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Abstract
Sinogram inpainting is a critical task in computed tomogra-

phy (CT) imaging, where missing or incomplete sinograms can
significantly decrease image reconstruction quality. High-quality
sinogram inpainting is essential for achieving high-quality CT
images, enabling better diagnosis and treatment. To address
this challenge, we propose SinoTx, a model based on the Trans-
former architecture specifically designed for sinogram comple-
tion. SinoTx leverages the inherent strengths of Transformers in
capturing global dependencies, making it well-suited for handling
the complex patterns present in sinograms. Our experimental re-
sults demonstrate that SinoTx outperforms existing baseline meth-
ods, achieving up to a 32.3% improvement in the Structural Simi-
larity Index (SSIM) and a 44.2% increase in Peak Signal-to-Noise
Ratio (PSNR).

Introduction

Figure 1: Schematic of CT Imaging and Sinogram Generation:
The illustration depicts the CT imaging process, starting with the
experimental setup for X-ray projection data acquisition, where a
sample rotates to capture projections from multiple angles. These
projections are then used to generate a sinogram, a 2D representa-
tion that combines all angular projections, critical for reconstruct-
ing cross-sectional images of the sample.

Computed tomography (CT) imaging is a cornerstone of
both clinical diagnostics and industrial material analysis. At its
core, CT involves the collection of X-ray projection data from
multiple angles to reconstruct cross-sectional images of an ob-
ject. These reconstructed images provide detailed insights into in-
ternal structures, which are critical for applications ranging from
medical diagnosis to material defect detection. Fig 1 illustrates
the principle of CT imaging, showing the process of data acquisi-
tion through X-ray projections and the subsequent generation of a
sinogram from angular projections for image reconstruction.

However, the process of acquiring complete and high-quality
sinograms—a 2D representation of these projections—is often
hindered by practical constraints such as limited radiation dosage,
restricted angular coverage, or mechanical instabilities during
data acquisition. These limitations can result in incomplete or

corrupted sinograms, significantly degrading the quality of recon-
structed images [1].

Addressing the challenges of incomplete sinograms is cru-
cial for advancing CT imaging. Traditional interpolation-based
methods for inpainting often fail to capture the complex patterns
and dependencies inherent in sinogram data [2]. hese traditional
approaches often assume simplistic data distributions and lack
the ability to effectively capture global dependencies in sinogram
data, which are critical for high-quality reconstructions. Further-
more, such methods frequently require manual parameter tuning
and cannot generalize well to diverse imaging conditions [3, 4].

A pressing need exists to address the limitations of tradi-
tional methods, which often rely on oversimplified assumptions
and struggle with generalization across diverse imaging scenar-
ios. Recent advancements in deep learning techniques provide
an opportunity to overcome these challenges effectively. While
convolutional neural networks (CNNs) have demonstrated some
success in addressing local patterns in sinogram data, they often
fail to capture the global dependencies critical for reconstructing
missing or irregular sinogram segments. Furthermore, many ML-
based approaches rely heavily on large labeled datasets and strug-
gle to generalize well to the high variability and sparsity charac-
teristic of real-world sinogram data. Recent advancements in deep
learning, particularly the emergence of Transformer-based archi-
tectures, have transformed various domains by effectively mod-
eling complex data dependencies. Originally developed for natu-
ral language processing (NLP) tasks, Transformers have demon-
strated remarkable success in computer vision applications, lever-
aging their self-attention mechanisms to capture both local and
global relationships in data [5, 6]. Inspired by this paradigm, re-
searchers have begun exploring the potential of Transformer mod-
els for scientific imaging tasks, including CT sinogram inpainting.
Prior studies on SinoTx show promising results by treating sino-
grams as analogous to sequential data, where each projection cor-
responds to a token in a sequence [7, 8, 12]. This approach aligns
with the concept of masked modeling, commonly employed in
NLP to reconstruct missing tokens, thereby enabling effective in-
painting of sinograms.

Building upon these foundations, we propose SinoTx, a
Transformer-based model specifically designed for sinogram in-
painting. SinoTx leverages the inherent strengths of Transform-
ers in capturing global dependencies, making it particularly well-
suited for the irregular and sparse patterns characteristic of miss-
ing sinogram data. Unlike convolutional neural networks (CNNs),
which primarily focus on local features, SinoTx employs self-
attention mechanisms to model long-range interactions across the
entire sinogram. This capability is critical for accurately recon-
structing missing data and preserving structural integrity in CT
reconstructions.
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Specifically, this work consists of three main contributions
as follows:

• Model Architecture: We introduce SinoTx, a specialized
Transformer model tailored for sinogram inpainting, incor-
porating both an encoder and a decoder designed to handle
the unique characteristics of sinogram data.

