
Can Adversarial Modifications Undermine Super-Resolution Al-
gorithms?
Langalibalele Lunga 1, Suhas Sreehari 2,3

1 Farragut High School, Knoxville, TN; 2 Oak Ridge National Lab, Oak Ridge, TN; 3 University of Tennessee, Knoxville, TN

Abstract
Machine learning and image enhancement models are prone

to adversarial attacks, where inputs can be manipulated in order
to cause misclassifications. While previous research has focused
on techniques like Generative Adversarial Networks (GANs),
there’s limited exploration of GANs and Synthetic Minority Over-
sampling Technique (SMOTE) in image super-resolution, and text
and image classification models to perform adversarial attacks.

Our study addresses this gap by training various machine
learning models and using GANs and SMOTE to generate addi-
tional data points aimed at attacking super-resolution and classi-
fication algorithms. We extend our investigation to face recogni-
tion models, training a Convolutional Neural Network(CNN) and
subjecting it to adversarial attacks with fast gradient sign per-
turbations on key features identified by GradCAM, a technique
used to highlight key image characteristics of CNNs use in clas-
sification. Our experiments reveal a significant vulnerability in
classification models. Specifically, we observe a 20% decrease in
accuracy for the top-performing text classification models post-
attack, along with a 30% decrease in facial recognition accuracy.

Introduction
Super-resolution (SR) algorithms aim to reconstruct high-

resolution images from their low-resolution counterparts, which
is essential in applications such as medical imaging, surveillance,
and satellite imagery. Traditional methods, including bilinear and
bicubic interpolation, often produce images with noticeable arti-
facts. Modern learning-based SR methods, such as convolutional
neural networks (CNNs) and generative adversarial networks
(GANs), have demonstrated remarkable improvements by learn-
ing complex mappings from low-resolution to high-resolution im-
age pairs.

Despite their advancements, SR methods face significant
challenges, such as preserving perceptual quality, reconstructing
fine textures and details, maintaining computational efficiency,
and avoiding hallucinated artifacts. Common evaluation metrics
for SR performance include Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Learned Perceptual Im-
age Patch Similarity (LPIPS). Super-resolution algorithms are
susceptible to adversarial attacks, which involve introducing sub-
tle, human-imperceptible perturbations to the input image that
significantly degrade the output quality of SR algorithms. Such
attacks exploit vulnerabilities inherent in the model architectures.
We extend the scope of this paper to include state-of-the-art ma-
chine learning mdoels for classification tasks as well.

Adversarial attacks can make these algorithms insecure and
prone to incorrect predictions. An adversarial attack is an input
provided to machine learning classifiers for the purpose of caus-

ing a misclassification. Past research shows the implications of
adversarial attacks in image and text classifiers, demonstrating
how adding specific perturbations to inputs result in a substantial
decrease in model performance.

In this study, we seek to analyze the types of inputs that
fool classification models by utilizing Fast Gradient Sign Method
(FGSM) perturbation vectors on the result of GradCAM high-
lighted features, GANs, and SMOTE to generate adversarial at-
tacks. As a result, this study demonstrates the vulnerabilities of
machine learning models to adversarial attacks using GANs and
SMOTE.

This paper presents a novel adversarial attack strategy that
combines multiple attack strategies together. For classification at-
tacks, we blend GANs and SMOTE to target text classifiers and a
novel attack on image classifiers with FGSM and GradCAM. Our
experiments work to validate the influence of these adversarial
attacks against machine learning models deployed in real-world
scenarios. The structure of this manuscript is as follows: Section
II provides a review of the existing literature and contributions
in the domains of GANs and adversarial attacks. Section III ar-
ticulates the methodological framework employed in the current
investigation. Section IV presents the experimental setup, along-
side the resulting data and analysis. Finally, Section V offers a
summary of the findings, encapsulates the study’s contributions,
and outlines potential future research inquiries.

Related Works
Previous studies center around the use of GANs in computer

vision, specifically with image generation and video manipula-
tion. To our knowledge, few studies focus on the use of GANs
and SMOTE in tandem for the purpose of adversarial attacks on
binary classifiers, along with the combination of GradCAM and
FGSM on facial recognition models.

