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Abstract
In this paper, we explore a space-time geometric view of

signal representation in machine learning models. The question
we are interested in is if we can identify what is causing signal
representation errors – training data inadequacies, model insuffi-
ciencies, or both. Loosely expressed, this problem is stylistically
similar to blind deconvolution problems. However, studies of
space-time geometries might be able to partially solve this prob-
lem by considering the curvature produced by mass in (Anti-)de
Sitter space. We study the effectiveness of our approach on the
MNIST dataset.

Introduction
With the advent of large language models, and foundation

models in general, it is important to ensure robust signal represen-
tation inside these models. It is important for the following key
reasons:

• The raw data that foundation models train on is enormous,
and as such the model graphs need an efficient mechanism
to distil the data, without the representation sparsity compro-
mising on signal fidelity.

• An incomplete representation (typically caused by incom-
plete data) leads to various problems during inference.

• Skewed data representations cause lack of generalizability,
characterized by highly non-uniform variance in model accu-
racy.

In addition, achieving a mechanism for representation robust-
ness also enables us to specify specific training data inadequacies.
A central question we ask in this paper is whether a signal rep-
resentation error is due to sub-optimal modeling choices or due
to incomplete/unreliable data (or a combination). Akin to ac-
tive learning, can we have the system send the user prescriptive
feedback that helps augment data that is most likely to alleviate
representation inaccuracies?

The performance of a neural network can be considered a
function of two key variables: (1) network inadequacy (In) and (2)
data inadequacy (Id). Without even running model inference, we
must be able to predict the network performance with just In and
Id .1

In this paper, we address this problem by considering latent
space representations in generative neural networks. In terms of
identifying missing data, there are some key advantages to working
with latent spaces, including that it is easier to find gaps in latent
spaces than to find them directly in input spaces. In auto-encoder

1The upper limit on performance corresponds to theoretical minima of
In and Id , but this limit might still not represent complete accuracy due
to data noise. Analysis of this theoretical upper bound on performance is
conditioned on the data and the specific task, and is beyond the scope of
our paper.

Figure 1. Curvature in latent space. Illustration of both intrinsic and mass-

induced curvature in the latent space. Bigger mass-like points produce higher

bend in the information lines. Further, the cosmological constant captures

curvature even in the absence of mass.

type architectures, estimating data gaps from latent space gaps is
simply a matter of computing the encoder inverse on the latter.

If we consider the latent space as a tensor, we can also
represent the inadequacies in the latent space as another tensor,
Ii = φ(In, Id), for some function φ . Much of this paper is dedicated
to constructing a framework in which a convenient and accurate φ

can be defined.
The novelty of our work lies in how we model the latent space

using principles of differential geometry. In particular, A. Anand-
kumar et al [1] showed that parameter estimation for latent variable
models can be reduced to finding orthogonal decompositions of
tensors derived from second- and third-order moments. These de-
compositions are generally intractable, but we use constructs from
general relativity (specifically de-Sitter and anti de-Sitter curvature
tensors) to leverage rich mathematical solutions pre-existing in
cosmology.

We characterize training data inadequacies using mass-like
points in the latent space, which we can estimate by way of calcu-
lating the stress-energy tensor in Einstein’s field equations. Further-
more, we characterize model inadequacies using intrinsic space-
time curvature, which we can estimate by way of the cosmological
constant (of non-flat space).

Figure 1 is an illustration of information flow through a latent
space with mass-like points and the resulting distortion in signal
reconstruction at the decoder.

The rest of the paper is organized as follows. In Section , we
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will briefly outline related works that are relevant to this problem.
In Section , we use space-time geometry to understand the identi-
fication of and decoupling between data and model specification
inadequacies. In Section , we summarize the results followed by a
brief discussion and future work.

Related Work
Model Shortcomings. The authors of [5] advanced our under-
standing of the difficulty of training deep feedforward neural net-
works shed light on the vanishing and exploding gradient problems
in deep networks. [6] proposed an LSTM architecture to combat
the vanishing gradient problem, which limited the training of deep
recurrent neural networks. [11] introduced dropout regularization
as a technique to prevent overfitting in deep neural networks, which
often occurs when the model is too complex relative to the training
data.

