https:/ /doi.org/10.2352/E1.2025.37.12 HPCI-1 79
This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit hitp://creativecommons.org/licenses/by/4.0/ .

Steady-State Particle Advection Speed-Ups from GPU and CPU

Parallelism

Abhishek Yenpure; Kitware Inc., USA
David Pugmire; Oak Ridge National Laboratory, USA
Hank Childs; Hank Childs, University of Oregon, USA

Abstract

This study evaluates the benefit of using parallelism from
GPUs or multi-core CPUs for particle advection workloads. We
perform 1000+ experiments, involving four generations of Nvidia
GPUs, four CPUs with varying numbers of cores, two particle
advection algorithms, many different workloads (i.e., number of
particles and number of steps), and, for GPU tests, performance
with and without data transfer. The results inform whether or not
a visualization developer should incorporate parallelism in their
code, what type (CPU or GPU), and the key factors influencing
performance. Finally, we find that CPU parallelism is the better
choice for most common workloads, even when ignoring costs for
data transfer.

Introduction

Particle advection, i.e., displacing a massless particle accord-
ing to a vector field, is a foundational operation for flow visualiza-
tion. This operation is carried out by calculating particle trajecto-
ries by a series of “advection steps.” Each advection step involves
evaluating a vector field at one or more locations and then solving
an ordinary differential equation. Flow visualization techniques
may require many particles, many advection steps per particle, or
even both. As a result, particle advection-based flow visualization
can be very computationally expensive, hindering interactivity.

Parallel processing is a key approach for reducing long exe-

cution times. That said, this very simple question — “how much
speed-up should I expect to get if [enhance my visualization soft-
ware to use parallelism?” — has a surprisingly complex answer.
The followup question “which type of parallelism should I use?:
CPU or GPU” also is non-obvious. On the one hand, GPUs pro-
vide significant computational resources, making them potentially
very useful for particle advection problems. That said, it can be
difficult to achieve peak performance on a GPU, especially for
data-intensive operations. Further, particle advection-based flow
visualization includes diverse use cases which can lead to varying
performance characteristics and varying speed-ups across GPU
architectures. On the other hand, while multi-core CPUs often do
not have the raw FLOPS of a GPU, they can compare favorably
to a GPU either because of faster individual cores or because of
direct access to data (i.e., no data transfers).

In response, we consider four related research questions on

particle advection performance:

*RQ1: How much speed-up will a GPU provide over a se-
rial CPU implementation? How much does individual GPU
architecture matter?

*RQ2: How much speed-up will a multi-core CPU provide

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

over a serial CPU implementation? How much does CPU
concurrency matter?

*RQ3: When given the opportunity to use either a GPU or
a multi-core CPU, which should a visualization developer
choose?

*RQ4: What are the trends in performance by using newer
hardware?

The main outcome of this study is informing visualization
developers whether parallelism will speed up their particle advec-
tion workloads, and, if so, to what extent. That said, the space
of possible experiments is quite large and, to maintain an achiev-
able scope, we introduce two boundaries. For the first boundary,
our study is targeted at visualization software running on desk-
top machines, and does not consider supercomputers. Desktop
machines are more widely accessible, and they increasingly have
general-purpose computing environments on their GPUs (CUDA,
OpenCL, etc.) and also significant parallelism via CPU cores.
Further, while we do not run distributed-memory experiments on
supercomputers, our findings also have implications for this envi-
ronment. For the second boundary, our study focuses exclusively
on steady-state flow. Steady-state flow advection is a common
use case, and particularly common for the workloads that con-
sider many advection steps (i.e., the workloads that benefit most
from parallel processing). That said, our findings again have im-
plications beyond our scope, and we consider how our findings
apply to the unsteady-state case in our conclusions.

Related Work

Shared-memory parallelism refers to using the parallelism
over many cores that can all access the same main memory.
Shared-memory parallelism is possible using both multi-core
CPUs and GPUs. There has been a significant body of particle ad-
vection works that focuses on using shared-memory parallelism to
improve the performance of related flow visualization algorithms.