Generative Adversarial Networks
In this paper, we use GANs [2], modeled by MiniMax loss

shown below, to create the adversarial examples used against the
financial fraud classifiers.

L=min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[1− logD(G(z))] (1)

where G is the generator model, D is the discriminator
model, Ex∼pdata(x) is the distribution of the original dataset,
logD(x) is the output of D being maximized, Ez∼pz(z) is the dis-
tribution of the noise produced by G, and logD(G(z))] is being
minimized by G.
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Generative adversarial networks have many applications,
from creating adversarial attacks to generating visually realistic
images [10] , [6] , [8] .The authors of [10] studied the effects that
adversarial attacks have on facial biometric systems,investigating
novel attacks that allow an attacker to evade recognition or imper-
sonate another individual. They reported that generating acces-
sories in the form of eyeglass frames can effectively fool state-of-
the-art face recognition systems. Furthermore, the authors in [6]
show the vulnerabilities of classification models by feeding adver-
sarial images obtained from a cell-phone camera to an ImageNet
Inception classifier and measuring the classification accuracy of
the system. Their results show that a large fraction of adversarial
examples are classified incorrectly even when perceived through
the camera. Our research builds upon the methods of utilizing
GANs for adversarial attacks by combining it with SMOTE.

Synthetic Minority Oversampling Technique
Synthetic Minority Oversampling Technique (SMOTE) is an

algorithm commonly used to solve class imbalance problems in
machine learning fields. Figure 1 shows an example of class im-
balance resolved using SMOTE.

Figure 1. Example SMOTE workflow on class balancing

We use SMOTE on the adversarial examples produced by
GANs to generate more adversarial examples, or data points that
fool the financial fraud classifiers. Specifically, the adversarial
examples created by the GANs are treated as a minority class, in
which SMOTE is used to create more examples.

Adversarial Attacks/Data Generation with GANs
Past research has centered the use of GANs in creating de-

ceptive images fed to image classification models. By adding cer-
tain perturbations to images, machine learning models misclassify
images with high confidence [3], [6], [7]. For instance, the authors
in [7] propose a systematic algorithm for computing universal per-
turbations, and show that state-of-the-art deep neural networks
are highly vulnerable to perturbations imperceptible to the human
eye. Researchers have found that GANs can be used to generate
tabular/textual data [13], [4]. The authors in [11] present Tab-
ular GAN (TGAN), a generative adversarial network which can
generate tabular data like medical or educational records. Using
TGAN, they generate high-quality and fully synthetic tables while
simultaneously generating discrete and continuous variables. The
authors in [4] propose the LeakGAN framework, addressing the
low accuracy rates of attempts at generating text of more than 20
words.Their extensive experiments on synthetic data and various
real-world tasks demonstrate that LeakGAN is highly effective in
long text generation and also improves the performance in short
text generation scenarios.

In this study, we utilize the combination of GANs and
SMOTE to create synthetic financial data that causes fraud mis-

classification. We train three machine learning models on a
dataset labeled on fraud and non fraud data, and feed it adver-
sarial examples in order to “attack” the models, then recording
the impacted accuracy’s of each model to measure the effect of
the adversarial attack.

Carlini Wagner Adversarial Attack
Another form of adversarial attack is the Carlini Wagner at-

tack developed in [1] , which formulates the generation of adver-
sarial examples as an optimization problem. The attack aims to
find a small perturbation δ that, when added to input image x,
causes the model to misclassify the perturbed image x′ = x+ δ .
The optimization problem can be described as:

min
δ

∥δ∥p + c · f (x+δ ) (2)

where: ∥δ∥p is the p-norm of the perturbation, typically the
L2 norm (p = 2) or L∞ norm (p = ∞), which measures the size of
the perturbation. f (x+δ ) is an objective function that represents
the degree to which the perturbed image x + δ is misclassified
by the model. c is a constant that balances the trade-off between
minimizing the perturbation’s size and maximizing the objective
function’s value.

