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Abstract 

Human pose and shape estimation (HPSE) is a crucial function 

for human-centric applications, while the accuracy of deep 

learning-based monocular 3D HPSE may suffer due to depth 

ambiguity. Multi-camera systems with wide baselines can mitigate 

the problem but accurate and robust multi-camera calibration is a 

prerequisite. The main objective of the paper is to develop fast and 

accurate algorithms for automatic calibration of multi-camera 

systems which fully utilize human semantic information without 

using predetermined calibration patterns or objects. The proposed 

automatic calibration method for multi-camera systems takes from 

each camera the 3D human body meshes output from pretrained 

Human Mesh Recovery (HMR) model, and the vertices of each 3D 

human body mesh are projected onto the 2D image plane for each 

corresponding camera. Structure-from-Motion (SfM) algorithm is 

used to reconstruct 3D shapes from a pair of cameras, using 

iterative Random Sample Consensus (RANSAC) algorithm to 

remove outliers when calculating the essential matrix in each 

iteration. Relative camera extrinsic parameters (i.e., the rotation 

matrix and translation vector) can be calculated from the estimated 

essential matrix accordingly. By assuming one main camera’s pose 

in the world coordinate is known, the poses of all other cameras in 

the multi-camera system can be readily calculated. Using (1) 

average 2D projection error and (2) average rotation and 

translation errors as performance metrics, the proposed method is 

shown to perform calibration more accurate than methods using 

appearance-based feature extractors, e.g., Scale-Invariant Feature 

Transform (SIFT), and deep learning-based 2D human joint 

estimators, e.g., OpenPose. 

1. Introduction  
Human pose and shape estimation (HPSE) is a crucial function 

for many human-centric applications in various fields, such as 

immersive telepresence, interactive conferencing, sports analytics, 

healthcare monitoring, human motion tracking,  avatar and digital 

human creation, metaverse, AR/VR/MR/XR and entertainment. 

However, deep learning-based monocular 3D HPSE may fail for 

rare or unseen poses due to limited and fixed training data. It is 

challenging due to the fact that 2D-image-to-3D-posture mapping 

by a monocular 3D human pose estimator is not unique but subject 

to depth ambiguity. Furthermore, broad diversity in human poses, 

appearances, and camera viewpoints only make the problem even 

more difficult and error prone. Among existing methods for solving 

the problem, multi-camera systems with wide baselines can provide 

more reliable estimates from less reliable monocular estimates from 

each individual camera without redefining a new multi-view 3D 

HPSE or retraining the existing monocular 3D HPSE. However, 

accurate and robust multi-camera calibration is required for multi-

camera systems with overlapping field of view (FoV) to mitigate the 

self or mutual occlusion and depth ambiguity problems. 

SMPL (Skinned Multi-Person Linear Model) [1] and its 

extended version SMPL-X (Expressive Body Capture) [2] and 

upgraded version STAR (Sparse Trained Articulated Human Body 

Regressor) [3] are state-of-the-art 3D human body models based on 

skinning and blend shapes. They are becoming popular in both 

industry and academia for human body synthesis by NeRF or 3D 

Gaussian splatting. HMR (Human Mesh Recovery) [4] and its 

upgraded version HMR 2.0 (Humans in 4D) [5] are state-of-the-art 

end-to-end methods for reconstructing a full 3D mesh of a human 

body, even occluded or truncated, from a single RGB image by 

estimating its corresponding SMPL model parameters. 3D human 

meshes are usually estimated within a bounding box containing a 

detected person in 2D camera coordinates, while existing methods 

estimating 3D humans in 3D world coordinates run slow and require 

MoCap markers or IMU sensors. 

Bottom‐up human pose estimation methods can directly 

estimate the joints of all people in an input image without running 

multiple times in multi-person scenarios as the top‐down methods, 

although their accuracy is usually worse than their top‐down 

counterparts. OpenPose [6] is a state-of-the-art bottom‐up method 

for 2D human skeleton detection that can quickly and accurately 

identify multiple human skeletons and locate associated 2D joints in 

a single input image, where body parts belonging to the same person 

are linked, including foot key points. This is achieved by the part 

affinity fields (PAFs) where a 2D vector in each pixel of every PAF 

encodes the position and orientation of the limbs. 