Some past works have investigated the use of shared-
memory parallelism for particle advection in the context of
distributed-memory parallelism, i.e., MPI-hybrid parallelism.
Camp et al. proposed two different algorithms for particle advec-
tion on large data that used multi-core CPUs for shared-memory
parallelization [10]. The multiple cores of the CPU were used
to perform particle advection, I/O operations, and communica-
tion between nodes. Camp et al. [11] later extended their work
to use GPUs and compared the performance of GPUs to multi-
core CPUs. Their findings reveal that the CPUs performed better
for certain workloads where there are fewer particles or where the

179-1

duration of advection is long. However, the GPU was able to per-
form better for the other workloads. Childs et al. [13] compared
various GPUs and CPUs to understand the relationship between
the execution devices and the execution time. They made two key
observations, 1) CPUs were better for medium to long duration
of advection, and 2) for many cases with overall short execution
times CPUs matched or outperformed the GPUs. Jiang et al. used
the multiple threads of CPUs to perform I/O operation to hide
the I/O latency and improve particle advection performance [20].
Hentschel et al. [19] studied the benefits of using SIMD exten-
sions to achieve better performance for particle advection. They
packed spatially close particles together to use SIMD extensions
efficiently by improving the spatial locality of memory accesses.
They reported a performance improvement of 5.6x over a base-
line implementation. While these works provide some insights
into our study, their findings were rooted in distributed-memory
parallelism, and so performance results were affected by load im-
balances and other factors, and thus did not inform the benefit of
using a CPU or a GPU on a desktop.

GPUs have gained a lot of popularity as general-purpose
computing devices over the last decade because of specialized
tools like Nvidia’s CUDA library [27]. And as of lately, libraries
like Kokkos [15], RAJA [1], and VTK-m [25] allow users to write
C++ code that runs on GPUs without the user requiring much ex-
pertise, making it easy to write parallel applications. GPUs offer
excellent parallelism, given that there is enough work that can be
efficiently parallelized. Particle advection lends itself to paral-
lelization easily as each particle can be advanced independently,
making it embarrassingly parallel. That said, parallelism cannot
be achieve over the advection steps for a particle, since each step
depends on the result of the previous step.

Past studies have used GPUs for particle advection to per-
form interactive flow visualization. Kriiger et al. investigated us-
ing GPUs to produce particle visualizations for a million parti-
cles at once [22]. Their strategy was to exploit the GPU’s ability
to perform particle advection and produce visualizations without
having to move data between the GPU and the host. The authors
demonstrated the efficacy of their system for unsteady-state parti-
cle visualizations and also for 3D steady-state visualizations like
streamlines and stream ribbons. Biirger et al. extended the sys-
tem of Kriiger et al. to produce unsteady flow visualizations [8].
Their approach was to stream data to the GPU while the GPU was
busy performing particle advection, such that the next data slice
would be available when needed. Biirger et al. later demonstrated
their system could efficiently recognize flow features using some
measure of importance such as Finite Time Lyapunov Exponent
(FTLE), helicity, vorticity, etc. [7]. Biirger et al. then demon-
strated their system could render streak surfaces [6] by adaptively
refining/coarsening the surface at interactive rates with the GPUs.

Pugmire et al. [32] implemented a platform portable parti-
cle advection solution using VTK-m [25]. They evaluated their
implementation on multi-core CPUs and GPUs. They demon-
strated their implementation can perform well against platform-
optimized particle advection solutions. Their work has also
been of crucial importance for many studies that investigate
the efficiency of large scale MPI-hybrid parallel particle advec-
tion [4, 2, 5, 3]. Our work is different than that of Pugmire et
al. as we focus on expected speed-ups when moving to paral-
lelism, where their focus was on demonstrating portable perfor-

1792

mance.

There have been many studies about the performance of par-
ticle advection at large scale by optimizing certain aspects for dis-
tributed particle advection. Operating in a distrubuted setting of-
ten demands data to be decomposed into small blocks which are
distributed among processes. Since particle advection is highly
data dependant, domain decomposition is important to ensure
load-balanced computation. Efficient domain decomposition can
also help in avoiding unnecessary I/O and communication. To that
end, many studies have proposed schemes for data decomposi-
tion for particle advection based algorithms [12, 30, 29, 34] or for
efficient I/O performance [21]. Another important aspect of dis-
tributed particle advection is work distribution and scheduling that
leads to efficient use of parallelization and underlying hardware.
To that end, studies have proposed new parallelization strate-
gies [31, 28, 9, 23, 26] and demonstrate ways to use the whole
spectrum of execution devices available using co-processing [18].

Experimental Overview
This section describes the setup for our experiments, which
varied over the following parameters:
* Advection workloads
—Number of seeds: 5 options
—Duration: 3 options
—Seeding volume: 3 options
—Algorithms: 2 options

*Hardware usage
—GPU transfer modes: 2 options
—Devices: 4 CPUs and 4 GPUs

These options create for a potential 1080 experiments total:
90 advection workloads x 12 hardware options (4 for the CPU
and 8 for the GPU with the transfer modes). That said, for each
research question, we considered only a subset of the experiments,
tailored to answer the question. For example, RQ1 considered
240 experiments while RQ3 considered 180.

