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Abstract

Modeling and simulation of rare events is a problem that has
been largely ignored by the image processing community, but is
of great interest in many areas of science. Rare events in physical
systems are responsible for many failure modes, and as such must
be precisely understood. We propose a novel method for simulat-
ing and modeling rare images using asymptotically efficient im-
portance sampling, and apply it to binary images of interest in
statistical mechanics and materials science. These rare images
correspond to the occurrence of rare events in systems modeled
by Gibbs distributions, more commonly known as Markov random
fields (MRF's) in image processing. We will first give a precise def-
inition of a rare event, in terms of a rare event statistic and a rare
event region. The rare event statistic of interest here will be the
per-site magnetization of a ferromagnet under the Ising model,
but this could be replaced by many other statistics for other prob-
lems, such as boundary length in two-phase material microstruc-
tures, for example. For the given rare event statistic, we estimate
the asymptotically efficient importance sampling (AEIS) distribu-
tion, which is based on a large deviation principle (LDP); draw
samples of rare binary images from this AEIS distribution; and
estimate rare event probabilities for several different rare event
regions. Theoretically, the AEIS sampling distribution gives an
unbiased estimator with the lowest variance asymptotically from
a class of importance sampling distributions that are practically
feasible for Monte Carlo Markov chain simulation. Finally, we fit
large deviations rate functions from simulations using several rare
event regions. This allows us to compute probability estimates as-
sociated with a given rare event statistic for any rare event region
of interest without requiring further simulations.

Introduction

Many important rare events occur in systems that are charac-
terized using image data. A few examples include the growth of
an abnormally large grain in a polycrystalline material [1, 2], tu-
mor growth in humans or animals [3, 4], and abnormal clustering
of particles in certain metal alloys [5].

Estimating probabilities of rare events in images is often of
critical importance. One reason for this is that the expected num-
ber of occurrences of a rare event in a given number of samples
depends on the probability of the rare event. Is the event expected
to occur on the order of once in 100 samples? Once in 10,000
samples? Once in 100,000 samples? This is important when man-
ufacturing defects are considered, for example. Estimating rare
event probabilities is also important for “grounding” a rare event
simulation in reality. If in simulation, our estimated probability
of a certain event is extremely small, there can be two possible
causes. First, the real probability of that event is indeed tiny. In
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this case, the likelihood of observing the event in the real world
is so small that we do not need to model it. Second, it may arise
from an inaccurate or incomplete model, such as an energy ex-
pression in the Gibbs distribution that is not sufficiently precise to
accurately capture the tail behavior of the probability measure.

To the best of our knowledge, there has been no published
work that simulates rare images and then uses those images to es-
timate probabilities of associated rare events. We present a novel
method that performs asymptotically efficient importance sam-
pling of images modeled by Gibbs distributions, or equivalently
Markov random fields, and estimates rare event probabilities, pro-
viding unprecedented capabilities for characterizing rare events in
images.

Simulation of images is often performed using Monte Carlo
Markov chain (MCMC) sampling, but drawing from the system
distribution is extremely unlikely to generate images that are rare
under that distribution. There have been many efforts to draw
rare samples of images using MCMC, with a biasing energy term
to drive the simulation into certain desired regions [6, 7]. These
methods effectively use importance sampling (IS) (although it is
not identified as such in published papers), but they do not con-
sider optimal IS, nor do they estimate associated rare probabili-
ties. In fact, they do not even frame the rare event as an event in a
probability space, so it is not clear how probabilities would be pre-
cisely defined in those approaches. We address these limitations
by using a mathematically precise, practically useful definition of
rare events, performing asymptotically efficient importance sam-
pling based on results from large deviations, and estimating the
optimal rare event probabilities from the sampled images.

The novelty of our proposed approach, which is based on
theoretical results from large deviations (LD), includes

precise definition of a rare event, in terms of a rare event

statistic, computed from the appropriate rare images, and a

rare event region;

* use of an asymptotically efficient importance sampling dis-
tribution;

* estimation of an optimal value of the IS biasing parameter;

estimation of rare event probabilities from simulated im-

ages;

estimation of the large deviation rate function for a given

rare event statistic.

