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Abstract
Multi-modal learning adeptly integrates visual and textual

data, but its application to histopathology image and text analy-
sis remains challenging, particularly with large, high-resolution
images like gigapixel Whole Slide Images (WSIs). Current meth-
ods typically rely on manual region labeling or multi-stage learn-
ing to assemble local representations (e.g., patch-level) into
global features (e.g., slide-level). However, there is no effec-
tive way to integrate multi-scale image representations with text
data in a seamless end-to-end process. In this study, we intro-
duce Multi-Level Text-Guided Representation End-to-End Learn-
ing (mTREE). This novel text-guided approach effectively cap-
tures multi-scale WSI representations by utilizing information
from accompanying textual pathology information. mTREE in-
novatively combines – the localization of key areas (“global-to-
local”) and the development of a WSI-level image-text represen-
tation (“local-to-global”) – into a unified, end-to-end learning
framework. In this model, textual information serves a dual pur-
pose: firstly, functioning as an attention map to accurately iden-
tify key areas, and secondly, acting as a conduit for integrating
textual features into the comprehensive representation of the im-
age. Our study demonstrates the effectiveness of mTREE through
quantitative analyses in two image-related tasks: classification
and survival prediction, showcasing its remarkable superiority
over baselines. Code and trained models are made available at
https://github.com/hrlblab/mTREE.

Introduction
Analyzing Whole Slide Images (WSIs) is a critical aspect of

medical imaging research. WSIs are digitized scans of histologi-
cal samples captured at multiple magnifications, preserving both
the overarching view and intricate microscopic details. From a
broader perspective, WSIs offer a macroscopic overview of tu-
mor distribution throughout the entire digital slide. This allows
for the study of spatial relationships and general tumor traits. At
the same time, WSIs enable detailed inspections of cell and tis-
sue structures at the microscopic scale, significantly enhancing
diagnostic accuracy and advancing the field of histopathology re-

search [1].
Over recent years, computer vision has become increasingly

crucial and successful in analyzing Whole Slide Images (WSIs),
tackling the challenges of handling their super high-resolution
(> 109 gigapixels) for tasks like image classification, object de-
tection, and segmentation. Unlike these tasks, our study confronts
the unique challenge of performing multi-modal representation
learning (involving both image and textual data) for WSIs, fo-
cusing on modeling information across multiple scales in both
images and text. Textual data in this context can describe both
broad and detailed aspects of multi-scale WSIs. A key unresolved
question is how to effectively learn representations that encom-
pass both global and local features.

Current methods often rely on manually labeling areas of
interest for local representation or using multi-stage learning to
merge these local features into a global representation. Yet, these
approaches typically fall short of seamlessly integrating multi-
scale image representations with text data in an end-to-end pro-
cess.

In this paper, we propose Multi-Level Text-Guided Rep-
resentation End-to-End Learning (mTREE), an innovative text-
guided method that effectively captures multi-scale image rep-
resentations through the use of accompanying textual pathol-
ogy data. mTREE uniquely blends two formerly separate pro-
cesses – the identification of crucial areas (“global-to-local”) and
the creation of a WSI-level image-text representation (“local-to-
global”) – into a unified, end-to-end learning framework.

While text-based clinical records are consistently available,
they haven’t been fully utilized in multi-modal representation
learning for high-resolution images. Our goal is to develop an al-
gorithm that leverages these textual records to guide the selection
of diagnostic patches and aggregate WSI representations without
the need for manual annotations. We hypothesize that there is an
inherent correlation between the text and image domains; for a
given WSI, the clinical text can provide criteria for selecting WSI
patches and extracting features.

Mathematically, Given a WSI X , considered as a set of im-
age patches {xi}N

i=1 where xi ∈ X , and a corresponding label Y for
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Figure 1. Comparison between multi-instance learning, pathologist di-
agnosis, and our proposed mTREE. (a) Traditional multi-instance learning

needs to process all patches without patch selection. (b) Pathologists in the

diagnosis process focus on the most essential patches selected by manual

efforts. (c) Our proposed mTREE generates text-guided attention to sample

efficiently without manual annotation.

