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Abstract 

Automotive vision plays a vital role in advanced driver assistance 

systems (ADAS), enabling key functionalities such as collision 

avoidance. The effectiveness of models designed for automotive 

vision is typically measured based on their ability to accurately 

detect objects in a scene. However, an often-overlooked factor for 

automotive vision is the speed of the detections that depends on the 

data collection rate of the sensors. With conventional image sensors 

(CIS), the object detection rate is limited by the no information 

region between two consecutive frames (hereafter we refer to it as 

blind time), which affects the response time of drivers and ADAS to 

external stimuli. While increasing the CIS frame rate decreases the 

blind time and enables faster decision-making, it comes at the cost 

of increased data rate and power consumption. In contrast, lower 

CIS frame rates reduce data rate and have lower power 

consumption, but result in longer blind intervals between frames, 

delaying response time, which could be critical in high-risk 

situations. This trade-off between data rate and decision-making 

speed can be addressed by utilizing hybrid sensors for automotive 

vision. Hybrid sensors integrate event pixels alongside with CIS 

pixels. Event pixels provide sparse yet high-temporal-resolution 

data, continuously capturing changes in scene contrast that 

complements dense low temporal information of CIS. In this work, 

we demonstrate that 7fps CIS frames combined with EVS data can 

achieve ~40% lower data rate compared to 20fps CIS, without 

compromising performance of object detections. Moreover, 7fps 

CIS combined with EVS maintains almost constant performance 

within the blind time and thus enables faster detection with low data 

rate and power. 

Introduction 

Advanced Driver Assistance Systems (ADAS) play an important 

role in assisting drivers with vehicle operation and significantly 

enhancing road safety by reducing the risk of accidents. Automotive 

vision is a key component of ADAS with various applications 

particularly in autonomous vehicles. Automotive vision using 

conventional image sensors (CIS) operate with limited frames for 

e.g. 20 frame rate per second and thus have a time period between 

two consecutive frames with no information of the scene (referred 

to as blind time). Blind time also affects a driver’s response time to 

external stimuli, particularly in high-risk situations such as bad 

weather conditions. For an automotive sensor operating at 20–30 

frames per second, the blind time ranges from 33 to 50 milliseconds, 

which is long enough to delay a driver's reaction. This delay is 

especially critical during high-speed driving, such as on highways 

where a vehicle traveling at 60 mph would cover approximately 26 

meters in a second. In extreme weather conditions like snowfall, 

response times can be delayed by up to 1 second and thus limit the 

road safety [2]. Since human error is a leading cause of road 

accidents, faster reaction times to external stimuli are essential for 

improving road safety. Even advanced systems like Adaptive Cruise 

Control (ACC) have reaction times comparable to humans, typically 

ranging between 0.9 and 1.3 seconds [8]. In addition, Automatic 

Emergency Braking (AEB) takes more than a second to come to a 

complete stop if driving  at a speed of 25 miles/hour [7]. The time 

AEB takes to make the vehicle come to a complete stop is higher 

with an increase in initial speed. One of the possible solutions to 

detect objects faster is by increasing the CIS frame rate, but it 

increases data rate and power consumption as well. Hence, solutions 

that can gather faster information without increasing data rate are 

highly desirable. A promising solution to gather faster information 

without increasing data rate is by using hybrid sensors. Hybrid 

sensors offer lower data rates while minimizing perceptual latency, 

making them an efficient and effective alternative for enhancing 

automotive vision systems. 

Hybrid sensors integrate the capabilities of both event-based vision 

sensors (EVS) and conventional image sensors (CIS). EVS feature 

novel event pixels that detect relative changes in illumination when 

they exceed a predefined threshold [1]. These pixels output a stream 

of events encoding the location, polarity (sign of illumination 

change), and precise timestamp of each detected change. Since EVS 

operate asynchronously, they provide high temporal resolution with 

low latency. Additionally, they offer a high dynamic range, low 

power consumption, and are well-suited for various machine vision 

applications [1]. Recent studies on motion blur reduction and video 

frame interpolation have demonstrated the effectiveness of EVS in 

such tasks [3]. For automotive vision, combining EVS with CIS 

information will be an ideal solution for low data rate and high 

temporal information, because CIS sensors deliver high-resolution, 

dense spatial information, but suffer from low temporal resolution, 

leading to blind time between frames. In contrast, event pixels 

provide continuous, sparse information capturing brightness change 

information, effectively providing motion information between the 

blind time. By combining both modalities, hybrid sensors achieve 

an optimal balance, providing high-temporal-resolution information 

while maintaining a low data rate.                                              

