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Abstract
Robotics has traditionally relied on a multitude of sensors

and extensive programming to interpret and navigate environ-
ments. However, these systems often struggle in dynamic and
unpredictable settings. In this work, we explore the integration
of large language models (LLMs) such as GPT-4 into robotic
navigation systems to enhance decision-making and adaptability
in complex environments. Unlike many existing robotics frame-
works, our approach uniquely leverages the advanced natural
language and image processing capabilities of LLMs to enable
robust navigation using only a single camera and an ultrasonic
sensor, eliminating the need for multiple specialized sensors and
extensive pre-programmed responses. By bridging the gap be-
tween perception and planning, this framework introduces a novel
approach to robotic navigation. It aims to create more intelli-
gent and flexible robotic systems capable of handling a broader
range of tasks and environments, representing a major leap in
autonomy and versatility for robotics. Experimental evaluations
demonstrate promising improvements in the robot’s effectiveness
and efficiency across object recognition, motion planning, obsta-
cle manipulation, and environmental adaptability, highlighting its
potential for more advanced applications. Future developments
will focus on enabling LLMs to autonomously generate motion
profiles and executable code for tasks based on verbal instruc-
tions, allowing these actions to be carried out without human in-
tervention. This advancement will further enhance the robot’s
ability to perform specific actions independently, improving both
its autonomy and operational efficiency.

Introduction
The advent of large language models (LLMs) has intro-

duced a paradigm shift in artificial intelligence, driving significant
advancements in natural language understanding and reasoning.
Multimodal LLMs, such as GPT-4 [1] and Gemini [2], leverage
transformer architectures with extensive training on internet-scale
datasets, equipping them with the ability to generate contextually
relevant and semantically rich outputs. Additionally, key innova-
tions, including in-context learning [3], chain-of-thought prompt-
ing [4], and multimodal integration, have extended the utility of
LLMs beyond traditional text-based applications, enabling more
versatile and sophisticated reasoning. By combining textual and
visual inputs, these models excel at interpreting complex, unstruc-
tured data, leading to improvements in tasks such as information
retrieval, content generation, human-robot interaction, scene un-
derstanding, decision support, sentiment analysis, and context-
based object recognition. The ability to process both structured
and unstructured data enables LLMs to bridge the gap between
perception and planning, opening avenues for novel applications
across various domains.

In robotics, the three core capabilities of perception, plan-
ning, and control are essential for effective navigation and action.
Traditionally, these capabilities have been enabled through spe-
cialized sensors and pre-programmed responses. Although such
approaches perform well in structured environments, they often
struggle in dynamic and unpredictable settings due to their lim-
ited adaptability and reliance on predefined rules. Recent surveys
[5, 6] suggest that LLMs can overcome these limitations by al-
lowing robots to interpret unstructured data, such as visual scenes
and natural language instructions, and make real-time decisions
with greater adaptability. In contrast to conventional sensor-heavy
systems, integrating LLMs offers a more flexible framework for
robotic navigation, enhancing perception, planning, and control
through semantic reasoning and multimodal understanding.

In this work, we present a novel intelligent robotic system
that integrates the advanced processing capabilities of LLMs to
enhance navigation and environmental adaptability. Compared to
traditional methods, this approach reduces dependence on multi-
ple sensors and extensive programming, creating a more adapt-
able and efficient system for navigation in complex, real-world
scenarios. The robot developed for this study is a custom-built
platform powered by a Raspberry Pi 4 running Raspberry Pi OS.
Its control software, written in Python, interfaces with the Ope-
nAI GPT-4 API to perform environmental analysis. Equipped
with a camera, the robot captures images and sends them to GPT-
4, which provides feedback such as object recognition, weight
estimation, and motion planning. The hardware also features a
claw for obstacle manipulation and an ultrasonic sensor for pre-
cise distance measurement, compensating for GPT-4’s limitations
in estimating distance from a single image. Actions are then ex-
ecuted based on the responses from the LLM, allowing the robot
to operate effectively in dynamic environments.