Training Data Shortcomings. [3] discuss strategies for dealing
with label noise in deep learning datasets. Label noise can signifi-
cantly impact model performance and generalization. [2] explore
data augmentation techniques to augment training data, making
models more robust to variations in the data distribution. [12]
investigate transfer learning as a method to leverage pre-trained
models and address data shortcomings in specific domains.

To the best of our knowledge, none of these works use space-
time curvature to jointly estimate network and training data short-
comings.

Analogy Between Latent Space and Space-
Time
Information Flow as Curvatures in the Latent
Space

Without loss of generality, we can describe the encoder-
decoder distortions via curvatures in the latent space. Similar
to ideas from the general theory of relativity [4], we can visualize
bending of information lines as they flow in from the encoder and
out to the decoder. Specifically, the latent space can now be mod-
eled as a set of mass-like points through which the information
lines distort (leading to loss of faithful signal representation).

The general geometric justification for such an analogy can
be analyzed briefly.

Theorem 1 (Manifold Continuity of Autoencoder Transforma-
tions). The transformation pathway T defined by an autoencoder
from the input space I to its latent space L and then to the
output space O , where I ,L ,O are treated as differentiable man-
ifolds, exhibits a smooth manifold structure under continuous and
differentiable mapping conditions.

Proof. Assume f : I → L and g : L → O are differentiable
maps. The composition g ◦ f , representing the autoencoder, is
differentiable by the chain rule for compositions of differentiable
functions:

(g◦ f )′ = g′ ◦ f ′.

This differentiability ensures that the mappings induce a smooth
structure between the manifolds, preserving the continuity and
differentiability from I through L to O .

Theorem 2 (Analogy between Information Flow and Spacetime
Curvature). The distortion in the reconstruction of data by an
autoencoder, measured by a distortion metric D, is analogous to
the spacetime curvature R described by the Ricci curvature tensor
in the presence of a stress-energy tensor T .

Proof. Define the distortion metric D(x,g( f (x))) = ∥x −
g( f (x))∥2, quantifying the error at each point x ∈ I . Let’s draw
an analogy to the Ricci curvature tensor Ri j in general relativity,
which measures how mass-energy affects spacetime curvature:

Rµν −
1
2

Rgµν +Λgµν =
8πG
c4 Tµν ,

where R is the Ricci scalar. We suggest that increases in data com-
plexity or ’mass’ in the latent representation increase the curvature
of the information flow, similar to the curvature of spacetime due
to mass:

D ≈ curvature induced by f and g.

Theorem 3 (Topological Properties of Information Lines). The
paths of information flow in an autoencoder, seen as continu-
ous lines from I through L to O , maintain homotopy equiva-
lence under transformations that preserve data integrity, analo-
gous to paths in a curved spacetime manifold being homotopic to
geodesics.

Proof. Consider paths in I and O that are images under f and g.
Assuming these mappings are homotopic, implying one can be con-
tinuously deformed into the other, they preserve the fundamental
group structure under the transformations:

π1(I )∼= π1(O) through π1(L ).

This homotopy equivalence ensures that paths are preserved akin
to geodesics in spacetime under the influence of gravity.

These theorems establish a foundational analogy that not only
enhances the understanding of autoencoder dynamics but also
bridges a gap between machine learning algorithms and theoretical
physics. The appeal of such a treatment of the latent space is that
this allows for two useful characterizations of the space: 1) a finite-
point description of the space, and 2) a mechanism to quantify
both model and data inadequacies.

Imagine the latent space can be characterized by two indepen-
dent components – the training data and the model specifications.
In this view of the latent space as space-time geometry, we would
ideally like this space to be void of any mass-like fields, and there-
fore of any mass-like points. These mass-like points denote data
inadequacies in the neighborhood of their pre-image in the en-
coder’s input space. Having mass-like points in the latent space
will bend the lines of information, causing distortion, thereby los-
ing robustness of signal representation. Same happens when the
space itself in intrinsically curved. We model the model inadequa-
cies as the curvature of empty space without any mass. We use de
Sitter (dS) and Anti-de Sitter (AdS) solutions (corresponding to
positive and negative cosmological constant, respectively) using a
Gaussian process prior.
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The existence of three symmetric spaces is entirely analogous
to the the three different solutions. Note that de Sitter and anti-de
Sitter both have constant spacetime curvature, supplied by the
cosmological constant. The metrics above have constant spatial
curvature. Note, however, that the metric on S3 coincides with
the spatial part of the de Sitter metric in coordinates, while the
metric on H3 coincides with the spatial part of the adS metric in
the coordinates.