All experiments were run using particle advection modules
implemented in VTK-m [25]. VTK-m takes a portably perfor-
mant approach, i.e., a single code implementation can run effi-
ciently in serial, in parallel on a CPU, or in parallel on a GPU. This
approach has been demonstrated to produce code that runs as effi-
ciently as CPU-specific code or GPU-specific code, with findings
specifically considering particle advection [32] and also a meta-
study considering nine different visualization algorithms [24].

The remainder of this section describes the options for our
experiments in more depth.

Data Sets

To answer posed research questions we used the ‘Noise’ data
set, a vector field on a 5123 uniform grid. Noise is a reference data
set provided with the Vislt project [14]. The data set begins as
scattered data, consisting of one hundred points in a volume. Vislt
then constructs a vector field on a rectilinear grid by smoothly
interpolating between the scattered data values. Noise was chosen
because it has the least variability in number of steps, i.e., particles
hit zero-velocity spots or exit the volume less often, making for
more consistent results.

We note that the data set used for particle advection based
algorithms can significantly impact performance. The relation-

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

ship between the dataset and the performance of the algorithm is
explored in the Appendix.

Workloads

For this study, a particle advection workload has four factors:

* Number of seeds: the number of particles placed in the vol-
ume. For this study, we considered five amounts: 100, 1000,
10,000, 100,000, and 1,000,000.

* Duration: the number of advection steps performed for
each particle. For this study, we considered three amounts:
100, 1000, and 10000.

* Seeding volume: the size of the sub-volume where seeds
are placed. For this study, we considered three seeding vol-
umes: Small (i.e., all seeds are placed in a small region near
each other), Medium, and Large (i.e., seeds are placed ran-
domly throughout the entirety of the data set). This factor
is considered since small seeding volumes can have better
cache coherency, especially in combination with short dura-
tions.

* Algorithm: how particle trajectories will be used. For this
study, we considered two algorithms: particle advection and
streamlines. Particle advection refers to simply advecting
the particles to find their final position, which is useful for
Finite Time Lyaponov Exponents (FTLE) and some other
advanced analyses. The streamline algorithm stores the re-
sulting position of each advection step. These two algo-
rithms were chosen because they demonstrate differences in
the load they place on the memory system.

Hardware Usage

GPU Transfer Mode: This factor considers the difference in
performance when data needs to be transferred to/from the GPU
(“with transfer”), as opposed to when data is already in the GPU’s
memory (“without transfer””). We ran experiments of both types
in our study, in the following way:

* With Transfer: time to transfer the vector field data to the
GPU, the time to perform the algorithm (streamlines or par-
ticle advection), and the time to transfer the data back. Note
that the amount of data transferred back is different based
on algorithm: proportional to the number of seeds for parti-
cle advection and proportional to the number of steps (seeds
times duration) for streamlines.

* Without Transfer: time to carry out the algorithm (stream-
lines or particle advection). In this scenario, the vector field
data is already on the GPU, and the results are not trans-
ferred off the GPU.

Devices: Our experiments were run on four different machines
which provided access to four different CPUs and four genera-
tions of Nvidia GPUs. Table 1 describes these configurations for
these machines. Alaska, Voltar, and Saturn (CPUs and GPUs 1,
2, and 4 respectively) are hosted at the University of Oregon, and
Summit (CPU and GPU 3) is hosted at the Oak Ridge National
Laboratory.

Results
This section is organized around our four research questions.

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

Table 1: The list of CPUs an GPUs that were used for the experi-
ments in the paper.

CPUs GPUs

GPU1: Nvidia Tesla K40C
w/ 12 GB memory and
double precision
performance of 1.68
TFLOPS.

GPU2: Nvidia Tesla P100
w/ 16 GB memory and a
double precision
performance of 4.7
TFLOPS.

GPU3: Nvidia Tesla V100
w/ 16 GB memory and a
double precision
performance of 7 TFLOPS.

CPU1: 2 x Intel Xeon
E5-1650 w/ 12 cores, 3.8
GHz, and 32 GB memory.

CPU2: 2 x Intel Xeon
6226R w/ 32 cores, 3.9
GHz, and 256 GB memory.

CPU3: 2 x IBM Power9 w/
32 cores, 3.8 GHz, and 512
GB memory.

GPU4: Nvidia Tesla A100
w/ 80 GB memory and a
double precision
performance of 9.7
TFLOPS.

