP(rk)})

AND T (Λi,Θi, resi)< T (Λ j,Θ j, res j)

where rk ∈ R and configuration i must be better than config-
uration j in either performance or time.
Pareto-Optimal Set: The goal is to find the pareto-optimal set of
ISP configurations:

Ĉ = {ci ∈ C|{c j ∈ C|c j ≻ ci, i ̸= j}= /0} (2)

i.e. Ĉ is composed of all ISP configurations which are not dom-
inated. Through the Genetic Algorithm (GA) based search ap-
proach presented in the following section, we intend to find a good
approximation of Ĉ.

Optimization Process
As stated in the previous section, a given ISP configura-

tion is represented as c(Λ,θ , res). In this section, we explain
how we optimize the ISP configuration. The optimization is
conducted considering two objectives: the application-specific
performance metric (M(·)), and the execution time of the ISP
pipeline (T (·)). This optimization is a complicated process due
to the inter-dependency of the ISP modules. To address this
inter-dependency, we adopt a mixed-variable GA approach.
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Figure 2: FlexEye ISP Tuning Methodology

GA is inspired by the evolutionary process and is good at
tackling optimization problems that are not well suited for
standard optimization algorithms, in which the objective function
is discontinuous or nonlinear. To perform GA based optimization,
we use pymoo python library [19].
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The individual steps are illustrated in Figure 2 whereas, al-
gorithm 1 provides the concise description of the optimizer. As
stated in algorithm, we first initialize the population and compute
its fitness. Fitness has two attributes as stated in the following
equations:

∀ci ∈ PPPnnn

f M
i = M({ fISP(scale(r j, res),Λi,Θi, resi)|r j ∈ R}) (3)

f T
i = T (Λi,Θi, resi) (4)

f M
i needs to be maximized while f T

i needs to be minimized. Next,
t individuals from the population are selected for mating based
on tournament selection method [20]. On the selected parents,
crossover operation is performed, producing a set of offspring
(PPP′′′

ggg). Based on the probability pm the offspring are then mu-
tated. Finally, Rank and Crowding Survival (RnC-S) is used to
determine the individuals from the combined set of parents and
offspring, who will survive into the next round of GA. Once the
GA terminates, due to reaching either the generation threshold or
objective space tolerance threshold ftol. ftol is integrated in [19]
and is a stopping criterion based on changes in the objective space
covered by the returned solutions. The set of individuals in the fi-
nal generation who are on the Pareto-front (see (2)) is returned as
the solution. These are the Pareto-optimal set of ISP configura-
tions.

Experiments and Results
Our results are structured into three sections. In the first two

sections, we evaluate the performance of FlexEye ISP in deliver-
ing quality-scalable ISP configurations for two computer vision
applications: object detection using YOLOv8n [18] and instance
segmentation using SAM [21], both of which are pre-trained on
the COCO dataset [22]. All experiments are carried out on a
Corei7 machine with an NVIDIA 1080Ti GPU. In the final sec-
tion, we compare the effectiveness of our scheme against the state-
of-the-art automatic ISP tuning scheme of [17].

Camera ISP: ISP used to evaluate the scheme was Fast-
OpenISP [6], an efficient version of OpenISP. The details of the
ISP pipeline and configurations are provided in Table 1. Our
fitness function is multi-objective, considering task fitness M(·)
(measured by Mean Average precision mAP for object detection
and Mean Intersection over union (mIOU) for segmentation) and
computation budget given by ISP latency per image T (·).

Dataset: We validate FlexEye using a low-light raw image
dataset sourced from a OnePlus sensor, provided in [9]. This
dataset consists of 141 night time driving scenes. We manually
annotated each image with ground truth labels and masks for ev-
ery instance of the Person and Car classes. We consider three
resolutions (1164x874, 920x690, 582x438). Stratified sampling
is used to get 42 images employed for ISP tuning. The remain-
ing 99 images are used for testing. This split is identical for both
object detection and instance segmentation.

FlexEye Hyperparameter Settings: For FlexEye, the pop-
ulation size N is 30, with a maximum of 30 generations G. The
optimization will terminate early if the termination criterion based
on ftol is satisfied. ηηη is set to [15,20,25,30,35]. These settings
were chosen based on their balance between convergence speed
and exploration of the solution space.