There are two advances in probability theory that have en-
abled our work. The first is a large deviations result for Gibbs
distributions that was proved in the 1980s [8], and the second is
the introduction of the AEIS distribution for Gibbs distributions in
1993 [9]. The problem with these results is that they do not admit
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closed-form solutions, so we have developed estimation proce-
dures to approximate the theoretically correct results.

Before moving on, it should be noted that importance sam-
pling methods based on large deviation theory have been used
to compute rare event probabilities in high dimensions. In [10]
rare event probabilities are estimated for high-dimensional Gaus-
sian random variables, for a 1D diffusion problem, and for 1D
tsunami characterization. However, only Gaussian random vari-
ables and one dimensional random processes were characterized
in [10]. The problem of simulating rare images and estimating
probabilities from the simulated images provides different chal-
lenges. A solution to this problem would allow domain experts to
evaluate rare event probabilities with associated images that help
visually validate that the expected rare event has actually occurred
in the simulation.

Methods
Mathematical definition of a rare event character-
ized by image data

The first step is to set up the rare event for which we wish to
find a probability. Consider three elements:

* A random image X defined on a lattice S, with some proba-
bility distribution p (either a probability density or a proba-
bility mass function) for X. We assume a Gibbs distribution
p for X, and focus on the case where X is a binary image in
this paper.

+ A random vector T'(X) € R?, which is a statistic computed
from the image X, for some d > 1. Note that we do not
need to know the probability measure P of T to estimate the
probability of the rare event. As will be seen, it is enough to
know p and the mean E[T (X )], which we can estimate from
samples of X. In this paper, we consider the case d = 1 only.

* A region A C R?, which does not contain the mean vector
E[T(X)]. When d = 1, A will usually be a tail interval.

With these definitions in hand, we say that the rare event
of interest occurs whenever T (X) € A. We refer to the vector T
as the rare event statistic and the set A as the rare event region.
Intuitively, the farther A is (in some sense) from the mean of 7,
the more rare the event, but all that is required of the set A is that
it not include the mean behavior of the system, as represented by
the mean vector of T'.

Importance sampling for estimation of rare event
probabilities in images

There are a couple of problems that arise in the practical
application of our definition of a rare event 7'(X) € A. First, it
is infeasible to draw samples of the image X under distribution
p directly. This problem is addressed by using well-established
MCMC methods, such as the Metropolis-Hastings algorithm,
which we have used for the results in this paper, and the Gibbs
sampler. The second problem we face is that samples drawn from
the distribution p will not include sufficient occurrences of the
rare event of interest to allow effective characterization, unless
the event is not actually very rare (which can happen when the
rare event region A contains points that are close to the mean of
rare event statistic 7(X)). Thus we turn to importance sampling,
which draws samples instead from an importance sampling distri-
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bution g, and estimates the probability P(7'(X) € A) under p from
those samples, as described next.

N
Consider N image samples {X (k)} drawn from some se-

1
lected IS distribution function g by MCMC simulations. Then, an
unbiased estimate on the probability of the rare event of interest
under p is given as follow:

Pn Xé")
k ln{A}mxé")))M

for some large n, where n is the number of lattice sites, X,’f is
the kth sample image, and P, is the measure of 7'(X,). Here we
assume that the Markov chain is ergodic. It gives that for large n,
the expectation of the per-site quantity 7' can be approximated by
the average of T from a large amount of image samples X;,.

B(T(G) €A)= ¢

M=

€y

Selecting an IS distribution

Now we address the question of which IS distribution func-
tion ¢ we should use. The right side of (1) is an unbiased estimator
of P,(T (X,) € A) for any sequence of distributions gy, so long as
gn 1s not zero anywhere, but we also want an estimator whose
variance is as low as possible.