• Scalability and Efficiency: SinoTx integrates Distributed
Data Parallelization (DDP) using PyTorch, enabling effi-
cient training and inference across large-scale synchrotron
datasets in high-performance computing (HPC) environ-
ments [bommasani2021opportunities].

• Empirical Validation: Extensive experiments on simulated
and real-world datasets demonstrate that SinoTx achieves
superior performance compared to state-of-the-art methods,
with significant improvements in Structural Similarity Index
(SSIM) and Peak Signal-to-Noise Ratio (PSNR) [10, 11].

By addressing the challenges of sinogram inpainting with a
Transformer-based approach, this work performs better than base-
lines and sets a new benchmark for future innovations in the field.
The proposed SinoTx model not only enhances the quality of
CT reconstructions but also exemplifies the potential of apply-
ing advanced deep learning techniques to scientific imaging tasks,
bridging the gap between cutting-edge AI and practical applica-
tions in synchrotron facilities.

Figure 2: Overview of SinoTx: The overview highlights the
encoder-decoder framework for sinogram inpainting. The en-
coder processes visible sinogram projections through linear pro-
jection, position embedding, and transformer layers, generating
latent variables. The decoder inpaints the full sinogram by incor-
porating masked tokens and leveraging transformer blocks, with
a final loss computed against the original full scan.

SinoTx Design and Analysis
To tackle the challenges of sinogram inpainting in computed

tomography (CT), we propose SinoTx, a Transformer-based ar-
chitecture designed to capture both local and global dependen-
cies within sinogram data. By leveraging advanced self-attention
mechanisms, SinoTx effectively inpaints incomplete or corrupted
sinograms, which also enables high-quality CT image reconstruc-
tions even under sparse-view or low-dose scenarios. An overview
of SinoTx is shown in Fig 2.

Model Design
The SinoTx model consists of two main components: the

Encoder and the Decoder, both built upon the Transformer archi-
tecture.

Encoder
The encoder processes the input sinogram data by first em-

bedding it into a high-dimensional space using a convolutional
layer:

E = Pro jEmb(S), (1)

where S denotes the input sinogram and E represents the embed-
ded projections. This embedding is then augmented with posi-
tional encodings P to preserve the sequential structure of the sino-
gram projections:

E′ = E+P. (2)

A series of self-attention layers within the encoder then extracts
meaningful global and local dependencies, producing a robust
representation of the sinogram data:

Z = E (E′), (3)

where Z is the encoded representation. During training, a ran-
dom subset of sinogram projections is masked to simulate miss-
ing data, and the encoder is tasked with learning representations
that are invariant to these missing elements.

Decoder
The decoder reconstructs the missing projections by lever-

aging the encoded representations and filling in the masked posi-
tions. To achieve this, mask tokens are appended to the encoded
features at the positions corresponding to the missing sinogram
data. The Transformer decoder, composed of multiple attention
layers, learns to recover the missing values by modeling the rela-
tionships between the observed and masked projections. Finally,
the reconstructed sinogram is projected back to its original reso-
lution using a linear transformation:

Sinpaint = D(Z). (4)

Loss Function
The model is trained using a Mean Squared Error (MSE) loss

function to minimize the difference between the reconstructed and
ground truth sinograms:

LMSE =
1
N

N

∑
i=1

||Sinpaint,i −Sfullscan,i||22, (5)

where N is the number of samples in the training set.

Training
Graphics and equations should fit within one column (3.38

inches wide), but full width (7 inch) figures are also acceptable.
Equations, figures and figure captions each have their own style
tags. Equations are numbered using parentheses flushed right as
shown below.

During training, 80% of the sinogram projections are ran-
domly masked to mimic real-world scenarios of incomplete data.
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Table 1: Quantitative Results: The table presents quantitative accuracy results for the SinoTx model across three datasets, showcasing the
model’s performance in various inpainting scenarios. The values in parentheses correspond to the results of the reconstructed images.

(a) Shepp2D: This subtable shows results for Shepp2D, which evaluates the model’s performance on geometric phantoms.

Methods
SSIM PSNR

Mask Ratio Mask Ratio

0.4 0.6 0.8 0.4 0.6 0.8
SinoTx 0.967 (0.938) 0.968 (0.926) 0.962 (0.906) 37.2 (35.8) 37.5 (34.4) 36.3 (33.9)

UsiNet [20] 0.494 (0.447) 0.499 (0.462) 0.492 (0.452) 13.1 (12.1) 15.0 (13.2) 15.6 (14.5)
StrDiffusion [21] 0.516 (0.497) 0.554 (0.505) 0.562 (0.538) 15.5 (12.5) 16.3 (14.9) 16.7 (15.3)

CMT [22] 0.504 (0.457) 0.507 (0.477) 0.518 (0.485) 20.8 (19.3) 22.6 (19.3) 22.7 (19.5)
MISF [23] 0.731 (0.702) 0.749 (0.713) 0.743 (0.720) 25.8 (24.1) 26.5 (23.7) 26.9 (25.4)
LaMa [11] 0.698 (0.663) 0.708 (0.686) 0.720 (0.692) 25.0 (23.6) 25.8 (23.0) 26.6 (23.6)

(b) Shape: The Shape dataset highlights the model’s ability to inpaint sinograms containing complex geometric structures.