Algorithm 1 Proposed Algorithm for ISP Optimization

Require: Default ISP, Parameters range limits, Maximum num-
ber of generations G and fitness tolerance threshold ftol, Pop-
ulation size N, Crossover probabilityPc, number of parents t,
and ηηη array containing η values for different sets of genera-
tions.

1: Initialization: Initialize the population {P0,i}N−1
i=0 where the

first individual P0,0 = default ISP, while other individuals are
randomly generated within the stated range limits. Compute
the fitness of each individual using equations (3) and (4).

2: for g = 0,1,2, . . . ,G do
3: η = ηk where k = ⌊ g

5 ⌋
4: Selection: Select fittest t parents from PPPggg where t < N,

using tournament selection method as stated in [20]. We
call this set P̂PPggg

5: Crossover: Perform 2-point Crossover on elements pairs
in P̂PPggg producing the set of offspring PPP′′′

ggg
6: Mutation: With a probability pm, modify the individu-

als in PPP′′′
ggg. Bit-flip mutation is used for binary attributes

while polynomial mutation is used for integer and floating
point attributes. η determines the level of variation which
is added with lower values affecting higher variation.

7: Fitness: Evaluate fitness ((3) and (4)) for each individual
in the population PPP′′′

ggg.
8: Survival: Use RnC-S method to select the new population

PPPggg+++111 from the combined set of current and new individu-
als (PPPggg ∪PPP′′′

ggg)
9: Termination Criteria: If the stopping criteria (e.g., max-

imum number of generations G or fitness tolerance thresh-
old ftol) are met, then terminate.

10: end for
11: Output: Pareto optimal individuals as stated in Equation 2.

Quality-scalable ISP Tuning for Object Detection
Figure 3 provides the results of Quality-scalable ISP Tuning

for Object Detection using FlexEye on training set. The y-axis
provides CV task performance M, which provides the mAP50-
95 score, a widely used metric for object detection evaluation,
while the x-axis provides the ISP processing rate which is the re-
ciprocal of ISP latency (1/T ), thus highlighting the trade-off be-
tween detection accuracy and ISP processing rate for various ISP
configurations. For this experiment, three different input resolu-
tions (1164x874, 920x690, 582x438) were considered for Flex-
Eye, represented by Hi-res, Med-res, and Low-res in the Figure 3.
The dashed line represents the quality-scalable ISP configurations
returned by FlexEye. We also provide the ISP configurations at
the individual Pareto front for each resolution. The FlexEye ISP
configuration points (A, B, C, and D) provided on the dashed line
show that the combined design space allows us to avoid inferior
points offered by individual resolutions. Note that a more tradi-
tional approach might have simply reduced the resolution without
considering the additional design space offered by the ISP for en-
hanced QoS. Despite observing distinct performance clusters for
each resolution, the design points offered by each resolution may
have inferior points compared to those provided by the extended
design space enabled through ISP tuning. For example, ISP con-
figuration B is superior to multiple Hi-res ISP configurations. In
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Table 1: ISP Configuration settings considered for Fast OpenISP [6] for the Design Space Exploration conducted in this research work.
Here Λ = 1 represents a necessary block while Λ = {0,1} represents an ISP block that can be turned OFF or ON. Ranges for tunable

parameters Θ are also provided in the table, where I and F represent integer and float values, respectively.