It turns out that we cannot minimize the variance of the esti-
mator of (1) for any finite n, so instead the optimality criterion we
use is the minimization of the asymptotic variance as n — oo [16].

Now that we have defined the selection of the IS distribution
g as a minimization problem, namely minimization of the asymp-
totic variance of the rare event probability estimator in (1), we
have only to perform the optimization. But commonly-used op-
timization methods cannot be used here. Since LDP provides a
mathematical framework for rare events, we turn to it to address
this problem.

More specifically, we rely on two results from LD, beginning
with the result that a sequence of empirical Gibbs distributions
satisfies a large deviations principle (LDP) [8]. The mathematical
definition of an LDP, and more formal statements of the relevant
Gibbs LDP results, are given in that reference, but there are two
important implications for our purposes.

Optimal IS distribution

The first implication of the LDP for Gibbs distributions ac-
tually gives us a solution to our question of which IS distribution
to use [9]. First, we write the Gibbs distribution p as

Plo) = i exp(~BU ). @
where 3 is the inverse temperature and ZU is the normalizing con-
stant (also known as the partition function) associated with Gibbs
energy function U.

Then the result derived by Baldi, for the case where T is
single-variate and A = [u,c0) for some u > E[T] for simplicity,
can be summarized as

¢ the AEIS distribution ¢, at MCMC step n has the form

qn(x) exp (_ﬁ (Uq(x))) ) 3)

= 70,
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where Uy (x) = U(x) —tnT (x) is the IS energy function. It
can be seen from this form for ¢, that the AEIS distribu-
tion is another Gibbs distribution, where the system energy
function U (x) has been shifted with a biasing energy based
on the statistic T,

and

» the value of the biasing parameter # must satisfy E, [T] — u
as n — oo,

This sequence of sampling distributions g,,, with the optimal value
of t, guarantees an optimal estimator of the probability of our rare
event in the sense of being unbiased and having the lowest vari-
ance asymptotically from a class of practically feasible impor-
tance sampling distributions.

Large deviation rate function for rare event probability

The second implication of the LDP for Gibbs distributions
is that, under certain mild conditions, the sequence of rare event
statistics T also satisfies an LDP (based on what is known as the
large deviation contraction principle). This means that for some
large deviation rate function /

Ba(T(Xn) € A) < exp(—nl(A))) )

for large n. This is potentially a very useful result, because it
means that if we can find the large deviation rate function / asso-
ciated with a rare event statistic 7', then we can obtain an optimal
estimate of the rare event T (X) € A for any A without needing to
draw more rare images.

Application examples
Spontaneous magnetization of a ferromagnet
Our approach

In this example, the rare event of interest is the spontaneous
magnetization of a ferromagnet, without an external magnetic
field. The statistic T is per-site magnetization and the region A
is the interval [u,co) for some real number u. This choice of
A is made because the expected per-site magnetization with no
external field is zero, so we consider a magnetization per-site of
T > u > 0 to correspond to a rare event.

The Gibbs distribution that describes the spin-spin interac-
tions of a ferromagnetic metal is called the Ising model. Under no
external magnetic field, the potential term is

Ux)=-J Z XiXj, (5)
(i.)

where i and j are site locations in the ferromagnet (e.g., the lattice
S), J is the coupling coefficient between neighboring sites, and x;
is the spin value at site i. Each spin value x; can be either +1 or
—1. The summation is over all pairs of neighbors in the lattice. In
theory, the configuration x is defined on an infinite lattice, but we
use a finite lattice with periodic boundary conditions (See [9] for
a discussion of this issue).

As given in the previous section, for a given cutoff value u,
N
we first generate samples {X () } from the sequence of distri-

butions g, given in (3), using an estimate of the optimal .
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The simulated microstructure images are shown in Fig .1.
From the expression of U;, we know that as the optimal bias-
ing parameter ¢ increases, the behavior of the sampled system be-
comes farther away from the normal of the original system, de-
scribed by probability measure p. Hence, as t goes up, the areas
of black pixels and with pixels differ more, as illustrated in Fig.
1. In addition, higher coupling coefficient J indicates stronger in-
teraction between neighbors. Thus, larger magnetic domains are
observed in the simulated images with larger J.