Deep learning-based monocular 3D human pose estimation 

may fail for rare or unseen poses due to limited and fixed training 

data [7]. It is challenging due to depth ambiguity and broad diversity 

in human poses, appearances, and camera viewpoints. Training 3D 

pose estimation is severely limited by dataset bias, because 

collecting accurate 3D pose annotations for 2D images as ground 

truth for model training is costly and time-consuming and collected 

training data is usually biased towards specific environment and 

selected actions. The 2D-image-to-3D-posture mapping by a 

monocular 3D human pose estimator is not unique subject to depth 

ambiguity, which may result in, for example, different degrees of 

body tilt even for common human postures regardless of the 

camera’s shooting angle [8]. In worst-case scenarios, incorrect body 

tilt depends on hand / body stretches for lack of diversified human 

poses in training data. State-of-the-art methods to solve the depth 

ambiguity problem include: (1) synthetic data generation utilizing 

scarce training data, using only single view; (2) multi-view 

consistency as supervisory signal when training data is scarce, 

requiring at least two views; and (3) multi-camera systems with 

wide baselines to provide more reliable estimates from less reliable 

estimates by each individual camera. 

Method (3) described above is desirable because it can provide 

more reliable multi-view estimates from less reliable monocular 

estimates without redefining a new multi-view 3D HPSE or 

retraining the existing monocular 3D HPSE, but accurate and robust 

multi-camera calibration is required. Procrustes transformation (i.e., 

rigid-body transformation with degrees of freedom in scale and 

rotation) is usually applied to ignore local rotation and scaling for 
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loss calculation in training human pose estimator and human body 

mesh recovery, causing the trained models subject to local rotation 

and scaling errors. Moreover, top-down methods usually drop 

global-location information (i.e., human bounding box) which lead 

to excessive angular error in estimated human pose and shape [9]. 

Furthermore, 2D or 3D humans are usually estimated in camera 

coordinates instead of world coordinates, while state-of-the-art 

methods that estimate human in world coordinates are based on 

optimization and are usually slow [10]. 2D or 3D human estimations 

on a per-frame basis usually suffer from temporal jitter problem 

which is highly undesirable in most applications. Also, even well-

trained monocular HPSE methods may suffer from excessive errors 

due to self or mutual occlusion and out-of-view truncation of human 

body. Therefore, multi-camera systems supporting multi-camera 

fusion may achieve accuracy much less susceptible to partially 

visible human bodies due to occlusion and truncation. 

2. Motivation
Fast and accurate automatic multi-camera calibration without

using predetermined calibration patterns or objects is highly 

desirable for various human-centric applications, where human 

bodies are mostly visible in the scenes, particularly for ad hoc or 

amateur video capturing. It is especially preferred for systems with 

wide baselines where using traditional calibration patterns or objects 

become problematic due to difficulty in correspondence matching 

among inputs from different cameras. Deep learning-based 

monocular HPSE may provide relatively reliable key points (at least 

for the two dimensions other than the depth dimension for each 

camera) that can be readily utilized as corresponding points for 

automatic calibration of multi-camera systems, especially when the 

common field of view (FoV) among cameras are narrow. The main 

objective of the paper is to develop feasible algorithms to fully 

utilize human semantic information, e.g., human body meshes, 

which may be readily available in many human-centric applications, 

for fast and accurate automatic calibration of multi-camera systems. 

The desirable automatic calibration method for multi-camera 

systems should support reliable image-only 2D-camera-to-3D-

world coordinate transformation for 3D human pose and shape 

estimation, 3D human body reconstruction and tracking which are 

less affected by self or mutual occlusion and out-of-view truncation 

without using extra markers or sensors. The desirable multi-camera 

systems also mitigate 2D reprojection errors and 3D reconstruction 

errors caused by depth ambiguity, where multiple 3D body 

configurations result in the same 2D projections, and by scale 

ambiguity between the size of the person and the camera distance. 