The performance of the proposed robotic system was evalu-
ated with a variety of objects classified as either light and movable
or heavy and immovable. For example, an apple was used to rep-
resent a light object, while a dictionary represented a heavy one.
The robot accurately determined whether each object could be
relocated and executed the appropriate action accordingly. Fur-
ther testing with jar candles (heavy) and decks of cards (light)
reinforced the system’s accuracy and robustness. The experimen-
tal results demonstrate the potential of LLMs in developing in-
telligent robotic systems. By reducing reliance on specialized
sensors and extensive pre-programming, LLMs enable robots to
operate with greater intelligence and adaptability. These mod-
els enhance the dynamic planning capabilities of robotic systems,
allowing them to respond flexibly to new and unpredictable situ-
ations, thereby significantly improving their autonomy and oper-
ational efficiency.

https://doi.org/10.2352/EI.2025.37.15.AVM-105
© 2025, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2025
Autonomous Vehicles and Machines 2025 105-1



Figure 1. Experimental setup showing the robot positioned in front of a crumpled paper towel and an apple, used to evaluate its ability to identify and interact

with various obstacles.

Related Work
Machine learning models, particularly deep learning frame-

works, have long been studied for their potential to support
robotics. Some task-specific robotic applications leverage end-to-
end systems, where a unified model maps raw inputs (e.g., sensor
readings, images, or text commands) directly to outputs (e.g., mo-
tor commands, navigation strategies) without intermediate steps.
For instance, Vision-based Navigation Grounding (ViNG) [7], a
Vision-Navigation Model (VNM), directly maps raw visual inputs
to navigation actions, simplifying pipelines and enabling effec-
tive performance in open-world environments [8, 9]. Similarly,
Contrastive Language–Image Pretraining (CLIP) [10], a Visual-
Language Model (VLM), aligns images and text in a shared em-
bedding space using contrastive learning, supporting robotics ap-
plications such as perception and navigation. In specific domains,
Vision-and-Language Navigation (VLN) models map natural lan-
guage instructions to navigation actions in simulated [11] or
real-world [12] environments. Meanwhile, Vision-and-Language
Action (VLA) models, such as PaLM-SayCan [13] and RT-2
[14] from Google DeepMind, process multimodal inputs directly
into robotic actions, excelling in tasks like object manipulation
and human-robot collaboration. These task-specific models are
highly impactful for robotics tasks requiring seamless and rapid
decision-making, but involve trade-offs in data requirements, in-
terpretability, and generalization.

To address these challenges, Large Model Navigation (LM-
Nav) [15] demonstrates the power of integrating pre-trained mod-
els for effective robotic navigation. It combines three key com-
ponents: GPT-3 [16], an early-stage LLM, to parse user instruc-
tions into navigational landmarks; CLIP, a VLM trained to align
textual landmarks with visual observations; and ViNG, a VNM
designed to compute distances and generate navigation actions.
A significant advantage of LM-Nav is its ability to generalize
across diverse environments without requiring fine-tuning or hu-
man annotations. This capability arises from its modular design,
where each component, including GPT-3, CLIP, and ViNG, is pre-
trained on large, task-specific datasets. This design enables robust
integration and performance in complex, real-world scenarios.
The seamless integration of these components allows LM-Nav
to execute natural language instructions effectively in dynamic
and unstructured environments. This highlights the potential of
combining LLMs with vision and navigation models to advance
robotic autonomy.

Recent advancements in LLMs have unlocked new possi-
bilities for robotics by enhancing core capabilities such as per-
ception, planning, and control. These models enable robots to
interpret unstructured data, including visual scenes and natural
language commands, for dynamic decision-making and interac-
tion. OpenAI’s GPT-4 [1], with its multimodal processing and
robust contextual reasoning, has shown significant potential in
robotics, particularly in tasks involving natural language com-
mands and environmental interpretation. Similarly, Gemini [2]
represents the latest advancement in Google’s AI models, build-
ing on the foundational strengths of PaLM 2 [17] and PaLM-E
[18]. While PaLM 2 specializes in advanced language under-
standing and reasoning, PaLM-E expands these capabilities by in-
tegrating vision and language. Gemini takes these advancements
further, seamlessly combining visual and textual inputs to deliver
enhanced multimodal functionality, making it particularly well-
suited for applications such as human-robot collaboration. Meta’s
LLaMA-3 [19, 20], known for its efficiency and scalability, of-
fers a lightweight solution for robotics platforms with constrained
computational resources, particularly for tasks requiring robust
language processing.