We write these spatial metrics in unified form,

ds2 = γi jdxidx j =
dr2

1− kr2 + r2(dθ
2 + sin2

θdφ
2), (1)

where k =+1 for S3, 0 for R3, and −1 for H3.
Hyperboloid H3. This space has a uniform negative curvature,

ds2 =
dr2

1+ r2 + r2(dθ
2 + sin2

θdφ
2) (2)

Information distortion through latent space as
Ricci curvatures

In the context of encoder-decoder architectures, particularly
those used in machine learning and signal processing, the concept
of latent space plays a crucial role in understanding the transfor-
mations applied to input data. As data passes through the encoder,
it is compressed into a lower-dimensional representation, known
as the latent space representation. This process, while efficient
for reducing dimensionality and capturing the essential features
of the data, often introduces distortions. The decoder’s task is to
reconstruct the original data from its latent representation. Ideally,
if there is no distortion, the output of the decoder should match
the input of the encoder exactly. However, due to the lossy nature
of the compression, some information is inevitably lost, leading
to a discrepancy between the original input and the reconstructed
output.

To quantify this distortion, we define it in terms of the vari-
ance between the output of the decoder, x̂, and the input of the
encoder, x. Mathematically, the distortion can be expressed as the
expected value of the squared difference between x and x̂:

D(x, x̂) = E[(x− x̂)2]. (3)

This variance serves as a measure of the reconstruction error, pro-
viding a quantitative means to evaluate the fidelity of the data
reconstruction process. In an ideal scenario, where the decoder
perfectly reconstructs the input from the latent representation, the
distortion D(x, x̂) would be zero. However, in practical appli-
cations, minimizing this distortion is a key challenge, guiding
the design and optimization of encoder-decoder architectures to
achieve as close a match as possible between x and x̂.

The process of encoding and decoding information through
a latent space can introduce variances between the original and
reconstructed data, akin to distortions or "bends" in the informa-
tion space. These bends, characterized by the variance D(x, x̂) =
E[(x− x̂)2], can be conceptually linked to the curvature in space-
time described by general relativity. In the realm of general relativ-
ity, mass and energy influence the curvature of spacetime, which
in turn affects the paths of objects moving through it. This curva-
ture is mathematically described by the Ricci tensor, Rµν , which

provides a way to quantify how much the geometry of the space
deviates from flat Euclidean space in the presence of mass-energy.

To draw a parallel, consider the latent space representation as
a form of “information spacetime” where data insufficiencies or the
compressed nature of the information act as mass points, creating
curvature. This curvature leads to the bending of information
lines, analogous to the bending of light or trajectories of particles
in gravitational fields. The Ricci tensor, in this analogy, can be
related to the distortion variance through the notion that higher
curvature (greater distortion in the latent space) corresponds to a
greater variance between the original input and the output of the
decoder. Mathematically, this relationship can be expressed as:

Rµν ∼ ∇
2D(x, x̂), (4)

where ∇2 denotes the Laplacian operator, symbolizing the spread
or divergence of distortion across the latent space, analogous to
how the Ricci tensor measures the density of the curvature of
spacetime due to mass-energy content.

This conceptual framework not only enhances our understand-
ing of information processing in neural networks but also provides
a fascinating bridge between the fields of machine learning and
theoretical physics. By exploring the similarities between the dis-
tortion of information in latent spaces and the curvature of space-
time, we gain insights into the fundamental nature of information,
compression, and differential geometry.

In the analysis of encoder-decoder architectures within ma-
chine learning, the variance D(x, x̂) quantifies the distortion be-
tween the input x to the encoder and the output x̂ from the decoder.
This variance reflects the degree of information loss and can be vi-
sualized as a curvature or bend in the latent space. Analogously, in
the framework of general relativity, the curvature of spacetime due
to the presence of mass and energy is mathematically described
by the Ricci curvature tensor. This document aims to establish
a conceptual bridge between the curvature observed in the latent
space of neural networks and the Ricci curvature in spacetime.

