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Abstract

The segment anything model (SAM) was released as a foun-
dation model for image segmentation. The promptable segmenta-
tion model was trained by over 1 billion masks on 11M licensed
and privacy-respecting images. The model supports zero-shot im-
age segmentation with various segmentation prompts (e.g., points,
boxes, masks). It makes the SAM attractive for medical image
analysis, especially for digital pathology where the training data
are rare. In this study, we evaluate the zero-shot segmentation
performance of SAM model on representative segmentation tasks
on whole slide imaging (WSI), including (1) tumor segmenta-
tion, (2) non-tumor tissue segmentation, (3) cell nuclei segmen-
tation. Core Results: The results suggest that the zero-shot SAM
model achieves remarkable segmentation performance for large
connected objects. However, it does not consistently achieve sat-
isfying performance for dense instance object segmentation, even
with 20 prompts (clicks/boxes) on each image. We also summa-
rized the identified limitations for digital pathology: (1) image
resolution, (2) multiple scales, (3) prompt selection, and (4) model
fine-tuning. In the future, the few-shot fine-tuning with images
Jfrom downstream pathological segmentation tasks might help the
model to achieve better performance in dense object segmenta-
tion.

Introduction

Large language models (e.g., ChatGPT [6] and GPT-4 [7]),
are leading a paradigm shift in natural language processing with
strong zero-shot and few-shot generalization capabilities. This
development has encouraged researchers to develop large-scale
vision foundation models. While the first successful “foundation
models” [8] in computer vision have focused on pre-training ap-
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proaches (e.g., CLIP [9] and ALIGN [10]) and generative Al ap-
plications (e.g., DALL-E [13]), they have not been specifically
designed for image segmentation tasks [14]. Segmenting objects
(e.g., tumor, tissue, cell nuclei) for whole slide imaging (WSI)
data is an essential task for digital pathology, deep learning mod-
els typically necessitate well-delineated training data. Obtaining
these gold-standard data from clinical experts can be challeng-
ing due to privacy regulations, intensive manual efforts, insuffi-
cient reproducibility, and complicated annotation processes [16].
Hence, zero-shot image segmentation [20] is desired, where the
model can accurately segment pathological images without prior
exposure to the domain data during training.

Recently, the “Segment Anything Model” (SAM) [14] was
proposed as a foundation model for image segmentation. The
model has been trained on over 1 billion masks on 11 million
licensed and privacy-respecting images. Furthermore, the model
supports zero-shot image segmentation with various segmentation
prompts (e.g., points, boxes, and masks). This feature makes it
particularly attractive for pathological image analysis where the
labeled training data are rare and expensive.

In this study, we assess the zero-shot segmentation per-
formance of the SAM model on representative segmentation
tasks, including (1) tumor segmentation [18], (2) tissue segmenta-
tion [[19]], and (3) cell nuclei segmentation [21]. Our study reveals
that the SAM model has some limitations and performance gaps
compared to state-of-the-art (SOTA) domain-specific models.

Experiments and Performance

We obtained the source code and the trained model from
https://segment-anything.com. To ensure scalable as-
sessments, all experiments were performed directly using Python,
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Figure 1. Qualitative segmentation results. The SOTA methods are compared with SAM method with different prompt strategies.

rather than relying on the Demo website. The results are presented
in Figure | and Table 1.

Tumor Segmentation.The whole-slide images (WSIs) of
skin cancer patients were obtained from the Cancer Genome Atlas
(TCGA) datasets (TCGA Research Network: https://www.
cancer.gov/tcga). We employed SimTriplet [18] approach
as the SOTA method, with the same testing cohort to make a fair
comparison. In order to be compatible with the SAM segmen-
tation model, the WSI inputs were scaled down 80 times from a
resolution of 40, resulting in an average size of 860x 1279 pix-
els. We evaluated two different scenarios: (1) SAM with a single
positive point prompt, and (2) SAM with 20 point prompts (10
positive and 10 negative points). The prompts were randomly se-
lected from manual annotations, with positive prompt points be-
ing selected from the tumor region and negative prompt points
being selected from the non-tumor region.