WSI X , our approach involves training two mappings. The first is
for patch selection A : {xi}N

i=1 → {xi}K
i=1 ,(K ≪ N), and the sec-

ond is for feature abstraction E : {xi}K
i=1 → Y . Textual data pro-

vides guidance for both mappings: optimizing the selection from
the original WSI set and consolidating patch-level features into a
comprehensive WSI feature. This dual mapping requires a multi-
level approach for text-guided analysis, executed in an end-to-end
fashion. In the first mapping, patch selection from {xi}N

i=1 de-
pends on each patch’s relevance to the final prediction, determined
by an attention map that scores each patch’s importance. Due to
the extensive size of WSIs, the attention map is initially learned
on lower-resolution images and then mapped to high-resolution
images based on coordinate relationships. This approach allows
the model to process only a fraction of patches (K out of N) when
K ≪ N. In the second mapping, the model uses the features ex-
tracted from the selected patches, with the text feature identifying
and amalgamating the most pertinent features (those with smaller
feature distances) into a unified WSI representation.

In summary, our study introduces a text-guided representa-
tion learning method aimed at improving efficiency and extracting
features from vital image regions, thereby eliminating the confu-
sion caused by unnecessary image patches. Our approach does
not require image annotations from pathologists. Instead, it lever-
ages text descriptions from clinical records to guide the learning
process of WSI representations at multiple levels in an integrated,
end-to-end manner. We have applied our method to various ap-
plications, including image classification and survival prediction
across multiple WSI datasets, and have compared it with previous
approaches based on Multiple Instance Learning (MIL) models.

The key contributions of our work are fourfold:

• We present the first efficient visual-language model for gi-
gapixel WSIs, operating in a seamless end-to-end fashion.

• We utilize text information to optimize learning strategies
across multiple levels.

• Our pipeline is weakly supervised at the WSI level, eliminat-
ing the need for patch-level annotations from pathologists.

• Our model offers explainability by providing visualizations
at different levels, such as attention maps and significant
patches.

Related Work
Multi-instance learning

For pathology image analysis, Multi-Instance Learning
(MIL) has emerged as a prominent paradigm, offering a ro-
bust framework to address challenges associated with the lack of
patch-wise annotation of pathological images [17, 18, 19]. Dif-
ferent from the supervised learning method on patches, [20, 21]
regard the pathology image as a collection of multiple instances or
regions, each potentially harboring critical information for diag-
nostic or prognostic purposes. This approach allows the model
to operate on bags of instances for weakly-supervised learn-
ing [22]. MIL has demonstrated its efficacy in capturing nuanced
spatial relationships [23] and patterns [24] within pathology im-
ages, accommodating the inherently diverse nature of tissue struc-
tures [25, 26] and cellular compositions [27]. Upon the set-based
concept, Ilse et al. [15] apply the attention mechanism to Whole
Slide Images (WSIs). In a similar vein, Yao et al. [17] integrated
attention-based MIL into clustered phenotypes, yielding promis-
ing outcomes. Furthermore, [28] validated the MIL performs well
on large-scale WSI datasets.

Attention sampling
Performing analysis on large images, attention sampling [6]

has emerged as a powerful technique to efficiently process ex-
tensive visual datasets by selectively focusing computational re-
sources on regions of interest. Attention sampling aims to ad-
dress the challenges posed by the sheer scale of high-resolution
images, where the majority of the content may be irrelevant to the
specific task at hand [29]. Attention sampling leverages mech-
anisms inspired by human visual attention [42], directing com-
putational resources toward salient regions while bypassing less
informative areas. Notable approaches include the integration
of attention mechanisms within convolutional neural networks
(CNNs) [30, 31, 32] to dynamically weigh the importance of dif-
ferent image regions. Additionally, attention sampling strategies,
such as region-based methods and attention-guided sampling,
have been proposed to enhance computational efficiency in tasks
such as object detection [33, 34], image classification [35, 36],
and segmentation [37, 38].