Methods
SSIM PSNR

Mask Ratio Mask Ratio

0.4 0.6 0.8 0.4 0.6 0.8
SinoTx 0.746 (0.717) 0.743 (0.696) 0.796 (0.750) 26.5 (25.1) 26.9 (25.2) 27.1 (25.1)

UsiNet [20] 0.509 (0.480) 0.549 (0.511) 0.546 (0.512) 14.1 (10.9) 13.7 (12.6) 15.3 (12.8)
StrDiffusion [21] 0.524 (0.497) 0.552 (0.506) 0.600 (0.572) 14.3 (12.1) 15.1 (13.5) 15.9 (13.5)

CMT [22] 0.454 (0.413) 0.469 (0.427) 0.477 (0.431) 19.9 (17.1) 20.2 (17.4) 21.0 (18.1)
MISF [23] 0.716 (0.692) 0.739 (0.717) 0.753 (0.735) 26.4 (25.3) 27.6 (26.5) 27.8 (25.0)
LaMa [11] 0.747 (0.718) 0.762 (0.730) 0.779 (0.726) 26.1 (23.9) 27.8 (25.8) 28.6 (27.8)

(c) Real-world: Real-world captures the complexities of real CT imaging scenarios. The results suggest potential areas for improvement in real-world
applicability.

Methods
SSIM PSNR

Mask Ratio Mask Ratio

0.4 0.6 0.8 0.4 0.6 0.8
SinoTx 0.572 (0.556) 0.597 (0.544) 0.643 (0.609) 20.4 (18.2) 21.7 (19.5) 21.9 (20.2)

UsiNet [20] 0.460 (0.416) 0.482 (0.431) 0.494 (0.448) 12.8 (10.7) 14.5 (11.5) 14.9 (12.6)
StrDiffusion [21] 0.462 (0.432) 0.508 (0.465) 0.507 (0.474) 13.7 (10.8) 15.7 (14.2) 16.2 (12.4)

CMT [22] 0.436 (0.392) 0.440 (0.407) 0.453 (0.406) 16.1 (14.8) 16.2 (13.2) 16.1 (14.9)
MISF [23] 0.706 (0.671) 0.717 (0.664) 0.723 (0.699) 25.1 (23.3) 25.2 (23.5) 26.4 (25.1)
LaMa [11] 0.706 (0.672) 0.716 (0.683) 0.715 (0.666) 22.1 (20.6) 22.9 (20.3) 24.6 (22.1)

The input sinogram data is first preprocessed and embedded into
a high-dimensional space using a linear projection layer. Posi-
tional encodings are then added to the embeddings to retain struc-
tural information. The masked sinogram is passed through the
Transformer encoder, where both local and global features are ex-
tracted. The decoder takes these encoded representations, fills in
the missing projections using mask tokens, and reconstructs the
full sinogram.

SinoTx is pretrained on a large-scale simulated dataset to
capture generalizable features and patterns in sinogram data. Af-
ter pretraining, the model can be fine-tuned for specific tasks, such
as sparse-view or low-dose inpainting, to ensure task-specific per-
formance. The optimization is performed using the Adam op-
timizer with a learning rate scheduler, promoting stable and ef-
ficient convergence. To address the computational demands of
handling large-scale datasets, SinoTx is implemented with Dis-
tributed Data Parallelism (DDP) in PyTorch, allowing efficient
training across multiple GPUs. Finally, the reconstructed sino-
gram is used to produce CT images via the inverse Radon [13]
and Gridrec [14].

Analysis
SinoTx offers several advantages over traditional methods.

Its self-attention mechanisms enable the model to capture long-
range dependencies, making it particularly effective for inpainting
irregular or sparse patterns in sinogram data. Additionally, the
Transformer architecture is highly scalable, allowing SinoTx to
handle large datasets efficiently using parallel computing frame-
works. The flexibility of the model makes it adaptable to di-
verse scenarios, including sparse-view and low-dose inpaintings,
achieving high levels of robustness and accuracy. Moreover,
the pretraining-finetuning paradigm ensures that the model learns
both general and task-specific features, enhancing its versatility in
various CT related tasks.