Figure 1: Sample images for multiple values of ¢ and J. Lattice
size 240 x 240 was used. From left to right, ¢ increases from 0
to 0.5. From top to bottom, J increases from 0.9 to 1.1. The
inverse temperature 3 was set to be 0.35. Note that here we only
consider the cases when Ising model simulations are above critical
temperature.

Then, with those simulated images, the probability of rare
event T'(X) € A is estimated by

. ZU*tG N
B (T(X) € A) =Wk;1[u,w)(T(Xk))
exp (—ﬁtnT (X<k))) . (6)

Note that (6) requires estimation of the normalizing con-
stant ratio, ZU—1C / ZV. We have tested three different estima-
tion methods: Numerical Integration (NI), Annealing Importance
Sampling (AIS) [17] and the Cumulant Expansion Method (CEM)
[18]. Results are shown in Table 1. From the table, we notice that
results given from NI and AIS are similar. However, results from
CEM deviate from those two methods, especially when ¢ grows
larger. That is due to the perturbation nature of CEM. Hence,
here we used normalizing constant ratio from NI for probability

estimation.
Table 1: Estimations of normalizing constant ratio

t 0.00 0.05 0.10 0.25 0.50
u 0.0004+0.0011 | 0.2539+0.0107 | 0.4339£0.0314 | 0.6796+0.0770 | 0.8141+0.1105
NI 0.0 139.2 419.6 2238.5 6069.1
AIS NA 159.1£1.8 511.2£25 2262.7+4.7 6084.9£5.3
CEM [n>0]NA 131.7 5258 3282.5 13124.8

‘ 11 =0 ] NA 136.4 448.6 1833.5 3680.6

In (2016 /70

Now we have the estimates for all the terms in (6) to com-
pute the probabilities. The results are shown in Fig. 2. When
the cutoff value u increases, the rare event becomes smaller and
hence its probability decreases. Since AEIS and LDP character-
ize asymptotical behaviors of the system, we did simulations on
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lattices of two large sizes. That enables us to test if the lattice
size of use is large enough to be described by those theories. As
shown in Fig. 2c, the rate function estimations given by simula-
tions on the two kinds of lattice show a high consistency. Thus,
we conclude that the sizes of the simulated lattices are sufficiently
large to apply those two theories. Additionally, the coefficient of
variations (CV) are significantly smaller than 1, which indicates
precise estimations. We also estimated the rate function values
using two methods, the results of which are highly consistent.
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Figure 2: Estimation results of rare event probabilities p and rate
function / values. The coupling coefficient was set to be 1. Sim-
ulations were conducted on square images in two sizes for com-
parison and validation, edge 120 and edge 240. Fifteen individual
MCs were run for each setting. Results here are averages from
those simulated data. Two approaches were used to estimate rate
function values. For Method 1, rate function values were com-
puted from estimated probabilities. For Method 2, they were ob-
tained by Gibbs variational principle in theoretical physics.

Ising model can also be used for binary image restoration, in
which J values correspond to penalty of the violation of smooth-
ness [32]. Here, results from three J assignments are presented
in Fig. 3. As shown in Fig. 1, larger coupling coefficient lead
to higher magnetization with nonzero ¢. As J decreases, prob-
abilities drop faster. That can be explained as follows. Larger
J indicates stronger interaction between one site and its neigh-
bors, which makes the energy cost for obtaining an outlier higher.
Hence, for larger J, it is less likely to deviate a lot from the normal
behavior.

Validation and comparison

Here we used four approaches to validate our results.