Quantifying Distortion in Latent Space The variance D(x, x̂)
serves as a measure of distortion, defined as:

D(x, x̂) = E[(x− x̂)2], (5)

where x represents the original input data, and x̂ denotes the recon-
structed data from the decoder. This variance not only quantifies
the reconstruction error but also metaphorically represents the "cur-
vature" or bend in the latent space induced by the encoding and
decoding processes.

From Latent Space Curvature to Ricci Curvature In general
relativity, the Ricci curvature tensor, Rµν , is a key entity that
describes the curvature of spacetime as influenced by mass and
energy. It is derived from the Riemann curvature tensor, Rρ

σ µν ,
which provides a more comprehensive description of spacetime
curvature. The Ricci tensor is obtained by contracting the Riemann
tensor:

Rµν = Rρ

µρν , (6)

where the Ricci tensor essentially averages the effects of curvature
across different directions. Additionally, the Ricci scalar, R, further
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condenses this information into a single value, representing the
trace of the Ricci tensor:

R = gµν Rµν , (7)

where gµν is the inverse metric tensor of spacetime.

Some Common Ideas Between information
Flows in Networks and Light Flow in Space-
Time

The distortion in the latent space, represented by D(x, x̂), can
be likened to the curvature of spacetime described by the Ricci
tensor. Just as mass and energy dictate the curvature of spacetime,
leading to the bending of light or trajectories of objects (akin to the
curvature caused by gravitational fields), the data insufficiencies
and compression in the latent space representation act as "mass
points" in the informational geometry, causing information lines to
bend. This analogy allows us to conceptualize the effects of data
transformation in neural networks through the lens of spacetime
geometry, providing a novel perspective on information processing
and its inherent distortions.

Curvature of Latent Space in Autoencoders. Given an autoen-
coder with an encoder E and a decoder D, the latent space Z can
be modeled as a Riemannian manifold with a metric tensor gi j(z).
The curvature of this latent space is influenced by the density of
encoded information.

Consider an autoencoder where E : X → Z maps the input
space X to the latent space Z, and D : Z → X reconstructs the input
from the latent representation.

Assume Z is a differentiable manifold. The metric tensor
gi j(z) in Z is induced by the encoding map E from the input space
metric gkl(x):

gi j(z) =
∂Ek

∂ zi
∂E l

∂ z j gkl(x).

The Riemann curvature tensor Ri
jkl of the latent space, derived

from gi j, can be computed using:

Ri
jkl =

∂Γi
jl

∂ zk −
∂Γi

jk

∂ zl +Γ
i
kmΓ

m
jl −Γ

i
lmΓ

m
jk,

where Γi
jk are the Christoffel symbols derived from gi j.

If we interpret ρ(z) as the information density in the latent
space, it influences the metric gi j and thus the curvature. Regions
with higher information density correspond to greater curvature,
similar to how mass influences the curvature of spacetime in gen-
eral relativity.

Geodesic Deviation in Latent Space. The deviation of paths
in the latent space of an autoencoder is analogous to the geodesic
deviation of light in the presence of mass in general relativity.
Specifically, the separation vector between two encoded points
evolves according to an equation similar to the geodesic deviation
equation.

In general relativity, the geodesic deviation equation is:

D2ξ µ

dτ2 +Rµ

νρσ uν
ξ

ρ uσ = 0,

where ξ is the separation vector between geodesics, uν is the
tangent vector, and Rµ

νρσ is the Riemann curvature tensor.
Consider two close points x1 and x2 in the input space,

mapped to z1 = E(x1) and z2 = E(x2) in the latent space. The
separation vector in the latent space is ξ i = zi

2 − zi
1.

The curvature of the latent space, influenced by the informa-
tion density, affects the deviation of the paths of z1 and z2. The
deviation equation in the latent space can be written as:

D2ξ i

dτ2 +Ri
jkl

dz j

dτ
ξ

k dzl

dτ
= 0,

where Ri
jkl is the Riemann curvature tensor of the latent space.

This equation shows that the separation vector evolves under the
influence of the latent space curvature, analogous to the geodesic
deviation in general relativity.

Conservation of Information Flow in Latent Space. The con-
servation of information flow in the latent space of an autoencoder
can be modeled by an equation analogous to the conservation of
energy-momentum in a gravitational field.