Existing methods [11][12] using 2D joints from estimated 

human skeleton as key points for calibrating intrinsic and extrinsic 

parameters of a multi-camera system is feasible, but the matching 

and selection of corresponding key points for camera calibration are 

limited due to fewer typical number of 2D joints in a 2D human 

skeleton compared with the typical number of vertices on a 3D 

human body mesh. For multi-person scenarios, correspondence 

matching is usually time consuming and error-prone [12]. Re-

identification (re-ID) networks may be required to support multi-

person within camera FoVs and facilitate human tracking while 

increasing complexity and reduce accuracy by utilizing human 

bounding boxes instead of 2D joints [13]. Human semantic features 

extracted by human body meshes can be used for better camera 

calibration and multi-person identification. Using HMR / HMR 2.0 

methods with SMPL / SMPL-X / STAR models supports advanced 

3D human body representation more realistic than prior art joint / 

skeleton / landmark detections and provides crucial body shape 

information for more reliable re-identification in multi-person 

scenarios. 3D human body representation in meshes can readily 

derive human joint / skeleton / landmark (but not vice versa) and be 

used in animatable human avatar generation. The main objective of 

the paper is to verify that multi-camera automatic calibration can be 

optimized with adaptive sampling of recovered mesh vertices by 

matching correspondence of key points and checking consistency 

among selected key points. 

3. Main Method
Figure 1 depicts a top-level block diagram for the proposed

multi-camera automatic calibration method based on recovered 

human body meshes. SMPL (Skinned Multi-Person Linear Model) 

[1] is a 3D human body model based on skinning and blend shapes.

HMR (Human Mesh Recovery) [4] and its upgraded transformer

version HMR 2.0 [5] are end-to-end methods for reconstructing a

full 3D mesh of a human body, even occluded or truncated, from a

single RGB image by estimating its corresponding SMPL model

parameters. The output of HMR include the SMPL model

parameters for pose (θ ∈ ℝ24×3×3) and shape (β ∈ ℝ10), and extrinsic

camera parameters consist of a global orientation matrix R ∈ ℝ3×3

and translation vector t ∈ ℝ3. Given these parameters estimated by

HMR, the SMPL model outputs a 3D human body mesh M ∈ ℝ3×N

with N = 6890 vertices. The 3D human body mesh can be projected

onto the 2D image using a perspective projection with the estimated

extrinsic camera parameters. The proposed automatic calibration

method for multi-camera systems takes from each camera the 3D

human body meshes output from HMR [4] or HMR 2.0 [5] followed

by SMPL [1] model trained with prior knowledge about 3D human

body poses and shapes.

The vertices of each recovered 3D human body mesh are 

projected onto the 2D image plane for each corresponding camera. 

Structure-from-Motion (SfM) algorithm is used to reconstruct 3D 

shapes from a pair of cameras, using iterative RANSAC algorithm 

to remove outliers when the essential matrix is being calculated in 

each iteration. The exit condition can be set according to the zero 

matrix product rule and the matrix singular property. Relative 

camera extrinsic parameters (i.e., the rotation and translation 

matrices) can be calculated from the estimated essential matrix 

accordingly. Figure 2 shows the SfM setup and camera calibration 

pipeline using recovered human body meshes. 

The main difference of the proposed method from common 

SfM processes is the use of vertices from detected 3D human body 

mesh as key points. This approach greatly reduces the complexity 

of correspondence matching between key points captured by 

different cameras. Among thousands of vertices of the 3D human 

body mesh from each camera, usually only a few hundred will be 

selected as corresponding key points for calculating the most 

consistent essential matrix between the camera pair. By assuming 

one main camera’s pose in the world coordinate is known, the poses 

(i.e., the relative camera extrinsic parameters) of all other cameras 

in the multi-camera system can be readily calculated from the 

estimated essential matrix using the above mentioned procedures. 

The calibration results of the overall system can be further optimized 

using Bundle Adjustment (BA) algorithm. 

The following performance metrics for camera calibration can 

be used to evaluate its performance. 

(1) 2D reprojection error ρ serves as a metric of how well the

estimated 3D structure aligns with the observed image data.

After reconstructing the 3D points in the world coordinate frame

by triangulation, the estimated camera projection matrices are

used to reproject these 3D points back into 2D image space. The
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2D reprojection error ρ is then computed as the Euclidean 

distance between the initially observed 2D points and the 

reprojected 2D points. 

ρ = ║uestimated – ureprojected║2   (pixels) 

(2) 3D reconstruction error ξ serves as a metric of how well the

reconstructed 3D structure aligns with the ground truth 3D

structure. The 3D points can be reconstructed by applying

triangulation, given the projection matrices of two cameras and

their corresponding observed 2D points. The 3D reconstruction

error ξ is then computed as the Euclidean distance between the

reconstructed 3D points and the ground truth 3D points.