The function f (x+δ ) is designed to encourage the misclas-
sification of the perturbed input. For a targeted attack, it is defined
as:

f (x+δ ) = max(max{Z(x+δ )i : i ̸= t}−Z(x+δ )t ,−κ) (3)

where Z(x+ δ )i denotes the logits (pre-softmax output) of
the model for class i , t is the target class that the attacker wants the
model to classify the input as. , κ is a parameter that controls the
confidence of the attack; higher values of κ make the attack more
confident in the misclassification. The goal of the optimization is
to find the smallest perturbation δ that causes the model to classify
the input x+ δ as the target class t with high confidence. The
term ∥δ∥p ensures that the perturbation is as small as possible,
making the adversarial example harder to detect. The constant c
adjusts the importance of achieving the misclassification relative
to keeping the perturbation minimal.

This formulation makes the Carlini Wagner attack particu-
larly powerful because it produces perturbations that are often
imperceptible to humans but effective in misleading the model.
While the Carlini Wagner attack is highly effective, we use the
Fast Gradient Sign attack due to its low computational cost and
efficiency.

Gradient-Weighted Class Activation Mapping
Gradient Class Activation Mapping refers to a technique

used in order to highlight the features that object and image recog-
nition algorithms focus on in order to make a classification. Grad-
CAM is frequently used in tandem with CNNs to enhance model
transparency and provide insights into how and what the model
relies on to make certain predictions. Specifically, GradCAM uti-
lizes the gradients of the last layers in a CNN in order to create a
localization map highlighting the important regions in the image
for predicting the concept [9]. Figure 2 demonstrates the result of
applying GradCAM on the Olivetti Faces dataset:
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Figure 2. First column are two input examples from the Olivetti Faces

dataset (Row 1: Person 3 and Row 2 is Person 2). Second column are

GradCAM heatmap of the activation maps. Third column shows the corre-

sponding input GradCAM features that are key for CNN predictions.

Fast Gradient Sign Method
Fast Gradient sign method(FGSM)[3] is an adversarial attack

that perturbs input data into a model using noise that is based off
of the gradient of the loss with respect to the input. FGSM can be
modeled by the equation below:

η = ε ∗ sign(∇xJ(θ ,x,y)) (4)

where η is the perturbation added to an image, ε is the
strength of perturbation, sign ∇x is the sign of the gradient with
respect to the image, x is the input and y is the output FGSM adds
a visually indistinguishable perturbation that fools the model us-
ing a certain value of epsilon. The gradient is calculated with
respect to the inputs of the model in order to maximize the loss.
Higher values of epsilon result in more visible and larger pertur-
bations while lower values are more subtle. FGSM is commonly
used to showcase the vulnerability of deep learning models and
investigate the transferability of adversarial attacks, however, this
research study takes a different approach by combining it with
GradCAM. Specifically, GradCAM is used to highlight important
features, and FGSM is applied to noted features to implement the
adversarial attack.

Methodology
This section outlines the methods employed in this paper,

with a focus on demonstrating the susceptibility of image and text
classification models to adversarial attacks.

Super-Resolution Attack
The general idea is that some low-resolution images can

make super-resolving them much more challenging than other
low-resolution images that look similar to a human observer. In
this paper, we explore three main lines of attacks employed on
low-resolution images.

Gradient-Based Attack. Gradient-based attacks leverage the
gradient of the loss function with respect to the input image. By
iteratively adjusting perturbations in the gradient direction, the in-
put image is steered toward regions where the SR model performs
poorly. The mathematical formulation involves:

• Loss function: L(F(x+η),y), measuring the error between
the SR output and the ground truth.

• Gradient calculation: ∇η L(F(x+η),y).
• Perturbation update: η(t+1) = η(t) + α · sign(∇η L(F(x +

η(t)),y)).
• Clipping to maintain imperceptibility: η = clip(η ,−ε,ε).

Frequency-Based Attack. Frequency-based attacks exploit the
frequency domain representation of images. Perturbations are
added to frequency coefficients (e.g., using Discrete Cosine
Transform or Wavelet Transform), disrupting learned relation-
ships between frequency components critical for SR reconstruc-
tion. The steps include:

• Forward frequency transform (DCT or Wavelet): X =
DCT(x).

• Noise generation and scaling: X ′ = X +β ·N.
• Inverse transform to spatial domain: x′ = IDCT(X ′).
• Ensuring perceptual constraint to keep perturbations imper-

ceptible.