Let ρ(z) denote the information density in the latent space and
v(z) the information flow velocity. The conservation of information
flow is expressed by:

∇z · (ρ(z)v(z)) = 0.

In general relativity, the conservation of energy-momentum
is given by:

∇µ T µν = 0,

where T µν is the energy-momentum tensor.
By analogy, ∇z · (ρ(z)v(z)) = 0 ensures that information flow

is conserved in the latent space, similar to how ∇µ T µν = 0 ensures
energy-momentum conservation in a gravitational field.

Information Compression and Gravitational Lensing. The
compression of information in the latent space of an autoencoder
is analogous to the gravitational lensing effect, where mass com-
presses and magnifies light paths.

An autoencoder compresses input data x into a lower-
dimensional latent representation z using the encoder E:

z = E(x).

In gravitational lensing, light passing near a massive object is
bent and magnified due to the curvature of spacetime described by
the metric tensor gµν :

ds2 = gµν dxµ dxν .

The compression function E in the autoencoder acts similarly
to gravitational lensing by concentrating information into certain
regions of the latent space, effectively magnifying important fea-
tures. The compressed latent representation can be expressed as:

z̃ = f (E(x)),

where f is a function representing the compression effect, similar
to the lensing effect that magnifies the images of distant objects.
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Information Equilibrium and Gravitational Potential. The
equilibrium state of information in the latent space of an autoen-
coder is analogous to the equilibrium state in a gravitational poten-
tial well.

Consider the information density function ρ(z) in the latent
space. Define an information potential function φ(z) as:

φ(z) =− logρ(z).

In a gravitational field, objects move towards an equilibrium
state where the gradient of the gravitational potential is zero:

∇φ = 0.

Similarly, in the latent space, the equilibrium state is achieved
when the gradient of the information potential is zero:

∂φ(z)
∂ z

= 0.

This implies that the information density is balanced in the
latent space, analogous to the equilibrium state in a gravitational
potential well where forces are balanced.

Information Gradient and Gravitational Gradient. The gradi-
ent of information density in the latent space of an autoencoder is
analogous to the gravitational gradient in spacetime.

The gradient of the information density ρ(z) in the latent
space is given by:

∇ρ(z).

In general relativity, the gravitational gradient, or the gravita-
tional field, is given by the gradient of the gravitational potential
Φ:

∇Φ.

The force in a gravitational field is described by:

F =−∇Φ.

Similarly, the gradient of the information density in the latent
space can be seen as a force that influences the flow of information:

F(z) =−∇ρ(z).

Thus, the gradient of the information density in the latent
space acts as a force guiding the flow of information, analogous to
the gravitational gradient guiding the motion of objects in space-
time.

Data Insufficiencies as Mass-like Points
Data insufficiencies—such as noise, incomplete data, or un-

reliable data—can be thought of as mass-like points in the latent
space, distorting the information flow akin to how a gravitational
field bend light rays.

Data Insufficiency Function. Let L denote the latent space
of the neural network. We define the data insufficiency function
ρ(z), where z ∈ L . This function quantifies the degree of data
insufficiency (e.g., noise, lack of data) at each point in the latent
space. The data insufficiency function is analogous to the mass
density function in general relativity.

Mass Function for Data Insufficiency. Given the data insuffi-
ciency function ρ(z), we define the mass function m(Ω) over a
region Ω ⊂ L . The mass function quantifies the total "mass" due
to data insufficiencies within the region Ω. It is defined as:

m(Ω) =
∫

Ω

ρ(z)
√

|g|dnz,

where:

• ρ(z) is the data insufficiency function at point z.
•
√
|g| is the determinant of the metric tensor gi j, which ac-

counts for the volume element in the latent space.
• dnz represents the differential volume element in n-

dimensional latent space.

Relation to the Stress-Energy Tensor. The stress-energy tensor
Ti j(z) in the latent space is influenced by the data insufficiency
function. Specifically, the energy density component T00(z) can be
expressed as:

T00(z) = ρ(z)+
1
2

n

∑
i=1

(
∂ρ(z)

∂ zi

)2
,

where the first term represents the data insufficiency density and
the second term accounts for the gradient of the data insufficiency
function, reflecting local variations.