Visual language model in WSI analysis
The integration of visual language models (VLM) has

emerged as a cutting-edge approach, revolutionizing the interpre-
tation of large-scale pathological images. Visual language mod-
els combine the strengths of natural language processing (NLP)
and computer vision, enabling a comprehensive understanding of
complex visual information assisted by knowledge from multiple
domains. Unlike fine-tuning, VLM is based on prompt prediction
in the template, as seen in CLIP [14] and CoOp [40]. The trained
language model has a strong capability in knowledge and zero-
shot learning [41]. By leveraging pre-trained language models
such as BERT [39] and adapting them to the unique challenges of
WSI, researchers have achieved remarkable strides in capturing
contextual relationships and hierarchical structures within pathol-
ogy images [11]. These models empower the extraction of mean-
ingful features and semantic understanding, enhancing the inter-
pretability of WSIs for tasks such as image classification, tumor
detection, and prognosis prediction [12].
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Methods
As illustrated in 2, our goal is to learn the multi-level map-

ping from gigapixel WSI X to the representation R guided by text
prompt T . To better describe the model learning on gigapixel
images, we regard high-resolution images (base layer in image
pyramid in 2) as a collection of image patches {xi}N

i=1 (xi ∈ X).
To efficiently learn the WSI representation, the global-level align-
ment learns an attention map M from WSI in low resolution Wlow.
The global alignment on M is between image attention map Mw
and text attention map Mt . The image patch collection {xi}N

i=1 is
ranked by the attention score in attention map M. Top K image
patches {xi}K

i=1 with highest attention score are selected by the
sampler. Image patch features {Ii}K

i=1 is abstracted by image en-
coder E from top K image patches E(xi). The image feature Ii is
selected by the cosine similarity with T0. The WSI representation
R is aggregated by the Ii weighted by distance I0 ×T0. At the core
of our approach is the idea of multi-level alignment from super-
vision contained in natural language and the end-to-end training
manner to coordinate the region localization and feature extrac-
tion.

Global alignment
The attention map can, in theory, learn the significance of

the region playing a role in the final prediction. However, for
the high-resolution WSI normally in size of 100,000× 100,000,
a gigapixel attention map is too large for attention model ca-
pacity to learning. Considering the histopathology image com-
posed of regions of different tissue types, the region distribution
of WSI makes attention map learning even harder to match the
target prediction. Since learning the attention map for the high-
resolution image is not valid, we can learn the attention map in
low-resolution WSI to reduce the training burden and localize the
rough essential region. To further optimize the attention map,
the global-level alignment is between text feature T0 and low-
resolution WSI Xlow. The attention mappings on the text side
At : T0 → Mt and WSI side Aw : Xlow → Mw provides the WSI at-
tention map Mw and the text attention map Mt . The mapping At
is achieved by a projection head, composed of multiple fully con-
nected layers. We use MSELoss as attention loss LAttn to match
the Mw with Mt as expressed in 1.

LAttn =
1
N

N

∑
i=1

(Mi
w −Mi

t )
2 (1)

To prevent the attention from collapsing and to encourage non-
zero values in the attention map, the sparsity-inducing regulation
term LSparse is applied to both Mt and Mw, penalizing overly
sparse attention maps following 2.

LSparse =
1
N

N

∑
i=1

|Mt |+
1
N

N

∑
i=1

|Mw| (2)

To keep the low-resolution WSI in the same size from the same
magnification, the original image is center-cropped before being
fed into the attention model. To prevent the attention from focus-
ing only on the cropped image boundary, the LBoundary is defined
by gradients of the attention map with respect to the x-axis (Gx)
and y-axis (Gy). The LBoundary is expressed in 3 where Gx(Mw)i
is the i-th element in the gradient of Mw with respect to x-axis and

Gy(Mw)i is the i-th element in the gradient of Mw with respect to
y-axis.