LLMs are increasingly utilized in robotic navigation for their
ability to interpret unstructured data and facilitate natural lan-
guage interactions. Collectively, these advancements represent a
transformative shift in robotics, enabling more intelligent, adapt-
able, and autonomous systems capable of operating effectively in
complex and dynamic environments.

Methods
Robotics plays a crucial role in modern life, with applica-

tions spanning industrial automation, healthcare, transportation,
smart agriculture, and home assistance. As robotic systems be-
come increasingly prevalent, there is a growing demand for intel-
ligent systems capable of effectively controlling robots to operate
in dynamic and unstructured environments.

Built on the capabilities of advanced LLMs, this study intro-
duces a novel approach by integrating GPT-4 into a robotic sys-
tem for real-time environmental analysis and motion planning, as
shown in Figure 1. Unlike traditional robotic systems that rely on
predefined rules, requiring fine-tuning and significant program-
ming to perform specific tasks, this approach leverages the gen-
eralization capabilities of pre-trained LLMs to dynamically inter-
pret and adapt to new scenarios. The proposed system integrates
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Figure 2. Overview of the intelligent robotic system’s decision-making process. The system integrates perception, planning, and control modules to identify

obstacles and determine appropriate actions. Light objects, such as an apple, are relocated, while heavy objects, such as a dictionary, are bypassed. The robot

executes these decisions to navigate efficiently toward the target object.

multimodal inputs, which combine visual and textual analysis to
enhance adaptability and enable complex interactions, such as ob-
ject recognition, motion planning, and task execution.

The robot developed in this study is a custom-built sys-
tem powered by a Raspberry Pi. Its control software, written in
Python, interfaces with the OpenAI GPT-4 API for environmen-
tal analysis and motion planning. The system captures images
through a camera and sends them to GPT-4, which responds with
recommendations such as object identity, estimated weight, and
planned motion. The hardware features a claw for object manipu-
lation and an ultrasonic sensor for precise distance measurement,
addressing GPT-4’s limitations in estimating distance from a sin-
gle image. The robot executes actions based on the feedback pro-
vided by the LLM.

As shown in Figure 2, the LLM-based intelligent robotic sys-
tem performs navigation tasks through three successive modules:
(a) Perception Module: captures and interprets the environment
to extract analyzable data; (b) Planning Module: converts this
data into navigation strategies and motion plans; and (c) Control
Module: executes the plans by translating them into precise motor
commands and real-time adjustments.

Perception Module
The perception module is responsible for capturing and inter-

preting the robot’s surroundings to facilitate effective navigation,
using a camera and an ultrasonic sensor as its primary inputs.
At the start of navigation, the camera captures an image, which
is processed through the OpenAI GPT-4 API for object recogni-
tion, aligning identified objects with textual descriptions, similar
to the functionality of VLMs like CLIP. By leveraging GPT-4’s
advanced language and image processing capabilities, the sys-
tem dynamically identifies objects and environmental features,
improving adaptability in complex and unstructured settings.

The ultrasonic sensor complements the camera by provid-

ing precise distance measurements, addressing GPT-4’s inherent
limitations in estimating distances from a single image. It con-
tinuously measures the real-time distance between the robot and
nearby objects to assist with navigation control. This hybrid setup
ensures reliable perception, particularly in scenarios where visual
inputs alone may be insufficient, such as in low-light conditions
or cluttered environments.

Planning Module
The planning module bridges the gap between perception

and control by translating interpreted data into actionable nav-
igation strategies. Based on the identified object’s image and
the robot’s hardware parameters, GPT-4 determines the most ap-
propriate action for each scenario, ensuring precise and context-
aware responses to environmental conditions. These actions are
then structured into a motion plan aligned with task objectives,
such as moving straight, turning left or right, or relocating obsta-
cles. For instance, if the task involves retrieving a target object,
the module identifies the most efficient path, either by bypass-
ing heavy obstacles or by positioning the claw to manipulate light
ones, to successfully approach the object. The integration of GPT-
4’s advanced reasoning capabilities enables the system to dynam-
ically adjust its plans, allowing it to handle unexpected scenarios
with minimal pre-programming.