ξ = ║preconstructed – pgroundtruth║2   (meters). 

(3) Rotation error φ and translation error δ are key metrics used to

quantify the discrepancy between estimated and ground truth

camera poses. The rotation error φ represents the angular

deviation between the estimated camera orientation and the

ground true orientation in the world frame, typically measured

in degrees. The translation error δ refers to the Euclidean

distance between the estimated and ground true position vectors

of the camera, expressed in meters within the world frame.

φ = angle (Restimated, Rgroundtruth)   (degrees). 

δ = ║testimated – tgroundtruth║2   (meters).
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Figure 1.  Top-level block diagram for multi-camera automatic calibration method based on recovered human body meshes. 
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Figure 2.  (a) Structure-from-Motion (SfM) setup using recovered human body meshes. (b) Structure-from-Motion (SfM) camera calibration pipeline. 

4. Simulation Results
The overall calibration results can be evaluated using the

following performance metrics: (1) average 2D reprojection error 

and (2) average rotation and translation errors compared with the 

ground truth camera extrinsic parameters. The first performance 

metric is universal for almost all use cases as a self-guiding 

performance metric without using ground truth labelled data, while 

the second performance metrics are useful in labs or other controlled 

environments for improving algorithm and fine-tuning hyper-

parameters. Average 2D reprojection error can be calculated as the 

sum of all 2D reprojection errors divided by the total number of 

selected corresponding key points throughout all the tested frames. 

Average rotation and translation errors can be calculated as the sum 

of all estimated rotation matrices and translation vectors per frame 

divided by the number of all the tested frames, compared with the 

ground truth rotation matrix and translation vector, respectively. 

A multi-camera dataset ZJU-MoCap [14] was used to simulate 

and evaluate the multi-camera calibration methods. The dataset 

provides 9 human subjects performing complex motion (e.g., 

twirling, punching, kicking) and captured by 21 circularly aligned 

synchronized 30fps cameras. The simulation results for six test 
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angle ranges are shown in Table 1 to 4 below. The two subjects 

[CoreView_313] and [CoreView_315] were selected from ZJU-

MoCap dataset to test multi-camera calibration methods. Wide 

ranges of angles between cameras can be selected using different 

camera pairs among the 21 cameras. Each video has 1470 and 2185 

frames from the corresponding camera capturing [CoreView_313] 

and [CoreView_315], respectively. Performance results are 

compared for SIFT, Human Joints, and Human Mesh methods. The 

proposed human mesh method achieves much higher accuracy than 

methods using appearance-based feature extractors, e.g., Scale-

Invariant Feature Transform (SIFT), and somewhat higher accuracy 

than methods using deep learning-based 2D human joint estimators, 

e.g., OpenPose, especially for camera pairs spanning larger angles.

The proposed human mesh method is also much less susceptible to

partially visible human bodies due to self or mutual occlusion and

out-of-view truncation.

As a visual inspection for the accuracy of corresponding 

matching between key points, images of subject [CoreView_313] 

and [CoreView_315] with color lines connecting the matching key 

points are shown in Figure 3 and 4, respectively, for each method 

with camera pairs 0-2 (≈ 30° apart), 0-18 (≈ 90° apart) and 0-12 (≈ 

180° apart). It can be seen that many incorrect matches and very few 

correct ones resulted using the SIFT method, especially when the 

baseline and the angle of the camera pair become larger. The human 

joints and human mesh methods performed better, but the latter 

achieved much more correct matches and resulted in higher 

accuracy than the former did. These results can be expected because 

the appearance-based SIFT method has difficulties finding matching 

key points when the baseline and the angle of the camera pair 

become larger. Both the deep learning-based human joints and 

human mesh methods utilize human semantic information, but 

typical estimated human skeleton only contains tens of joints while 

typical estimated human meshes contain thousands of vertices. 

Therefore, the latter provides many more chances for correct 

correspondence matches and usually results in higher accuracy than 

the former does. 