Hybrid and Real-ESRGAN-Specific Attacks. Hybrid attacks
integrate both gradient-based and frequency-based strategies by
iteratively updating frequency perturbations guided by gradient
calculations. Specific attacks on the Real-ESRGAN model lever-
age detailed knowledge of its architecture, targeting Residual-in-
Residual Dense Blocks (RRDBs) and upsampling layers to com-
promise its reconstruction capabilities.

Real-ESRGAN’s widespread adoption makes it a critical
subject for exploring targeted attacks, and open-source implemen-
tations facilitate experimentation and detailed analysis.

Classification Attack
Generative Adversarial Networks (GANs) are used to gen-

erate adversarial examples due to their capacity to mimic the un-
derlying distribution of input data, leading to highly effective ad-
versarial attacks. GANs utilize a generator and discriminator in
a minimax game where the generator produces fake data, and the
discriminator attempts to distinguish it from real data. This iter-
ative process helps generate imperceptible adversarial perturba-
tions. SMOTE, on the other hand, is used to address class imbal-
ance, which can be a significant issue in adversarial data genera-
tion. By applying SMOTE to the misclassified instances (treated
as the minority class), we are able to over sample and generate
more adversarial samples, further enhancing the adversarial at-
tack’s impact.

For the text classification models, the data points that the
generated data from the GANs and SMOTE is based off on are the
data points that all three machine learning models misclassified.
We create data points similar to these because these data points
are ones that rely on the decision boundary of our three trained
fraud detectors, serving as prime examples of scenarios that our
fraud classifiers would have trouble identifying.

Boundary point generation with SMOTE. SMOTE fixes im-
balance datasets through statistical means, specifically through
the feature space of each target class and its nearest neighbors.
SMOTE is preceded by two commonly known methods of han-
dling imbalanced datasets: under sampling and oversampling.
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Over sampling and under sampling are prevalent techniques
used to address class imbalance in datasets. Oversampling in-
volves increasing the number of instances in the minority class
by duplicating or generating synthetic data points. This method
aims to balance the representation of classes by augmenting the
smaller class to match the larger one. Conversely, under sampling
reduces the number of instances in the majority class to create
a more balanced dataset by randomly eliminating samples from
the overrepresented class. SMOTE stands out by creating syn-
thetic instances that are strategically generated based on the fea-
ture space of the minority class and the proximity of its nearest
neighbors. Unlike traditional oversampling methods that merely
replicate existing instances, SMOTE generates new data points
that maintain the underlying characteristics of the minority class,
thereby enhancing the overall balance of the dataset without los-
ing crucial information.

In this paper, we use SMOTE to create new instances based
off of the data the three models incorrectly classified. The dataset
of test cases all models failed to classify is treated as a dataset with
imbalance. Specifically, this dataset has 139 instances of fraud
and 14 instances of non-fraud. Using SMOTE, this dataset is re-
sampled to balance the classes out, with 139 instances of fraud
and non-fraud. This re-sampled data results in a dataset with ad-
versarial instances that have been generated for later use in tan-
dem with the results from a GAN.

Boundary point generation with GANs. GANs learn the prob-
ability distribution of a dataset, and then use the estimated distri-
bution to generate more examples[2]. Figure 3 shows the data
generation process using GANs.

Figure 3. Workflow for tabular data generation using GANs.

In this study, we use a specific variant of GAN with the
intent of analyzing and generating tabular data points: Condi-
tional Tabular Generative Adversarial Network(CTGAN)[12].
CTGAN is designed to accurately model and generate instances
of data where continuous columns have numerous modes and
categorical columns are imbalanced. CTGAN uses several
GAN techniques, namely conditional generators and training by
sampling. Compared to GAN, CTGAN allows for the structured
generation of data in a tabular format. CTGAN, in addition,
preserves the statistical distribution of the tabular data, whereas
GAN would fail to recognize instances of class imbalance[12].
We implemented CTGAN on the previous dataset that contained
all values that the three machine learning models failed to classify
from the test cases. We utilize CTGAN with several default
parameters, namely epochs, batch size, generator/discriminator

dimensions, and noise embedding dimensions.