Tissue Segmentation. A total of 1,751 regions of interest
(ROIs) images were obtained from 459 WSIs belonging to 125
patients diagnosed with Minimal Change Diseases. These im-
ages were manually segmented to identify six structurally normal
pathological primitives [12]], using digital renal biopsies from the
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NEPTUNE study [11]]. To form a test cohort for multi-tissue seg-
mentation, we captured 8,359 patches measuring 256 x256 pix-
els. For comparison, We employed Omni-Seg approach as
the SOTA method. The tissue types consist of the glomerular
unit (CAP), glomerular tuft (TUFT), distal tubular (DT), proximal
tubular (PT), arteries (VES), and peritubular capillaries (PTC).
For the SAM method, we evaluated four different scenarios: (1)
SAM with a single positive point prompt, (2) SAM with 20
point prompts (10 positive and 10 negative points), and (3)/(4)
SAM with all points/boxes on every single instance object, which
served as a theoretical upper bound for SAM. We randomly se-
lected point prompts from the manual annotations and eroded
each connected component with a 10x10 filter to generate at most
one random point. For the box prompts, we used the bounding
box of each connected component.

Cell nuclei Segmentation. The dataset for nuclei segmenta-
tion was obtained from the MoNuSeg challenge [17]. It contains
H&E stained images at 40 x magnification with 1000x 1000 pix-
els from the TCGA dataset, along with corresponding annotations
of nuclear boundaries. The MoNuSeg dataset includes 30 images
for training and 14 for testing. We evaluated the performance of
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Compare SAM with state-of-the-art (SOTA) methods.(Unit: Dice score)

Tumor Tissue Cell
Method Prompts 0.5 5% 10 40 40%

Tumor CAP TUFT DT PT VES PTC Nuclei
SOTA no prompt 71.98 96.50 96.59 81.01 89.80 85.05 77.23 81.77
SAM 1 point 58.71 78.08 80.11 58.93 49.72 65.26 67.03 1.95
SAM 20 points 7498  80.12 7992 6035 6657 6851 6463  41.65
SAM total points n/a 88.10 89.65 70.21 73.19 67.04 67.61 69.50
SAM total boxes n/a 95.23 96.49 89.97 86.77 87.44 87.18 88.30

total points/boxes: we place points/boxes on every single instance object (based on the known ground truth) as a theoretical upper bound
of SAM. Note that it is impractical in real applications.

SAM models against the BEDs model [21], a competitive nuclei
segmentation model trained on the MoNuSeg training data. The
prompt method and evaluation are as described in §Tissue Seg-
mentation.

Limitations on Digital Pathology

The SAM models achieve remarkable performance under
zero-shot learning scenarios. However, we identified several lim-
itations during our assessment.

Image resolution. The average training image resolution of
SAM is 3300x4950 pixels [14], which is significantly smaller
than Giga-pixel WSI data (> 10° pixels). Moreover, analyzing
WSI data at the patch level may result in an impractical number
of interactions, even if only a small number of points or bounding
boxes are marked for each patch.

Multiple scales. Multi-scale is a significant feature in digital
pathology. Different tissue types have their optimal image resolu-
tion (as shown in Table 1). For instance, at the optimal resolution
for CAP segmentation (5x scale), it is difficult to achieve good
segmentation for PTC. However, zooming in (40x scale) would
result in nearly 100 times more patches.

Prompt selection. Firstly, to achieve decent segmentation
performance in zero-shot learning scenarios, a considerable num-
ber of prompts are still necessary. Secondly, the segmentation per-
formance heavily depends on the quality of prompt selection. An-
other concern related to segmentation performance is inter-rater
and intra-rater reproducibility of prompt-based segmentation.

Model fune-tuning. Currently, tedious manual prompt
placements are still necessary for segmentation tasks with signif-
icant domain heterogeneities. A reasonable online/offline fine-
tuning strategy is necessary to propagate the knowledge obtained
from manual prompts to larger-scale automatic segmentation on
Giga-pixel WSI data.

Conclusion

The zero-shot setting of SAM enables domain users to seg-
ment heterogeneous objects in digital pathology without undergo-
ing a heavy training process. The results suggest that the zero-shot
SAM model achieves remarkable segmentation performance for
large connected objects. However, it does not consistently achieve
satisfying performance for dense instance object segmentation,
even with 20 prompts (clicks/boxes) on each image. Nonethe-
less, several limitations still exist and require further investigation
for digital pathology.
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