Control Module
The control module executes actions from the motion plan

created by the planning module, converting them into precise mo-
tor commands. It operates through a custom Python-based control
framework that connects directly to the robot’s hardware, includ-
ing motors for movement and a claw for object manipulation. The
ultrasonic sensor provides fine-grained distance control, essential
for tasks requiring precise proximity adjustments, such as pick-
ing up obstacles or navigating tight spaces. Additionally, a gyro
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Figure 3. Demonstration of the robotic system’s motion planning process when navigating toward a target object while encountering obstacles. (a) The robot

approaches an obstacle and identifies it as an apple. (b) It estimates the apple to be light, successfully grasps it, and relocates it to clear the path. (c) The robot

continues forward and finally grasps the target object. (d) The robot encounters an obstacle and identifies it as a dictionary. (e) It estimates the dictionary to be

too heavy to relocate and bypasses it. (f) The robot proceeds forward and ultimately grasps the target object.

sensor monitors the robot’s heading, keeping it on course and en-
hancing overall navigation accuracy.

Intelligent Robotic System
Together, the perception, planning, and control modules en-

able the proposed intelligent robotic system to perform complex
tasks, including object recognition, weight estimation, and mo-
tion planning, even in dynamic and unstructured environments.
By leveraging advanced LLM capabilities and integrating multi-
ple sensing modalities, the system achieves a high degree of au-
tonomy and adaptability with minimal reliance on task-specific
programming.

Results
The proposed intelligent robotic system, developed in

Python, integrates the OpenAI GPT-4 API for natural language
processing and image analysis. It runs on a Raspberry Pi 4b with
Raspberry Pi OS Lite (Debian 12) and features a high-mounted
Raspberry Pi Camera v1 for image capture and a low-mounted
ultrasonic sensor for precise distance measurement. The robot
is equipped with two 5V DC motors for movement and a servo-
controlled claw for object manipulation. Programs are launched
remotely via SSH for secure command-line control. Designed for
real-time interaction in dynamic environments, the system seam-
lessly integrates hardware and software for efficient task execu-
tion. Experiments were conducted in a controlled laboratory en-
vironment to simulate real-world challenges and validate the sys-
tem’s performance and reliability.

We first evaluated the robot’s navigation capabilities through
qualitative demonstrations. The robot was assigned the task of
reaching the target object, a mint container, while navigating
around various obstacles. In the first scenario, illustrated in panels
(a) to (c) of Figure 3, the robot identified an apple as a light object,
successfully picked it up, and relocated it to the designated area.

In the second scenario, illustrated in panels (d) to (f) of Figure 3,
the robot recognized a dictionary as a heavy object and bypassed
it by selecting an alternative path.

The robot’s ability to classify objects as ”light/relocate”
or ”heavy/bypass” was quantitatively evaluated across 100 trials
with diverse test objects, including an apple (13 trials), a deck of
cards (17 trials), a dictionary (13 trials), a jar candle (11 trials),
a piece of paper (30 trials), a small spray can (10 trials), and no
obstacle (6 trials). Each object was assessed for its weight clas-
sification using visual and textual data processed by GPT-4. As
shown in Figure 4 (a), the robotic system demonstrated strong
performance, achieving an overall weight estimation accuracy of
89%. It correctly classified most test objects, such as the dic-
tionary, apple, deck of cards, and piece of paper, with 100% ac-
curacy. However, misclassifications occurred with visually am-
biguous items. For instance, the jar candle (18% accuracy) was
frequently misidentified as an empty mason jar, while the small
aluminum spray bottle (80% accuracy) was occasionally overes-
timated as heavier than it actually was.