Table 1: For Subject [CoreView_313]: Average 2D Reprojection 
Error (Camera 0 is the Reference) 

Methods 
0° - 30° 

(Cam ID: 1, 
22) 

30° - 60° 
(Cam ID: 2, 

3, 21) 

60° - 90° 
(Cam ID: 4, 

5, 18) 

90° - 120° 
(Cam ID: 6, 
7, 16, 17) 

120° - 150° 
(Cam ID: 8, 9, 

14, 15) 

150° - 180° 
(Cam ID: 10, 
11, 12, 13) 

SIFT 
102.532 

pixel 
684.618 

pixel 
239.231 

pixel 
190.069 

pixel 
1200.252 

pixel 
657.840 

pixel 

Human 
Joints 

3.914 pixel 3.621 pixel 4.016 pixel 4.607 pixel 4.487 pixel 5.714 pixel 

Human 
Mesh 
(Ours) 

3.273 pixel 2.623 pixel 2.225 pixel 2.398 pixel 2.547 pixel 2.857 pixel 

Table 2: For Subject [CoreView_313]: Average Rotation and 
Translation (R, T) Error (Camera 0 is the Reference) 

Methods 
0° - 30° 

(Cam ID: 1, 
22) 

30° - 60° 
(Cam ID: 2, 

3, 21) 

60° - 90° 
(Cam ID: 4, 

5, 18) 

90° - 120° 
(Cam ID: 6, 
7, 16, 17) 

120° - 150° 
(Cam ID: 8, 
9, 14, 15) 

150° - 180° 
(Cam ID: 10, 
11, 12, 13) 

SIFT 
9.382°, 
0.667 m 

19.560°, 
2.139 m 

34.259°, 
5.245 m 

27.136°, 
5.739 m 

28.567°, 
6.834 m 

28.713°, 
6.711 m 

Human 
Joints 

8.140°, 
0.525 m 

12.369°, 
0.606 m 

17.597°, 
1.048 m 

17.646°, 
1.020 m 

17.290°, 
1.448 m 

21.453°, 
2.540 m 

Human 
Mesh 
(Ours) 

0.613°, 
0.010 m 

1.399°, 
0.057 m 

0.729°, 
0.039 m 

0.423°, 
0.023 m 

0.298°, 
0.019 m 

0.314°, 
0.018 m 

Table 3: For Subject [CoreView_315]: Average 2D Reprojection 
Error (Camera 0 is the Reference) 

Methods 
0° - 30° 

(Cam ID: 1, 
22) 

30° - 60° 
(Cam ID: 2, 

3, 21) 

60° - 90° 
(Cam ID: 4, 

5, 18) 

90° - 120° 
(Cam ID: 6, 
7, 16, 17) 

120° - 150° 
(Cam ID: 8, 9, 

14, 15) 

150° - 180° 
(Cam ID: 10, 
11, 12, 13) 

SIFT 
146.678 

pixel 
635.920 

pixel 
403.411 

pixel 
363.926 

pixel 
1640.536 

pixel 
814.577 

pixel 

Human 
Joints 

3.954 pixel 3.624 pixel 3.912 pixel 4.440 pixel 4.881 pixel 5.172 pixel 

Human 
Mesh 
(Ours) 

2.852 pixel 2.233 pixel 1.861 pixel 1.937 pixel 2.158 pixel 2.596 pixel 

Table 4: For Subject [CoreView_315]: Average Rotation and 
Translation (R, T) Error (Camera 0 is the Reference) 

Methods 
0° - 30° 

(Cam ID: 1, 
22) 

30° - 60° 
(Cam ID: 2, 

3, 21) 

60° - 90° 
(Cam ID: 4, 

5, 18) 

90° - 120° 
(Cam ID: 6, 
7, 16, 17) 

120° - 150° 
(Cam ID: 8, 
9, 14, 15) 

150° - 180° 
(Cam ID: 10, 
11, 12, 13) 

SIFT 
6.514°, 
0.662 m 

18.407°, 
2.260 m 

32.973°, 
5.056 m 

26.035°, 
5.701 m 

28.083°, 
6.759 m 

29.771°, 
6.328 m 

Human 
Joints 

7.793°, 
0.556 m 

14.537°, 
0.784 m 

18.718°, 
1.125 m 

20.190°, 
1.590 m 

25.495°, 
2.617 m 

25.106°, 
3.456 m 

Human 
Mesh 
(Ours) 