LBoundary = λ

(
N

∑
i=1

|Gx(Mw)i|+
N

∑
i=1

|Gy(Mw)i|

)
(3)

The full loss function for attention map global alignment is:

LGlobal = LAttn +LSparse +LBoundary (4)

Local alignment
The attention map M provides the criterion score for image

patch significance. The top K patch selected from {xi}N
i=1 pro-

vides the most essential patches for the prediction. As shown in
3 lower panel, essential patch collection {xi}K

i=1 selected by the
sampler is fed into the image encoder to generate the image fea-
ture {Ii}K

i=1. Because the image patches and text are both encoded
into feature space, the similarity of text feature T0 with each image
feature candidate Ii can be computed and ranked based on 5

Cosine Similarity({Ii}K
i=1 ,T0) =

{
Ii ·T0

∥Ii∥∥T0∥

}K

i=1
(5)

Image feature {Ii}J
i=1 are selected based on the cosine similarity

with the text feature T0. The final representation for WSI is ag-
gregated with the selected image features, as shown in 6.

R =
J

∑
i=1

(
Ii ·T0

∥Ii∥∥T0∥
· Ii) (6)

End-to-end training with image sampler
The multi-level alignment under text guidance is built in an

end-to-end manner to provide the advantages from two aspects:
(1) Coordinate the optimization on the attention map and fea-
ture selection and aggregation. (2) Provide the backpropagation
path from the final prediction to the attention map for the sam-
pler. Representation learning with attention maps often involves a
two-stage training process, where the first stage focuses on learn-
ing a representation, and the second stage incorporates attention
mechanisms as in [2, 7, 8, 9]. Insufficient end-to-end optimization
potentially leads to suboptimal integration of attention and repre-
sentation learning. To better describe the end-to-end manner, the
pseudocode of mTREE is provided.

Algorithm 1 Pseudocode for mTREE implementation
1: Input: Gigapixel WSI X , Text Prompt T
2: Output: WSI Representation R
3: Learn attention map Mw from low-resolution Xlow
4: Align image attention map Mw and text attention map Mt with

attention loss
5: Rank image patches {xi}N

i=1 using attention score in Mw

6: Select top K image patches {xi}K
i=1 with highest attention

score
7: Extract image features {Ii}K

i=1 with image encoder E
8: Select image feature Ii based on cosine similarity with T0
9: Aggregate WSI representation R using Ii weighted by dis-

tance I0 ×T0
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Figure 2. This figure demonstrates the proposed mTREE pipeline. The upper panel shows the text process flow. The text encoder is frozen with pre-trained

weights. Text feature T0 is used for global alignment and alignment of image patch features. The lower panel shows the WSI analytic flow. The attention model

learns an attention map from the WSI in low resolution. The attention map aligns with the text feature T0. The image patches tiled up from high-resolution WSI

are ranked by attention score. The image features I0, I1...Ik abstracted from image patches with higher attention scores are aggregated with text feature T0.

Method Inputs Patch # Image encoder Acc (grade) C-Index (survival)

PathomicFusion [5] diagnostic regions (manual) 20 ResNet-50 N/A 63.1
AttenDeepMIL [15] diagnostic regions (manual) 20 ResNet-50 60.9 61.5

AttenSample [13] raw WSI (automatic) 1 ConvNet 49.1 55.4
AttenDeepMIL [15] raw WSI (automatic) 100 ResNet-50 51.0 58.8
CLAM [16] raw WSI (automatic) >5000 ResNet-50 57.5 60.1
mTREE (Ours) raw WSI (automatic) 10 ResNet-50 63.1 63.2
mTREE (Ours) raw WSI (automatic) 20 ResNet-50 64.7 65.1

Cancer grade classification and survival prediction results on KIRC dataset. Acc represents the accuracy of grade classification,
while the C-Index evaluates the survival prediction performance.