Evaluation
To evaluate the performance of SinoTx, we conduct exten-

sive experiments on both simulated and real-world datasets, com-
paring our method against several baselines. The evaluation met-
rics include Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR), which quantitatively and qualitatively as-
sess the inpainting of sinograms and the reconstruction of final

IS&T International Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025 192-3



CT images.

Implementation Details
We train our model using the Polaris supercomputer at Ar-

gonne Leadership Computing Facility (ALCF) resources at Ar-
gonne National Laboratory (ANL)1. Polaris supercomputer con-
sists of 560 compute nodes, each of which is equipped with 4
NVIDIA A100 GPUs (connected via NVLink). We use PyTorch
version 2.1.0 and CUDA version 12.2. The dimensions of the in-
put images are 512x512.

Dataset
Three datasets are used in our experiments, each containing

100k samples with a resolution of 512×512:
Shepp2d dataset, generated using the TomoPy library [15],

comprises simulated Shepp-Logan phantoms. These phantoms
are widely recognized as a standard benchmark in tomographic
imaging, providing a controlled environment for evaluating the
accuracy and stability of reconstruction algorithms. The dataset’s
characterized by well-defined geometric structures, makes it ideal
for assessing the model’s fundamental inpainting capabilities un-
der varying masking ratios.

Shape dataset, created using the scikit-image library [16],
contains a diverse collection of simulated geometric shapes, in-
cluding circles, rectangles, triangles, and ellipses. By introducing
a range of geometric complexities, such as sharp edges and vary-
ing curvatures, this dataset challenges the model to accurately
reconstruct intricate structural details. Its diversity allows for a
comprehensive evaluation of the model’s ability to handle differ-
ent spatial patterns and topological variations.

Real-world dataset [17] consists of sinograms derived from
actual synchrotron radiation CT scans, including data collected at
facilities such as the Advanced Photon Source (APS2) at Argonne
National Laboratory. These sinograms capture the complexities
of real-world imaging, encompassing diverse materials and vary-
ing noise levels. Additionally, this dataset incorporates dynamic
[18] and in situ [19] systems, which represent the challenges as-
sociated with real-time and experimental imaging scenarios. Its
inherent complexity and variability provide a robust benchmark
for evaluating the model’s performance in practical sinogram in-
painting tasks.

Quantitative Analysis
The performance of SinoTx was first assessed on the

Shape2d, a standard benchmark for tomographic imaging.
SinoTx demonstrated significant improvements over baseline
methods across all mask ratios. Specifically, SinoTx achieved up
to a 32.3% improvement in SSIM and a 44.2% increase in PSNR
compared to baselines. As shown in Table 1a, SinoTx consistently
outperformed all baselines under varying mask ratios, highlight-
ing its robustness and effectiveness.

On the Shape dataset, SinoTx delivered competitive results,
often comparable or superior to baselines, particularly at higher
mask ratios. This dataset, with its diverse geometric patterns, al-
lowed SinoTx to demonstrate its ability to handle sharp edges and
complex curvatures effectively. The results, summarized in Ta-

1Polaris Cluster at ALCF: https://www.alcf.anl.gov/polaris
2Advanced Photon Source: https://www.aps.anl.gov

ble 1b, indicate that SinoTx maintains strong performances for
Shape.

For the Real-world dataset, SinoTx exhibited reasonable
generalization capabilities but slightly lagged behind methods like
LaMa and MISF, especially when addressing highly complex and
noisy sinogram structures. As shown in Table 1c, SinoTx’s per-
formance in real-world scenarios is promising but suggests the
need for further enhancements to better adapt to the variability
and challenges inherent in real-world data.

Qualitative Analysis
In addition to quantitative metrics, we present the inpainted

images generated by SinoTx compared to other baselines. The
results shwon in Fig 3 demonstrate that SinoTx can effectively
recover fine details in the inpainted sinograms in regions with high
sparsity or irregular patterns. For example, SinoTx’s inpaintings
closely resemble the ground truth.

Conclusion
In this study, we introduce SinoTx, a Transformer-based

model specifically designed for sinogram inpainting in computed
tomography. By leveraging the inherent strengths of Transformers
in capturing global dependencies, SinoTx demonstrate significant
improvements over baselines in both SSIM and PSNR across mul-
tiple datasets. Its ability to handle missing and sparse sinogram
data is validated on simulated datasets, and its scalability is en-
abled through Distributed Data Parallelism in PyTorch, making it
well-suited for large-scale HPC environments. While SinoTx ex-
hibits strong performance in synthetic settings, further optimiza-
tion is needed to enhance its generalization to real-world data.
These findings establish SinoTx as a robust framework for sino-
gram inpainting and provide a foundation for future advancements
in CT imaging and high-performance computing applications.
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