In this work, we fuse conventional image sensor (CIS) data with 

event sensor data for automotive vision. We utilize the DSEC 

dataset that contains both CIS and EVS driving data for various 

scenarios with different light conditions. To transform EVS data to 

a frame based representation to be used as an input for convolutional 

neural networks, we accumulate events over a 20ms interval and 

transform it into a matrix representation. For evaluation, we use the 

YOLOv3 model and represent the fused CIS+EVS data using three 

channels: (1) empty channel, (2) CIS grayscale channel, and (3) 

event-based representation.  We compared the data rate and 

performance of a 7 fps CIS+EVS system with a 20 fps CIS-only 

system and observed that 7 fps CIS+EVS consumes approximately 

40% less data rate without compromising performance.  As we use 

only CIS grayscale in 7 fps CIS+EVS, hereafter, we will refer to 

“7fps CIS+EVS” case as “7fps CIS (grayscale)+EVS”.  
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Additionally, we evaluate the performance of 7 fps CIS (grayscale) 

+EVS during CIS blind time and observe consistent performance, 

demonstrating the CIS+ EVS effectiveness in providing continuous 

information. Our results show that combining CIS with EVS enables 

low-data-rate automotive vision while maintaining performance 

levels comparable to standard CIS systems. This approach offers a 

promising solution for reducing bandwidth and power consumption 

without sacrificing detection accuracy.  

     
Figure 1: Sample RGB Images from DSEC Dataset in various 

scenarios (different lightning conditions).  

 

Dataset  
 

In this work, we utilize DSEC: A Stereo Event Camera Dataset for 

Driving Scenarios [6]. The dataset is publicly available from the 

DSEC dataset website. It contains driving dataset for various 

scenarios, including both conventional CIS frames (see Figure 1) 

and event data (see Figure 2).  

 

               
Figure 2: Sample EVS images obtained from DSEC Dataset. These 

images are drawn by accumulating EVS data over a given time 

interval. The blue color shows the negative events and the red color 

shows the positive events.  

 

The event data has spatial resolution of 640 × 480 and the RGB 

images are downsampled to match the same resolution as EVS at 

640 × 480. The dataset includes 20 frame rate per second with 

variable exposure time based on the scene and captured in a 12-bit 

raw format for CIS images. The dataset contains numerous 

sequences or clips of data captured but in our work, we use only a 

subset of the available dataset to limit the training time. The 

sequences we use for training are from “Zurich city” from “16-21a” 

and we use “thun_02_a” data for testing. The dataset is stereo; 

however, we only use the CIS images from the left camera.  

Related Work 
 

Previous studies on automotive vision using conventional image 

sensors (CIS) have primarily focused on object detection 

performance across various scenarios. Some studies have explored 

the impact of rain on detection accuracy, while others have 

examined the effects of lens blur or different lighting conditions [4]. 

However, these studies often overlook the influence of blind time 

between CIS frames and the detection rate for object detection. 

Hybrid sensors that combine CIS and event-based vision sensors 

(EVS) have demonstrated significant potential in applications such 

as deblurring and video frame interpolation [3]. Research on 

automotive vision using hybrid CIS+EVS sensors has highlighted 

their advantages in detection performance. Notably, a recent study 

demonstrated the benefits of this hybrid approach in both 

performance and data rate [2]. However, existing studies fail to 

address the extensive data rate demands in real-world scenarios in 

the vehicles and the minimum CIS frames per second combined with 

events needed to maintain performance without degradation. 

Methods 
 

Object detection is a fundamental task in computer vision that 

involves both identifying objects and determining their locations 

within an image. In this work, we use the YOLOv3 (You Only Look 

Once) model, widely recognized for its balance between speed and 

accuracy. YOLOv3 employs a multi-scale detection approach, 

enabling it to effectively detect objects of various sizes by predicting 

bounding boxes at three different scales: small, medium and large. 

The model’s output consists of bounding boxes, confidence scores, 

and class probabilities (see Figure 3).  

 

             
Figure 3: A sample CIS image with the bounding boxes of objects.  