“An H&E image
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Figure 3. This figure presents the principle of multi-level text guid-
ance. Global-level text guidance (upper panel) aligns the attention map from

images and text. Image attention map is learned from low-resolution WSI,

while text attention is projected from the text feature T0. Local-level text guid-

ance (lower panel) performs patch selection by computing the cosine simi-

larity distance to the text feature T0 and aggregates features from both image

and text.

Experiments
Data description

To substantiate our proposed text-guided representation
learning approach, integrating histological and text features, we
sourced glioma and clear cell renal cell carcinoma data from the
TCGA, a comprehensive cancer data consortium housing paired
high-throughput text in clinic records and diagnostic whole slide
images. This dataset is enriched with ground-truth survival out-
comes and histologic grade labels. For both the TCGA-KIRC
(519 WSIs) and TCGA-GBMLGG (1589 WSIs) projects, region-
of-interests (ROIs) from diagnostic slides are provided by [5].

For clear cell renal cell carcinoma in the TCGA-KIRC project,
512×512 ROIs from diagnostic whole slide images are pro-
vided as the diagnostic region. This yielded 3 ROIs per pa-
tient (512×512 at 40× magnification) for 417 patients, result-
ing in a total of 1251 images. For the TCGA-GBMLGG project,
1024×1024 region-of-interests (ROIs) from diagnostic slides are
leveraged. The WSI data is publicly available on the TCGA
database [10].

Data preprocessing
Both WSI image and text data require preprocessing before

feature extraction. The preprocessing for both datasets follows
the same strategy.

WSI image data. The input image data for our pipeline
is provided from two levels: low-resolution images and high-
resolution images. The low-resolution images are from 5x magni-
fications in the WSI pyramid structure. To ensure low-resolution
images in the same size and scale, we center-crop the 5,000×
5,000 patches from the low-resolution images. All 5,000×5,000
patches are then resized to 500×500.

Text data. Follow the design in [11, 12], text information
is composed of templates and prompts curated from the clinical
records. In our experiments, the paragraph related to ”survival
time” and the ”cancer grade” are used as text information.

Network architectures
We adopt the representation learning flow from the ”low-

resolution” to ”high-resolution”, as proposed in Attention-
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Sampling [13], which has shown impressive results on megapixel
image analysis. Based on the ”low-resolution” to ”high-
resolution” strategy, our mTREE pipeline is composed of three
parts: image feature analysis models, text feature analysis mod-
els, and alignment blocks between image and text.

Image feature analysis model. Attention model for low-
resolution WSI is a Convolution Network (ConvNet) with four
convolution layers. We use 3×3 convolution kernel and the chan-
nel number of four convolution layers is [8, 16, 32, 1]. The Sam-
pler ranks image patches and selects the top K patches. No learn-
able parameters in the sampler. ResNet-50 with ImageNet pre-
trained weight is used as the image encoder.

Text feature analysis model. The text encoder is the pre-
trained ViT-B/32 used in CLIP [14]. The text encoder is frozen in
the training process.

Alignment block. The global alignment block includes a
projection head composed of two sequential convolution layers
to project text feature to text attention map. The local alignment
between text features and image features is based on the cosine
similarity matrix in the shape of 1×K.

Training details
We apply our mTREE to two TCGA datasets (KIRC and

GBMLGG) on two downstream tasks: grade classification and
survival prediction.

Tasks. The KIRC dataset has three grades (Stage I, Stage
II, and Stage III) for grade classification. The patient’s overall
survival time in month is used as the label for the survival pre-
diction task. The GBMLGG dataset also has three grades (2,
3, 4) for grade classification. The ”Time to last follow-up or
death (Month)” is used as the label for survival prediction in the
GBMLGG dataset.