Parameters of CTGAN model:

Epochs = 100, batch size = 500, generator dimensions = (256,
256), discriminator dimensions = (256, 256), noise embedding
dimension = 128.

GradCAM and Perturbations with FGSM. Following the
training of the CNN, we begin the process of the adversarial at-
tack with a GradCAM, a powerful method of describing what the
CNN is using to make classifications. GradCAM is implemented
on each face in the test dataset, and the resulting heatmap is su-
perimposed. In order to perturb the most important features on
each face, we threshold the result of each heatmap to a value of
.4, with values below .4 being 0 and all others being 1. We then
generate a targeted adversarial attack to apply on the threshholded
heatmap. The creation of the adversarial attack is dependent on 4
parameters: model(CNN), baseImage, delta(noise vector), steps,
and a class label we want the model to incorrectly predict. The
algorithm used to generate the noise vectors and create the ad-
versarial attack utilizes gradient descent in order to minimize the
probability that the model predicts the correct class while max-
imizing the probability that the model selects the targeted class,
hence the term targeted attack.

Specifically, we add a perturbation vector to the image being
manipulated and pre-process the result. The result is then fed to
the CNN and the categorical cross-entropy loss with respect to the
both the original class label and the target class label is calculated.
This process is repeated 500 times, utilizing gradient descent to
minimize the probability that the model predicts the correct class
while maximizing the probability that the model selects the tar-
geted class.

Experiments and Results
This section provides a detailed explanation of the data, ex-

perimental results, and discussions.

Super-Resolution Attacks. We first look at a super-resolution
example. In the Figure 4, we see that our modified low-resolution
image of the baboon is visually almost identical to the origi-
nal, unmodified low-resolution image. But we will see that such
small imperceptible changes, when done right, can produce large
changes in their super-resolved output image.

Figure 4. The manipulated low-resolution image (middle) is visually imper-

ceptible from the unmodified low-resolution image (left top).
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Figure 5. The manipulated low-resolution image produces a visibly inferior

super-resolved output image, with severe loss of texture and detail.

Financial Fraud Data. The first set of experiments employ a
comprehensive dataset designated for the analysis of bank ac-
count fraud, which was sourced from the Kaggle platform [5].
The dataset is expansive, encompassing 1,000,000 instances each
described by 32 distinct attributes. Notably, each instance is an-
notated with a binary label indicating the presence of fraudulent
or legitimate account activity. This dataset is characterized by
a heterogeneous mix of attribute types, including both textual
and numerical data. In order to run the data through our mod-
els, the textual data required conversion to numerical data. For
this purpose, we integrated the Label Encoding technique. This
pre-processing step is critical for the transformation of categori-
cal attributes—specifically, those pertaining to payment type, em-
ployment status, housing status, and the operating system of the
device—into a numerical representation. In order to decrease run
times, a subset 20,000 from the original 1,000,000 rows of data
was used before the implementation of SMOTE, CTGAN, and
training of classifiers.

Training of Text Classification Models and Finding Bound-
ary Points. Our purpose in training these models is to simu-
late real world machine learning algorithms that detect financial
fraud, our goal being to show their vulnerabilities to adversarial
attacks. Three machine learning models are trained: Decision
Tree, Random Forest, and XG Boost. However, due to the im-
balanced nature of the dataset, the original dataset is split into
all rows with fraud and all rows without fraud. From the origi-
nal dataset, there are 988971 rows identified as non- fraudulent
and 11029 rows identified as fraudulent. Training the models on
an imbalanced dataset would result in bias towards the majority
class, in this case non-fraudulent instances. To counter this, a
subset of the non-fraudulent data instances was created contain-
ing 10,000 rows, equal to the number of fraudulent instances from
the original data set. Next, this subset of non-fraudulent instances
was combined with the fraudulent instances in the original dataset
to create a dataset with an equal amount of each class. Due to the
mix of categorical and numerical values, Label nncoding was per-
formed on our new, balanced dataset. This dataset is then prepped
for model training, where we utilize Scikit-Learn to create an 8:2
ratio between the training and test data. The three models are all
trained on this equalized dataset and metrics are recorded.