First, we compared estimations from our results to those
from direct sampling for events of small deviations. The results
are shown in Fig. 4. The black data points are given by directly
sampling the distribution of the system, while the red data points
are from our proposed sampling approach. As discussed above,
we had zero hit in the very rare event regions in these simulations,
when the event’s probability was lower than 105, Hence, direct
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Figure 3: Estimations of rate function values for different
coupling coefficients. The fitted curve of rate function for J = 1.0
is y = (456.3x° +49.8x* +326.9x%) /10000 with R-squared
0.9999, forJ =1.1isy = (697.2x6 —441.5¢* + 267.0x2) /10000
with  R-squared 0.9985, for J = 09 is y =
(216.3x% — 318.0x* + 556.9x%) /10000 with R-squared 0.9999.
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Figure 4: Fifteen Markov chains were generated for each #(u).
The figure on the right is a zoomed-in view of the region high-
lighted by the gray box in the figure on the left. Note that as the
cutoff u increases, the event of interest becomes rarer. For tiny u,
estimations from the two methods were on the same order. Ex-
cept for the second smallest u, estimations by AEIS were always
higher than those by Direct sampling. That is due to the positively
skewness property of binomial distribution with success rate less
than 0.5. Hence, in rare event regions, for direct sampling, there
is a higher probability to get underestimation then overestimation.
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Figure 5: Comparison of estimates from the AEIS and CLT. Esti-
mations of rare event probabilities are shown in this figure. Three
values of the coupling coefficient J were tested: 0.9, 1.0, 1.1. Data
points shown are estimations from simulations, with curves fitted
to those points. The other three curves are the approximations
resulting from the CLT.

IS&T Infernational Symposium on Electronic Imaging 2025
Computational Imaging XXl



sampling does not give reliable estimations for events of large de-
viations.

Another straightforward approach to probability estimation
is the Central Limit Theorem (CLT) approximation. As shown in
Fig. 5, we compared estimates of rare event probabilities from the
CLT approximation and the proposed approach AEIS, for differ-
ent coupling coefficient J. The CLT estimations deviate from the
data more as events become rarer. That is due to the nature of low
order approximation of CLT. For CLT, only the first two cumu-
lants are taken into account, but the characterization of the tail of
a probability distribution requires the information from high-order
cumulants. Thus, we can only obtain a poor estimation on the rare
event probabilities for a non-Gaussian probability distribution.

Additionally, we consider two numerical ways of estimating
the rate function values on lattices in different sizes, as illustrated
in Fig. 2a. Nearly overlapping data points indicate high precision
of estimations.

Conclusions

In this work, we have developed a novel approach, grounded
in mathematical rigor, to characterize rare events in images, and
demonstrate it for a commonly used binary image model, the Ising
model. Here, we first give a mathematical definition of rare events
in terms of a statistic and a set. Then we use an optimal sam-
pling distribution for the simulation. We simulate the event that
the material becomes magnetized in the absence of an external
magnetic field. Computation results illustrate that AEIS with op-
timal ¢ gives smaller variance than direct sampling and IS with
other ¢ values. For CLT, although around the expectation, the es-
timated event probability by our proposed methods is in the same
order of that by CLT, our proposed methods give a more accurate
estimations in extremely rare region. Reliable estimations on the
rate function in LDP are obtained, validated by a high consistency
using two methods. We also show the possibility of applying this
proposed approach to another binary model, Strauss model, which
has been used for super-alloy modeling in material science.

Our approach has the potential to be useful in domains where
Gibbs distributions are used to model image data. Some examples
include materials science [23] and astronomy [25]. One popular
Gibbs distribution is the Potts model, which is basically a multi-
class extension of the Ising model. We are currently investigating
the use of our method to characterize the rare event of abnormal
grain growth in a polycrystalline material. This occurs when one
or more of the grains becomes abnormally large at the expense
of other grains. Also, we want to note that for a given rare event
statistic 7', selection of a rare event region A is generally straight-
forward if T is single-variate, since A can simply be an interval,
or possibly a union of disjoint intervals. However, if T is multi-
variate, the region A can be more complicated. For some regular
events, they can have similar form of AEIS and the optimal vector
t to be found is dominating point [16, 29].
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