0.730°, 
0.011 m 

1.190°, 
0.030 m 

1.192°, 
0.046 m 

0.488°, 
0.026 m 

0.426°, 
0.027 m 

0.437°, 
0.025 m 

As a visualization for the accuracy of the camera calibration 

methods, the estimated versus the ground truth camera poses 

resulted from images of subject [CoreView_313] are shown in 

Figure 5 for each method with camera pairs 0-2 (≈ 30° apart), 0-18 

(≈ 90° apart) and 0-12 (≈ 180° apart). It can be seen that the proposed 

human mesh method achieves much higher accuracy (i.e., the 

estimated and the ground truth camera poses are better aligned) than 

the SIFT method, and somewhat higher accuracy than human joints 

method, especially for camera pairs spanning larger angles. 

5. Conclusion
The proposed automatic calibration method for multi-camera

systems support reliable 3D reconstruction for human pose and 

shape estimation and human body tracking with reduced occlusion 

and truncation without extra MoCap markers or IMU sensors. 

Without using any calibration patterns, the proposed method uses 

pretrained models for recovering 3D-native human body meshes as 

the basis for multi-camera calibration with more reliable 

correspondence matching while focusing on their 2D projections 

onto the camera input images to avoid the depth ambiguity issues 

while performing automatic calibration. The scale ambiguity 

between the size of the person and the camera distance can also be 

solved by specifying a single reference length value. The proposed 

method uses an iterative refinement method to remove outliers in 

the 2D-projected human body meshes and choose the most 

consistent inliers for automatic binocular camera calibration without 

depending on confidence estimates. The proposed method uses 2D 

reprojection errors as self-guiding performance metric for binocular 

camera calibration without relying on predetermined camera 

calibration results such as extrinsic parameters as ground truth. The 

proposed method is also much less susceptible to partially visible 

human bodies due to self or mutual occlusion and out-of-view 

truncation, compared with methods using SIFT and human joints as 

key points. 
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6. Future Works
A possible extension of the proposed method is to support

wide-angle or fisheye cameras (e.g., spherical or hemispherical) 

with wider FoVs to cover a region with less cameras but suffer from 

lens distortion, which can be handled by additional processing such 

as perspective mapping [15]. The proposed method can also be 

enhanced by integrating with re-identification (re-ID) network [13] 

to support multi-person auto calibration and joint optimization [11] 

for system-level camera calibration. The fully calibrated multi-

camera systems are expected to substantially improve 3D 

reconstruction accuracy degraded by depth ambiguity, where 

multiple 3D body poses result in the same 2D projection. For 

humans only seen by one single camera in the multi-camera system, 

pretrained monocular 3D human pose and shape estimation (e.g., 

HMR+SMPL [4][5]) can be applied for 3D reconstruction. For 

humans seen by multiple cameras within their overlapping FoVs, 

multi-view 3D human pose estimation (e.g., Mvpose [16]) can be 

applied for more accurate 3D reconstruction which is expected to be 

less susceptible to self or mutual occlusion and out-of-view 

truncation. 
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Figure 3. Subject [CoreView_313] correspondence matching comparison for SIFT (row 1), human joints (row 2), and human mesh (row 3) methods with narrow-
baseline camera pair 0-2 (≈ 30° apart, column 1) and wide-baseline camera pairs 0-18 (≈ 90° apart, column 2) and 0-12 (≈ 180° apart, column 3). 

Methods ≈ 30° (Camera 0 and 2) ≈ 90° (Camera 0 and 18) ≈ 180° (Camera 0 and 12) 
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Figure 4. Subject [CoreView_315] correspondence matching comparison for SIFT (row 1), human joints (row 2), and human mesh (row 3) methods with narrow-
baseline camera pair 0-2 (≈ 30° apart, column 1) and wide-baseline camera pairs 0-18 (≈ 90° apart, column 2) and 0-12 (≈ 180° apart, column 3).
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Methods ≈ 30° (Camera 0 and 2) ≈ 90° (Camera 0 and 18) ≈ 180° (Camera 0 and 12) 
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Figure 5. Subject [CoreView_315] estimated versus ground truth camera poses for SIFT (row 1), human joints (row 2), and human mesh (row 3) methods with 
narrow-baseline camera pair 0-2 (≈ 30° apart, column 1) and wide-baseline camera pairs 0-18 (≈ 90° apart, column 2) and 0-12 (≈ 180° apart, column 3). 
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