Following the training and testing stage, the incorrect pre-
dictions for all three models are collected by comparing each in-

stance of a prediction to its true value from testing. An empty
dataframe is created, and data instances that all three models
fail to correctly classify are appended to said dataframe. This
dataset of incorrect values serves as the boundary points across all
three models of data points that cause confusion in classification.
Throughout the study, we use this dataset as the input to SMOTE
and GAN to generate synthetic data that is similar to boundary
points.

Results on Financial Fraud Detection. The initial metrics
from training the three financial fraud classification models on
a balanced dataset is as follows:

Fraud classification performance before adversarial attack

Metrics Decision
Tree

Random
Forest

XG Boost

Accuracy 91.22% 94.175% 94.12%
AUC 0.91 0.94 0.94
Recall 0.91 0.89 0.91
Precision 0.91 0.99 0.97
True Positives 1822 1977 1946
True Negatives 1827 1801 1837
False Positives 165 191 155
False Nega-
tives

186 31 62

The table below shows the effects of the adversarial attack
on the fraud classifiers:

Fraud classification performance after adversarial attack

Metrics Decision
Tree

Random
Forest

XG Boost

Accuracy 68.75% 62.11% 65.94%
AUC 0.73 0.69 0.72
Recall 0.58 0.45 0.53
Precision 0.89 0.93 0.92
True Positives 1211 1304 1255
True Negatives 1535 1177 1379
False Positives 1074 1432 1230
False Nega-
tives

174 81 130

Facial Recognition Dataset. The Olivetti Faces Dataset,
sourced from AT & T Laboratories Cambridge, consists of 400
images of 40 different men and women.

Each image in the dataset has dimensions of 64×64 pixels.
The dataset is structured so that every 10 instances represent the
same person, but in a different lighting, angle, or facial expres-
sion.

Facial Recognition Training. Our goal in training a CNN for
facial recognition is similar to our motivation with the financial
fraud classifiers- we seek to simulate how a real world biomet-
rics system can be fooled by adversarial attacks, creating security
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Figure 6. Input example faces and their true labels from the Olivetti dataset

risks. For training the CNN , we use a 20:80 test train split, tak-
ing the first 2 images of every 10 in the dataset and using them
for test, and the rest for training. Model parameters were impera-
tively chosen for their efficiency and high accuracy. The input of
the CNN is an array of dimensions 1×64×64×1 and the model
architecture and training is as follows:

Figure 7. CNN model architecture.

Results on Facial Biometric Systems. The initial accuracy of
the CNN was 98.75%. However, the adversarial attack dropped
accuracy to 68%. Below is a visual of the three results.

Figure 8. CNN experimental results with adversarial attacks: Column 1

shows the true label; Columns 2 and 3 display the original and perturbed

Olivetti faces; Columns 4 and 5 show model predictions before and after

the attack; Column 6 displays the misclassified face matching post-attack

prediction.

Conclusion
The results demonstrate a significant decrease in the per-

formance of super-resolution algorithms following adversarial at-
tacks. The loss of detail can be drastic. We follow this up with
attacks on classification models as well. In particular, the text
classification models experienced a 20% drop in accuracy, while
facial recognition accuracy dropped by 30% . This suggests that
image classifiers, especially those relying on CNNs, may be more
vulnerable to adversarial perturbations compared to text classi-
fiers. One possible explanation for this difference is that CNNs
rely heavily on local pixel-based patterns, which can be easily
disrupted by small, imperceptible changes to the input data, as
highlighted by the FGSM attack.

In contrast, text classification models often rely on semantic
structures, which may require more sophisticated perturbations to
achieve a similar impact. This suggests that adversarial defenses
may need to be more rigorously developed for image-based mod-
els. Furthermore, the drop in accuracy might indicate that even
well-performing models with high initial accuracies are not im-
mune to adversarial attacks, calling into question the reliability of
these models in high-stakes real-world applications such as finan-
cial fraud detection and biometric security systems.

The significant drop in performance after introducing adver-
sarial examples highlights an urgent need for robust adversarial
defense mechanisms, such as adversarial training or input sani-
tization techniques, to mitigate these vulnerabilities. Future re-
search should explore adversarial training and robust defensive
strategies, such as adversarial noise detection, to mitigate these
vulnerabilities.
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