index Module Name Parameter/s Λ Θ

0 Dead Pixel Correction (DPC) diff threshold, neighbor pixels {1} I[0,99], I[0,9]
1 Black Level Compensation (BLC) {r,gr,gb,b}, {α,β} {1} {I[0,1023]}, {F[0,1)}
2 Automatic White Balance (AWB) {r gain, gr gain, gb gain, b gain} {1} {I[0, 1023]}
3 Chroma Noise Filter (CNF) diff th, {r gain, b gain} {1} I[0,39], {I[0,1023]}
4 Color Correstion Matrix (CCM) - {0,1} Fixed
5 Gamma Correction (GAC) gain, gamma {1} I[0, 255], F[0,2)
6 Non-local Means Denoise (NLM) - {0,1} Fixed
7 Bilateral Noise Filtering (BNF) {intensity sigma, spatial sigma} {0,1} {F[0,1)}
8 Contrast Enhancement (CEH) clip limit {0,1} F[0,1)
9 Edge Enhancement (EEH) edge gain, {flat th, edge th, delta th} {1} I[0,1023], {I[0,9]}, I[0,255]
10 brightness and contrast control (BCC) {brightness offset, contrast gain} {0,1} {I[0,255]}
11 False Color Suppresion (FCS) - {0,1} Fixed
12 Hue Saturation Control (HSC) {hue offset, saturation gain} {0,1} {I[0,255]}
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Figure 3: Pareto front of design space explored by FlexEye for
quality scalable ISP tuning for Object Detection. The X-axis

provides the reciprocal of ISP Latency, and hence, the higher, the
better; the Y-axis provides the M score; the higher, the better.
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Figure 4: Object Detection: FlexEye enables effective quality
scaling of the ISP as a function of ISP Latency (Time).

Figure 4, we provide the train and test performance of FlexEye
ISP Configurations A, B, C, and D, and found the results to be
consistent with training. As we move from point A to B, the mAP
score on test images decreases by only 6.17% with a 45.93% re-
duction in ISP latency. Similarly, as we move from point C to D,
the mAP decreases by only 1.46% for a 22.95% reduction in ISP
Latency. Thus, FlexEye configurations provide a graceful quality
degradation as the ISP latency is reduced.

Figure 5 compares the object detection results computed
over a test image for FlexEye ISP as compared to the default
ISP provided by [9]. It can be observed that for each resolu-
tion, an ISP configured by FlexEye provides more detections at
a lower/comparable time.

Default: 1164 x 874
T: 1.45 sec

FlexEye-A
T: 0.4 sec

FlexEye-B
T: 0.22 sec

FlexEye-C
T: 0.14 sec

Default: 920 x 690
T: 0.8 sec

Default: 582 x 438
T: 0.3 sec

Figure 5: Visual results for Object Detection on images obtained
using three FlexEye ISP configurations (A, B, C) compared with

that of Default ISP at the three resolutions. Our ISP
configurations detect more objects while achieving lower ISP

latency.

Quality-scalable ISP Tuning for Segmentation
Figure 6 provides the results of FlexEye’s quality-scalable

ISP tuning for Instance Segmentation. Here, the y-axis provides
the mIOU score. Similar to the last section, three different in-
put resolutions (1164x874, 920x690, 582x438) were considered.
The FlexEye ISP configuration points provided on the dashed line
show that exploring the combined design space allows us to avoid
inferior points offered by individual resolutions. For example,
ISP configuration C is superior to a number of Med-res ISP con-
figurations. We provide the performance of segmentation on test
images produced by FlexEye ISP configurations in Figure 7, and
found the results to be consistent with training. It can be observed
that FlexEye configurations indeed provide a graceful degradation
in quality as the ISP latency is reduced. For example, as we move
from point A to B, the mIOU score for test set decreases by only
2.06% for a 48.59% reduction in time. Similarly, as we move
from point C to D, we see 6.55% decrease in mIoU and a 16.48%
decrease in ISP Latency. Figure 8 compares the segmentation re-
sults computed over a test image for FlexEye ISP as compared to
the default ISP provided by [9]. It can be observed that for each
resolution, an ISP configured by FlexEye provides better instance
segmentation at a lower/comparable time.
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Figure 6: Pareto front of design space explored by FlexEye for
quality scalable ISP tuning for Segmentation.
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Figure 7: Segmentation: FlexEye enables effective quality
scaling of the ISP based on Latency (Time).