Modified Einstein Field Equations. To incorporate data insuffi-
ciencies into the curvature of the latent space, we use a modified
form of Einstein’s field equations:

Ri j −
1
2

Rgi j +Λgi j = kTi j,

where:

• Ri j is the Ricci curvature tensor.
• R is the Ricci scalar, R = gi jRi j.
• Λ is the cosmological constant representing model biases.
• k is a proportionality constant.
• Ti j is the stress-energy tensor influenced by data insufficien-

cies.

In the original formulation of Einstein’s field equations, Ti j
represents the distribution of mass-energy in spacetime. In the con-
text of neural networks, Ti j is adapted to represent the distribution
of data insufficiencies in the latent space. This modification allows
us to model the influence of data insufficiencies on the geome-
try of the latent space, analogous to how mass-energy influences
spacetime curvature.

The primary difference lies in the interpretation of the stress-
energy tensor Ti j. Instead of representing physical mass-energy,
it represents the “mas” of data insufficiencies. Additionally, the
latent space metric gi j may have different properties compared to
spacetime metrics, reflecting the unique geometry of the neural
network’s latent space.
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Calculation of Curvature. The curvature of the latent space, in
this case, described by data insufficiencies, can be calculated using
the Ricci tensor and the mass function. The Ricci scalar R is given
by:

R = gi jRi j.

The curvature induced by the data insufficiency can be expressed
as:

Ri j = k
(

∇i∇ jρ(z)−
1
2

gi j∇
k
∇kρ(z)

)
,

where ∇i denotes the covariant derivative.

Mass-to-Curvature Conversion Function. Finally, we propose
a function that relates the mass due to data insufficiencies to the
information curvature of the latent space:

M (ρ) =
∫

Ω

(
ρ(z)+

1
2

n

∑
i=1

(
∂ρ(z)

∂ zi

)2
)√

|g|dnz.

• M (ρ): Represents the total mass due to data insufficiencies
within the region Ω. This is an aggregate measure of how
data insufficiencies (e.g., noise, lack of data) contribute to the
“mass” in the latent space, which in turn affects its curvature.

• ρ(z): The data insufficiency function at point z, representing
the density of data insufficiency (e.g., noise, lack of data) in
the latent space.

• 1
2 ∑

n
i=1

(
∂ρ(z)

∂ zi

)2
: This term accounts for the gradient of the

data insufficiency function, reflecting local variations in data
insufficiency. It ensures that regions with rapidly changing
data insufficiency contribute more to the total mass.

•
√

|g|: The determinant of the metric tensor gi j, providing
the volume element in the latent space. This term adjusts the
integration measure to account for the geometry of the latent
space.

• dnz: The differential volume element in the n-dimensional la-
tent space, representing the infinitesimal volume over which
the integration is performed.

This function integrates the data insufficiency density and
its gradient over the region Ω, providing a measure of the total
curvature induced by the data insufficiencies in the latent space.

Intuitively, ρ(z) measures how much data insufficiency exists
at each point z in the latent space. However, it’s not just the amount
of data insufficiency that matters; how quickly this insufficiency
changes (its gradient) is also important. Regions where the data
insufficiency changes rapidly (high gradients) contribute more to
the overall mass. The term ρ(z) is analogous to a mass density

function, while the gradient term 1
2 ∑

n
i=1

(
∂ρ(z)

∂ zi

)2
captures the

local variability. The integration over the region Ω sums up these
contributions, taking into account the shape and structure of the
latent space as described by the metric tensor gi j.

Practical considerations for implementing this function. The
integration involves evaluating the data insufficiency function and

its gradient at numerous points in the latent space. For high-
dimensional latent spaces, the number of evaluations can grow ex-
ponentially, leading to increased computational complexity. Tech-
niques such as Monte Carlo integration or sparse grid methods can
be employed to reduce computational load.

The computation of the gradient ∂ρ(z)
∂ zi can be sensitive to

numerical precision, especially in regions where ρ(z) changes
rapidly. Using higher-order numerical differentiation schemes or
automatic differentiation can help improve stability.