 

To eliminate redundant or overlapping detections, YOLOv3 applies 

non-maximum suppression (NMS), ensuring only the most relevant 

bounding boxes are retained.  
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Training YOLOv3 from scratch is both challenging and 

computationally expensive. Therefore, we use a pre-trained 

YOLOv3 model, originally trained on the COCO dataset, which 

includes 80 object categories. Notably, 8 of these classes are 

relevant to our study and are included in the DSEC dataset, 

including car, person, bicycle, truck, train, and bus. This approach 

allows us to leverage existing knowledge while adapting the model 

to our specific needs.  

 

 
Figure 4: The hybrid images from the 7fps CIS (grayscale)+EVS 

dataset were created by down sampling the 20fps CIS images to 7fps 

CIS images. Event data was grouped based on an accumulation time 

and added to the blue channel as an event mask for the hybrid 

frames over a consistent time interval. The previous CIS image is 

converted to grayscale and added to the green channel, while the 

red channel was left empty. This process is repeated for the next 

blind time between two CIS frames.  
 

Event data consists of the following information for each event: 

pixel location, timestamp, and polarity (positive or negative contrast 

change). To integrate this data with conventional CIS images and as 

an input to a neural network, we transform it into a 2D array format. 

Specifically, we accumulate event data over a 20ms period—a 

duration chosen after testing different time intervals. Longer 

accumulation periods resulted in blurry information, while shorter 

ones failed to capture sufficient events. Based on the accumulated 

event data, we generate a 2D event mask, where each pixel is 

assigned binary values either 0 or 1, depending on whether an event 

was triggered at that location during the accumulation time period. 

To maintain the original YOLOv3 architecture and to compare with 

CIS 3 channel images, we use a three-channel input for CIS+EVS. 

One channel contains the EVS mask information, another holds the 

grayscale CIS image and the third remains empty (see Figure 5). 

During the CIS blind time, we use the most recent CIS image 

available while continuously updating the EVS information at 

regular time intervals (see Figure 4). This ensures that even in the 

absence of new CIS frames, the model still receives updated event-

based information, enhancing detection accuracy and temporal 

consistency. 

Results 
 

We compared the object detection performance of conventional CIS 

camera of 20 fps with the hybrid data consisting of both 7 fps CIS 

and EVS. For a fair comparison between these two cases, we create 

an extra 13 frames per second with the help of EVS (see method 

section for more details) for 7fps CIS(grayscale)+EVS case. We 

created this additional CIS(grayscale) +EVS frame in almost equal 

interval of time. As we used only grayscale CIS image in 

CIS(grayscale)+EVS image, we compared its performance with 

both 20fps CIS RGB and 20fps grayscale images. Using 20fps CIS 

RGB and 20fps CIS grayscale images, we achieved 0.54 Mean 

Average Precision (mAP) and 0.43 mAP, respectively. Whereas, 

7fps CIS (grayscale) +EVS achieved 0.52 mAP (see Table 1).  The 

slight drop in performance of 7fps CIS (grayscale) +EVS compared 

to 20fps CIS RGB images might be associated with only using the 

CIS grayscale images and creating labels itself in the intermediate 

time for 7fps CIS (grayscale) +EVS case. 

 

 
Table 1: The above displays the data rate, blind time and 

performance between 7fps CIS+EVS, 20fps CIS RGB, and 20fps CIS 

grayscale. The table shows that 7fps CIS+EVS achieves similar 

performance as 20fps RGB CIS while saving nearly 40% of the data 

rate compared to RGB CIS and having nearly no blind time. 7fps 

CIS+EVS has a similar data rate to a CIS camera capturing at 

12fps. For EVS data rate calculation, we used 10 million events per 

second, the average from the data we used. 

 

     

Figure 5: Visualization of CIS image (top left), EVS image (top 

right) and hybrid CIS+EVS image. The EVS image contains both 

positive (red color) and negative (blue color) polarity events. For 

CIS+EVS, CIS info converted to grayscale and added to the green 

channel, event data (both polarities) added to the blue channel, and 

the red channel is left empty.  

 

 To check the performance of CIS+EVS in the blind time between 

two consecutive CIS frames, we evaluated the method performance 

for various time interval within the blind time for 7fps CIS 

(grayscale)+EVS case. We observed almost constant mean average 

precision around the entire blind interval time.  
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The mean average performance varies from 0.54 to 0.5 within this 

blind time (see Figure 6). This slight drop in mAP with a large time 

difference between CIS and EVS channel (see method section) 

might be removed by more training or just using the entire DSEC 

dataset (please note we only used a fraction of the DSEC data for 

simplicity).  