As shown in Figure 4 (b), the robot correctly planned the
optimal motion in 83% of trials. These motions included pick-
ing up and relocating light obstacles, bypassing heavy ones, and
driving straight when no obstacle was present. Discrepancies oc-
curred when the robot accurately estimated an object’s weight but
chose a suboptimal action. For example, in one trial, it interpreted
”move object” as navigating around it rather than relocating it. In
other instances, the robot was overly cautious, bypassing obsta-
cles it could have relocated, as it was instructed to avoid objects
in uncertain cases to ensure reliability.

Despite these limitations, the robot successfully reached and
grasped the target object in 99% of trials, as shown in Figure 4 (c).
This includes cases where it bypassed light obstacles instead of
relocating them but still reached its destination. The only failure
occurred when the robot attempted to move a heavy dictionary,
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Figure 4. A quantitative evaluation of the proposed intelligent robotic system was conducted over 100 trials using a diverse set of test objects as obstacles. The

objects included an apple (13), a deck of cards (17), a dictionary (13), a jar candle (11), a piece of paper (30), a small spray can (10), and no obstacle (6). The

evaluation metrics include: (a) Accuracy of LLM-based weight estimation, (b) Accuracy of LLM-based motion planning, (c) Success rate of achieved outcomes,

and (d) Average LLM response time for navigation decisions.

failed, and was unable to proceed. Finally, as shown in Figure
4 (d), the robot’s decision-making time averaged 3.9 seconds per
trial, suggesting the need for a faster model or alternative methods
to mitigate this limitation in real-time operation.

Overall, the experimental results demonstrate that the system
effectively integrates object recognition, weight estimation, and
motion planning, achieving high reliability in completing naviga-
tion tasks. Future work will focus on refining the robot’s decision-
making process to increase the frequency of optimal actions and
addressing edge cases, such as command misinterpretations, to
further enhance its performance and adaptability.

Conclusions
The rapid advancement of Large Language Models (LLMs)

has transformed various domains, including robotics, by enabling
more intelligent and adaptable systems. Models such as GPT-
4 offer advanced reasoning, natural language understanding, and
multimodal capabilities, making them well-suited for robotics ap-
plications. In this work, we present an intelligent robotic system
that integrates LLMs into its perception, planning, and control
modules, allowing it to operate effectively in dynamic and un-
structured environments. The perception module leverages GPT-4
to process visual and textual data, enabling the system to identify
objects and understand the environment. The planning module
uses this interpreted data to generate motion plans and navigation
strategies aligned with task objectives. Finally, the control mod-
ule executes these plans, translating high-level instructions into
precise motor commands to ensure robust task performance. The
system offers several advantages, including the ability to gener-

alize across diverse scenarios, adapt to unforeseen situations, and
reduce the need for extensive task-specific programming. Experi-
mental results demonstrate high accuracy in object classification,
effective decision-making, and the ability to handle complex in-
teractions, highlighting the potential of LLM-based robotic sys-
tems for practical applications.

Despite its promising results, the proposed system has sev-
eral limitations that present opportunities for improvement. The
reliance on a camera and an ultrasonic sensor poses challenges
in various scenarios. The camera is affected by low-light con-
ditions, while the ultrasonic sensor struggles to accurately detect
objects with complex geometries. Additionally, the system lacks
advanced interaction capabilities, such as voice or text command
inputs, which could enhance usability. Further optimization is
also needed to improve decision-making speed and overall sys-
tem efficiency for better real-time performance. To address these
limitations, future work will focus on (a) developing a more ro-
bust and functional robotic platform to replace the current basic
prototype, significantly improving the system’s capability and re-
liability; (b) enabling voice or text command inputs to provide a
more interactive and flexible user interface; (c) enhancing the sys-
tem’s control module to autonomously generate executable code
for planned motions, further improving the robot’s ability to per-
form specific actions without human intervention; (d) improving
visual processing algorithms to minimize reliance on additional
sensors like LiDAR, reducing the robot’s construction cost and
power consumption while ensuring precision in challenging con-
ditions; (e) expanding the system’s robustness to handle larger
and more diverse environments, improving scalability and perfor-
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mance under practical scenarios. These advancements will further
improve the system’s reliability, adaptability, and practicality for
real-world robotic applications.
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