Calculating the determinant of the metric tensor
√

|g| is com-
putationally expensive for high-dimensional spaces. Efficient algo-
rithms for determinant computation, such as LU decomposition,
can be utilized. Additionally, exploiting any symmetries in the
metric tensor can reduce computational effort.

The integration process is inherently parallelizable, as evalua-
tions of the integrand at different points are independent. Leverag-
ing parallel computing frameworks can significantly speed up the
computation, especially for large-scale problems.

Model Inadequacies and the Cosmological Con-
stant

In the realm of neural networks, particularly those concerned
with learning representations, model architecture plays a pivotal
role. The choice of layer depth, width, activation functions, and
regularization techniques all contribute to the network’s ability to
learn and generalize. However, not all architectures are created
equal, and inadequacies in these designs can introduce systemic
biases or limitations, effectively "curving" the latent space in ways
that are not conducive to accurate representation learning. This
curvature can hinder the network’s performance, analogous to
how the curvature of spacetime influences the motion of celestial
bodies.

Drawing from cosmology, we liken these architectural in-
adequacies to the cosmological constant (Λ) in Einstein’s field
equations. Just as the cosmological constant represents a uniform
energy density that permeates space, contributing to its curvature,
model inadequacies impose a foundational bias or constraint on the
latent space, affecting the distribution and quality of the learned
representations.

This analogy provides a conceptual framework for under-
standing and addressing the limitations imposed by suboptimal
network designs. By modeling these inadequacies as a cosmolog-
ical constant, we can begin to quantify their effects and devise
strategies to mitigate them, much like how cosmologists account
for Λ when modeling the universe.

Λ ≡ model-induced inherent curvature. (8)

In this context, Λ is not just a scalar but a representation of
the systemic biases encoded into the network by its architecture.
This perspective invites a deeper examination of how architectural
choices influence learning dynamics and offers a pathway to more
informed design decisions that minimize these biases, enhancing
the network’s ability to learn and generalize.

Method
We first present information flow as curvatures in the latent

space, and then present an informal sketch of our solution.
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Information Flow as Curvatures in the Latent
Space

Without loss of generality, we can describe the encoder-
decoder distortions via curvatures in the latent space. Similar
to ideas from the general theory of relativity [4], we can visualize
bending of information lines as they flow in from the encoder and
out to the decoder. Specifically, the latent space can now be mod-
eled as a set of mass-like points through which the information
lines distort (leading to loss of faithful signal representation). The
appeal of such a treatment of the latent space is that this allows for
two useful characterizations of the space: 1) a finite-point descrip-
tion of the space, and 2) a mechanism to quantify both model and
data inadequacies.

Imagine the latent space can be characterized by two indepen-
dent components – the training data and the model specifications.
In this view of the latent space as space-time geometry, we would
ideally like this space to be void of any mass-like fields, and there-
fore of any mass-like points. These mass-like points denote data
inadequacies in the neighborhood of their pre-image in the en-
coder’s input space. Having mass-like points in the latent space
will bend the lines of information, causing distortion, thereby los-
ing robustness of signal representation. Same happens when the
space itself in intrinsically curved. We model the model inadequa-
cies as the curvature of empty space without any mass. We use de
Sitter (dS) and Anti-de Sitter (AdS) solutions (corresponding to
positive and negative cosmological constant, respectively) using a
Gaussian process prior.

The existence of three symmetric spaces is entirely analogous
to the the three different solutions. Note that de Sitter and anti-de
Sitter both have constant spacetime curvature, supplied by the
cosmological constant. The metrics above have constant spatial
curvature. Note, however, that the metric on S3 coincides with
the spatial part of the de Sitter metric in coordinates, while the
metric on H3 coincides with the spatial part of the adS metric in
the coordinates.

We write these spatial metrics in unified form,

ds2 = γi jdxidx j =
dr2

1− kr2 + r2(dθ
2 + sin2

θdφ
2), (9)

where k =+1 for S3, 0 for R3, and −1 for H3.
Recap on FRW metrics:
Hyperboloid H3. This space has a uniform negative curvature,

ds2 =
dr2

1+ r2 + r2(dθ
2 + sin2

θdφ
2) (10)

Solution Outline
We start out with an auto-encoder (with encoder E and de-

coder D and training data Q). Let the latent space be L. For a given
input vector x, the output vector is given by,

y = D(E(x))+ ε, (11)

where ε is the representation error due to model and training
data inadequacies. We follow the steps below to estimate both
these inadequacies.