 

 
Figure 6: The Mean Average Precision (mAP) of 7fps CIS 

(grayscale)+EVS case between the 7fps CIS blind time.  The method 

achieved > 0.5 mAP between the blind time. 

     
Figure 7: Example of how EVS can help detect objects faster than 

CIS alone. Image (A) shows the faint outline of a person’s shoulder 

and leg and will likely not be detected. Image (B) is a hybrid frame 

from the time between image (A) and image (C) and an EVS outline 

of a person can be seen. Image (C) shows the person is visible now 

in frame. Image (D) shows the entire image with a box to show the 

area zoomed in on for images A-C. 

Additionally, we calculated the data rate in bytes per second per 

pixel for both 20fps CIS and 7fps CIS(grayscale)+EVS case. A 

single CIS frame consume 1.5 bytes per second per pixel, while 

one second of EVS data consumes approximately 8.4 bytes per 

pixel. As a result, the 20 fps CIS setup has a data rate of 30 bytes 

per second per pixel, whereas the 7 fps CIS(grayscale)+EVS setup 

consumes only 18.64 bytes per second per pixel (see Table 1). This 

translates to approximately 40% lower data consumption for the 7 

fps CIS(grayscale)+EVS setup while maintaining comparable 

detection performance. 

Conclusion and Discussion 
 

In this work, we demonstrate the advantages of hybrid sensors for 

automotive vision by evaluating their performance, data rate, and 

power consumption in comparison to conventional cameras. 

Traditional frame-based cameras inherently experience blind time 

between consecutive frames, leading to delays in object detection. 

These delays can significantly impact the response time of both 

human and machine drivers, particularly in high-speed scenarios or 

hazardous conditions where rapid detection is crucial for safety. 

Increasing CIS frame rate can solve this issue, but increases the data 

rate. 

 

Hybrid sensors, which combine conventional image sensors (CIS) 

with event-based vision sensors (EVS), offer a promising solution 

for achieving faster object detection while maintaining a low data 

rate. EVS pixels provide high temporal resolution with sparse event-

driven data, effectively capturing around 10,000 frames per second 

of data. Our results show that a 7 fps CIS (grayscale) combined with 

EVS achieves 20% higher mAP than the CIS grayscale and nearly 

the same object detection performance as a 20 fps CIS RGB, but 

with approximately 40% lower data rate. Furthermore, we analyzed 

the detection performance of the 7 fps CIS(grayscale)+EVS system 

within the blind intervals of consecutive frames and found that it 

maintained consistent accuracy throughout the entire blind time. 

 

One of the key advantages of EVS is its ability to capture 

continuous, sparse information with almost no blind time. In certain 

cases, EVS can detect objects even when CIS fails to do so—such 

as when an object enters or exits the scene between the consecutive 

CIS frames (see Figure 7). We also generated additional CIS+EVS 

frames by combining 7fps CIS(grayscale) with EVS with 

comparable object detection performance, reinforcing the benefit of 

using EVS data. With this continuous event-driven information, 

objects can be detected at any moment while maintaining a lower 

data rate. 

 

To ensure a fair comparison between the 20 fps CIS RGB and the 7 

fps CIS (grayscale)+EVS setups, we used a three-channel input for 

YOLOv3. For the 7 fps CIS(grayscale)+EVS configuration, one 

channel contained the grayscale CIS frame, another contained EVS 

data, and the remaining channel was left empty. In future work, we 

plan to integrate all three CIS channels (RGB) with EVS data to 

improve performance, because using grayscale data of CIS images 

loses information present in the individual R, G and B channels.  

 

Furthermore, we plan to utilize the entire DSEC dataset rather than  

a subset for training to enhance CIS+EVS performance. 

Additionally, the current EVS sensor data used in the work operates 

at a resolution of 640×480. To enhance EVS data quality as input to 

a neural network, we merged positive and negative event 

information into one channel. In the future work, we plan to use 

high-resolution EVS sensor data and use separate positive and 

negative event channels with CIS RGB channels as direct inputs to 

a neural network, potentially further improving detection 

performance.   

(A)  (B)  (C) 

(D) 
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