Comparison with SoA ISP Tuning Scheme
In this section, we compare the performance of our ISP tun-

ing method to Refactoring ISP [17], a recent approach which im-
proved upon the prior art by proposing automatic search for com-
pact ISP configurations. For completeness, we also compare our
performance with the Default ISP configuration provided with the
dataset [9]. For a fair comparison, we used the same hyperpa-
rameters (population size of 265 and 63 generations) as suggested
by [17]. Figure 9 shows the performance comparison in terms of
accuracy and processing time for Object Detection on both the
training and test datasets. Here, we compare the configurations
with the highest mAP50-95 for both FlexEye and Refactoring ISP.
Our method achieves the highest mAP, with scores of 22.29%
during training and 25.39% during testing, with ISP latency of just
0.46 seconds (1/T=2.17) and 0.31 (1/T=3.2) seconds respectively.
Our approach surpasses both the Default ISP and Refactoring ISP
configurations by 5.6% and 6%, respectively, while reducing the
ISP latency by up to 78% and 22.5% respectively for test set. Sim-
ilarly, Figure 10 provides the results for segmentation. Here, we
compare the configurations with the highest mIOU for both Flex-
Eye and Refactoring ISP. Our method achieves the highest mIOU,
with scores of 64.02% during training and 61.1% during testing
with an ISP latency of 0.49 sec (1/T =2.04) and 0.35 sec (1/T =
2.86) respectively. On the test dataset, our approach again sur-
passes both the Default ISP and Refactoring ISP configurations
by 1.1% and 1.2%, respectively, while reducing the ISP latency
by up to 75.8% and 73%, respectively. Thus, FlexEye ISP config-
urations consistently deliver better QoS performance for both CV
tasks, thereby offering compact and efficient ISP configurations
compared to [17]. These results are also supported by Figure 11
which provides the visual results on a test image for both tasks. It
can be observed that FlexEye provides better performance com-
pared to the Default, and the Refactoring ISP [17] configurations
for both tasks.

Default: 1164 x 874
T: 1.45 sec

Default: 920 x 690
T: 0.8 sec

FlexEye-A
 T: 0.49 sec

FlexEye-B
T: 0.25 sec

FlexEye-C
T: 0.12 sec

Default: 582 x 438
T: 0.3 sec

Figure 8: Visual results for Segmentation on images obtained
using three FlexEye ISP configurations (A, B, C) compared with

that of Default ISP at the three resolutions. FlexEye ISP
configurations provide better segmentation quality at lower ISP

latency.
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Figure 9: Object Detection: Performance comparison of FlexEye
ISP configurations to that of state of the art [17]. ISP latency for

Default configuration is 1.45 sec (1/T = 0.68).
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Figure 10: Segmentation: Comparison of FlexEye ISP
configurations to that of state of the art [17]. ISP latency for

Default configuration is 1.45 sec (1/T = 0.68).

Conclusion and Future Work
This paper incorporates ISP tuning with resolution settings

as a control knob for quality scaling. The introduced ISP tuning
framework, FlexEye, utilizes a mixed-variable genetic algorithm
(GA)-based optimization strategy to explore a multi-objective de-
sign space, optimizing computer vision (CV) task accuracy and
ISP latency across multiple resolutions. Experimental results on
two CV applications were carried out. It was demonstrated that
the extended design space offered by our scheme provides ISP
configurations that provide object detection with 6% better ac-
curacy while requiring 22.5% lower ISP latency than SOA and
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Default
T: 1.45 sec

Ref-ISP
T: 0.38 sec

FlexEye
T: 0.31

Object Detection

Default
T: 1.45 sec

Ref-ISP
T: 1.3 sec

FlexEye
T: 0.35 sec

Segmentation

Figure 11: Visual Results for Object Detection and Segmentation
comparison with the SOA and Default ISP [9] configurations

5.6% better accuracy while requiring 78% lower ISP latency than
default. For Segmentation, FlexEye provided 1.2% better accu-
racy while requiring 73% lower ISP latency than SOA and 1.1%
better accuracy while requiring 75.8% lower ISP latency than de-
fault ISP on test set. Experiments also confirmed that our scheme
provides a graceful degradation as the ISP latency is constrained.
Possible future work involves extending FlexEye to optimize for
additional objectives, such as energy efficiency or memory foot-
print, to further enhance its applicability in resource-constrained
environments. Another possibility is to explore the integration
of machine learning models to predict optimal ISP configurations
based on real-time application needs. Additionally, expanding the
evaluation of FlexEye across a broader range of CV tasks and real-
world scenarios would provide deeper insights into its scalability
and versatility in different use cases.
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