Hyper-parameters. The three most important parameters
are evaluated for our proposed mTREE. The first one is the size
of the attention map learned in global alignment. Tuned by the
projection head channel number and attention model structure,
we evaluated attention map size in 123×123 and 246×246. The
second parameter is the sample number from the attention map
(K in 5). Based on the number of patches from the diagnostic re-
gion provided by [5], approximately 20 patches for each WSI, we
evaluated sample number in set 5, 10 20, 50. The third parame-
ter is the sample number from the image patch features (J in 6).
According to K ∈ {5,10,20,50}, we sampled J ∈ {2,5,10,20}.

Metrics. The metric used for grade classification tasks is
accuracy (ACC). The ACC evaluates the WSI representation per-
formance on class prediction tasks with discrete labels.

The metric for the survival prediction task is the C-Index. It
quantifies the concordance between predicted and observed sur-
vival times, with a higher C-index indicating improved predictive
accuracy.

Baseline experiments for comparison
To validate the advantages of the proposed mTREE pipeline,

the baseline experiments comparisons are compared from three
aspects: (1) MIL-based model: we use AttenDeepMIL [15] as a
general MIL-based model and CLAM [16], designed specifically
for WSI analysis. (2) Attention Sampling [13], and (3) Pathomic-
Fusion [5].

AttenDeepMIL. The implementation of AttenDeepMIL fol-
lows the settings in [15]. ResNet-50 with ImageNet-pretrained
weights is used as the image encoder. For both the KIRC dataset
and the GBMLGG dataset, two patch selection strategies are eval-
uated: (1) diagnostic region (DR in ), and (2) tiled-up image
patches from 40x WSI (Origin in ).

CLAM. In [16], CLAM provides the implementation of MIL
for classification. For a fair comparison, the image encoder is
ResNet-50, similar to other baseline methods. CLAM processes
all image patches from WSI, except the background patches, nor-
mally more than 5,000 patches for a WSI.

AttenSample. Attention sampling input set has an image
in high resolution (1,500 × 1,500) and a low-resolution image
rescaled by a ratio of 0.1 (150×150). For the TCGA dataset, the
high-resolution image is from a 5x magnification WSI and center-
cropped in size of 5,000× 5,000. The low-resolution image is
rescaled by a ratio of 0.1 to 500×500.

PathomicFusion. In [5], PathomicFusion is a multi-modal
fusion method incorporated with image, genomics, and cell graph
data. In our experiments, only image data is used for performance
comparison.

Results
Following the experiment settings, two datasets TCGA-

KIRC and TCGA-GBMLGG on grade classification and survival
prediction are discussed. To optimize the hyperparameter set-
tings, an ablation study of different parameters is evaluated on the
survival prediction task on the GBMLGG dataset. To provide the
model with explainability, the visualization of the attention map
and selected diagnostic region by mTREE is presented.

KIRC
In 1, we compare the performance of the proposed mTREE

with baselines on the TCGA-KIRC dataset for the grade classi-
fication task. It is observed that the performance of MIL-based
methods improves with an increasing sample number from the
WSI patch collection. When processing all patches from the
WSI, CLAM achieves an accuracy of 57.5%. Remarkably, our
proposed mTREE outperforms, achieving a superior accuracy of
64.7% with just 20 sampled patches from the WSI, surpassing
even AttenDeepMIL with a diagnostic region.

Moving on to the survival prediction task in 1, we observe a
performance trend similar to the grade classification task. MIL-
based methods exhibit better performance with a diagnostic re-
gion compared to original image patches. The best performance
from the MIL baseline achieves a C-Index of 0.631 when trained
on the diagnostic region. Notably, our proposed mTREE demon-
strates superior performance (C-Index 0.651) over the baselines,
utilizing both original image patches and diagnostic regions.