1. Estimate the sign of the cosmological constant, Λ, for the
latent space, L. This tells us whether to use dS or AdS. We do
not use Minkowski space, since we do not assume flatness.

2. Pick an appropriate metric tensor.
3. Empirically measure the information line bends in L and

calculate the Ricci curvature tensor and its Ricci scalar.
4. Jointly estimate the value of Λ and the stress-energy tensor,

Tµν , by solving Einstein’s field equations.
5. We estimate the mass-like points in L since the stress-energy

tensor is related to the mass through the Lagrangian.

In this paper, instead of using a Minkowski metric tensor
(since we are not assuming flat space), we use dS and AdS metrics.
However, we were also careful not to use Schwarzschild metrics.
Although these would work given our quantized view of mass
in the latent space, we would not able to guarantee that encoder-
decoder information pathways that pass through the latent space
would not intersect a ball Br of radius r = 2GM

c2 centered at a given
mass point.

Why we operate in 4D. [9] define non-negative Ricci curvature
in arbitrary-length spaces. In his proof of the Poincare conjec-
ture, Grigori Perelman applied the Bishop-Gromov inequality to
an infinite dimensional Ricci-flat manifold [10].2 However, to
keep the analysis simple, we restrict ourselves to 4D space (like
4D space-time in general relativity). This bring in an additional
problem – our latent space dimension is generally much larger than
four. To solve this problem, we use dimension folding proposed
by [8]. The description of this method is beyond the scope of this
short paper.

Brief Results and Conclusions
We report results on the publicly-available MNIST dataset.

We build two neural networks. Network NA has four layers (784,
128, 64, and 10 neurons), ReLU activation function for the first
three, and a soft-max function for the output layer. Network NB is
a LeNet5 model [7]. We build two training datasets. Dataset DA
has 70% (uniformly randomly sampled) of MNIST, while Dataset
DB is initialized to DA and then 80% of the images of digits 3 and
7 are discarded.

Our outputs contain two scalars: network inadequacy score
(NIS) and data inadequacy score (DIS). NIS is a positive function
of |Λ| scaled to [0,1] and DIS is a positive function of the estimated
mass in the latent space, again scaled to [0,1]. Due to the short
nature of the paper, we only highlight some key results in this table
below.

Network and training data inadequacies quantified

Case NIS DIS
(NA, DA) 0.18 0.07
(NA, DB) 0.21 0.31
(NB, DA) 0.07 0.06
(NB, DB) 0.08 0.26

2Ricci-flat surfaces are not necessarily flat; just their Ricci tensor is
zero, but they could have a non-zero Weyl curvature component of the
Riemann tensor.
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Figure 2. An image with a brain tumor, correctly predicted.

As we see from the results, the estimates of NIS and DIS for
the two models and two datasets, respectively, are not completely
marginalized. A good network seems to have an (undesired) posi-
tive effect on the DIS of datasets, and same with a good dataset. In
the future, we would like to improve the NIS and DIS marginal-
ization. We would also like to explore how to partition the latent
space, allowing us to use locally-define cosmological constants.
This is particularly challenging due to manifold smoothness con-
straints, but useful because it accounts for non-uniform model
behavior in the latent space.

In a second experiment, we classify brain images into tumor
and non-tumor. We trained a Mask R-CNN with ResNeXt-101-
32x8d for Feature Pyramid Network. The dataset has 1500 training
images and about 600 test images. These images are gray-scale,
640 pixels x 640 pixels. The Mask R-CNN architecture is known
to be particularly well-suited for segmentation. As a result, from
the onset, we do not expect high NIS values for this model.

We initially trained the model on only 15 tumor images, sig-
nificantly skewing the distribution. And we ramped up the training
in subsequent rounds to achieve a roughly equal distribution across
the two classes. During this ramp-up, we see a monotone decrease
in the DIS scores, indicating we are gathering more data samples
relevant for a better prediction accuracy.

In any case, in this paper, we have proposed a space-time
curvature-based approach to identify and delineate model and data
shortcomings in signal representation problems. The promise
of our method lies in the powerful and intricate framework to
understand relativistic gravitation over a century ago.
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