GBMLGG
In 2, we present the prediction performance of the proposed

mTREE and baselines on the grade classification task. Similar
to the performance comparison in the grade classification task,
MIL-based methods exhibit better performance with a diagnos-
tic region compared to original image patches. The best perfor-
mance from the MIL baseline achieves an accuracy of 78.8%
when trained on the diagnostic region. Notably, our proposed
mTREE outperforms the baselines, achieving a superior accuracy

IS&T International Symposium on Electronic Imaging 2025
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Method Inputs Patch # Image encoder Acc (grade) C-Index (survival)

PathomicFusion [5] diagnostic regions (manual) 20 ResNet-50 N/A 72.4
AttenDeepMIL [15] diagnostic regions (manual) 20 ResNet-50 78.8 71.4

AttenSample [13] raw WSI (automatic) 1 ConvNet 70.4 65.4
AttenDeepMIL [15] raw WSI (automatic) 100 ResNet-50 70.6 63.6
CLAM [16] raw WSI (automatic) >5000 ResNet-50 75.3 65.7
mTREE (Ours) raw WSI (automatic) 10 ResNet-50 76.5 69.0
mTREE (Ours) raw WSI (automatic) 20 ResNet-50 79.6 70.1

Cancer grade classification and survival prediction results on GBMLGG dataset. ’Acc’ represents the accuracy of grade classifi-
cation, while the C-Index evaluates the survival prediction performance.

Method Global align Local align KIRC ACC KIRC C-Index GBMLGG ACC GBMLGG C-Index

mTREE
49.1 55.4 70.4 65.4

✓ 51.0 56.3 70.7 65.2
✓ ✓ 64.7 65.1 79.6 70.1

Ablation study for multi-level text alignments is shown in this table. The accuracy of grade classification (ACC) and the survival
prediction performance (C-Index) are presented.
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Figure 4. This figure presents the visualization of WSI-level atten-
tion and the automatically derived diagnosis patches. For WSIs in the

TCGA-KIRC dataset and TCGA-GBMLGG dataset, the attention map (mid-

dle panels) is learned from WSI (left panels), highlighting essential tissue

regions. Essential image patches (right panels) are selected according to

the attention score. The image boundary color indicates the according atten-

tion score.

of 79.6% with both original image patches and the diagnostic re-
gion.

In 2, we present the prediction performance of the proposed
mTREE and baselines for the survival prediction task. The MIL-
based method exhibits better performance with a diagnostic re-
gion than with original image patches. The best performance
from the MIL baseline achieves a C-Index of 0.724 when trained
with the diagnostic region. Notably, our proposed mTREE out-
performs the baselines, achieving a better performance (C-Index
0.701) with original image patches.

Evaluation for multi-level text alignments
In this section, we compare the performance of the proposed

mTREE with and without global and local alignment. The re-
sults are presented in 3. From the performance shown in 3, both
global and local alignment contribute to performance improve-
ment in all four tasks. However, global alignment provides a lim-
ited contribution (as shown in the second row of 3). From another

perspective, the coordination between local and global alignment
underscores the advantages of an end-to-end training approach.

Visualization
The attention map (4 middle) obtained through global align-

ment serves as a crucial tool for improving the interpretability of
mTREE in the context of whole-slide image (WSI) analysis. The
heightened intensity in the attention map accentuates key regions
within the WSI that significantly contribute to the final prediction.
In the domain of weakly-supervised learning, these bright regions
indicate areas of essential diagnostic relevance. To enhance hu-
man understanding, image patches identified as having high di-
agnostic importance are presented in a zoomed-in view (4 right).
The color of the image boundary indicates the corresponding at-
tention score. Patches with higher attention scores are deemed
more important for the final prediction.

Conclusion
This paper introduces a novel text-guided representation

learning pipeline designed for the efficient processing of Whole-
Slide Images (WSIs). Our proposed model, mTREE, seam-
lessly integrates textual pathology information with WSI features
on multiple levels, enabling a comprehensive understanding of
the underlying data. Trained in an end-to-end manner, mTREE
demonstrates superior performance in both classification and sur-
vival prediction across two distinct WSI datasets. Notably, the
model exhibits explainability, as evidenced by its capability to vi-
sualize attention maps at both the WSI level and specific patches
with high diagnostic importance. This fusion of accuracy and in-
terpretability underscores the effectiveness of mTREE in the do-
main of WSI analysis.
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