CPUA4: 4 x Intel Xeon
8367HC w/ 104 cores, 4.2
GHz, and 376 GB memory.

RQ1: How Much Speed-up Will a GPU Provide
Over a Serial CPU Implementation?

Table 2: The 270 configurations used to explore RQ1. 240 of
these configurations were on a GPU and 30 served as baseline
experiments on a serial CPU. However, 24 GPU experiments
were unable to finish as the required memory exceeded the device
memory; these experiments all involved streamlines with many
advection steps.

Parameter | Value Total
Data Sets | Noise 1
Seed Volume | Large 1
Seeds | All 5
Duration | All 3
Algorithm | Particle Advection, 2
Streamlines
Hardware | CPUs (Serial), 9
GPUs (w/o Xfer, w/ Xfer)

Table 2 shows the parameters for this phase’s experiments
and Figure 1 shows the results for these experiments. This plot
shows a wide range of outcomes — for some experiments a GPU
can be over 100X faster than a serial CPU while other experiments
show a serial CPU to be over 50X faster than a GPU. Across all
experiments, however, the average GPU speed-up is 6.14X com-
pared to a serial CPU, with the following breakdown into ranges:
| GPU Speed-up | <1X 1-4X 4-16X 16-64X >64X |

| % oftests | 20% 18% 28% 20% 14% |

The following subsections analyze these results with respect
to number of steps, GPU architecture, algorithm, and memory
transfer mode.

179-3

Particles # Steps

100 e 100
1000 A 1000

28 10000 ¢ 10000 28
100000
27 1000000 27
26 26
2 2
2 2
23 23
22 22
21 21
20 —_— 20 —_——
21 21
22 22
23 23
2 2
2 2
26 26
2 2
GPUL GPLz GPUS GPUS GPUL GPLz GPUS GPUS

Advection w/ Transfer Advection w/o Transfer

GPUL GPU2 GPU3 GPU4 GPUL GPU2 GPU3 GPU4
Streamlines w/ Transfer Streamlines w/o Transfer

Figure 1: A chart showing GPU speed-up compared to a serial CPU. For each of the four figures, the X-axis represents the GPU
generation, older to newer from left to right. The colors represent the number of particles in the workload and the glyphs represent the

duration of the workload.

Effect from Number of Advection Steps

This section considers the effects from the number of advec-
tion steps, i.e., the combination of the number of particles and the
duration of each.

Number of particles is a dominant factor in speed-up. This is
an expected finding — parallelization occurs over particles, and
having ten thousand particles or more allows all threads to be en-
gaged. Focusing on the portion of Figure 1 devoted to advec-
tion without transfer, the speed-ups for ten thousand particles are
nearly identical to those with one million particles. For the work-
loads with one million particles, the speed-ups are as low as 8X
(on GPU1) and as high as 160X (on GPU4). Further, the work-
loads with ten thousand and one hundred thousand particles also
show strong speed-ups. Looking at the other configurations in
Figure 1, some ten thousand particle workloads are just as fast as
million particle comparators. For others, the speed-up is less, but
still significant. For example, for “streamlines without transfer”
on GPU4, the speed-up with ten thousand particles is about 70X,
while for one million particles it is over 120X. Across all con-
figurations, the workloads with one hundred particles fare much
worse, with speed-ups topping off at 2X, and many actually run-
ning slower on the GPUs. The workloads with one thousand par-
ticles perform better, with some seeing speed-ups of 8X, although
some of these workloads are still slower on GPUs compared to a
serial CPU.

Duration affects speed-up less. For the workloads with
ten thousand particles or more, the expected speed-up does not
change much as duration varies. For workloads with fewer parti-
cles, however, duration is a more significant factor. For example,
for the “advection with transfer” case with one hundred particles,
durations of 100 steps are 30X faster on a CPU while durations
of 10000 steps are merely 4X faster on the CPU. In all, the effect
of duration is only significant for workloads where GPUs provide
little-to-no value.

Effect of GPU Architecture

Figure 1 shows the expected result that newer GPUs are able
to offer better performance. For the workloads with the most ad-
vection work, each newer generation of GPU provided an im-

1794

Algorithm Particles

Advection small
28 Streamlines large

27
26
25
24
23 ..,:":.:.' of

GPU1

22

21
20 ,":‘:“
2-1 B

22 RS

22 21 20 21 22 23 24 25 26 27 28
GPU4

Figure 2: Scatter plot of speed-ups achieved for GPU4 (Ampere)
versus GPU1 (Kepler) for workloads with no data transfer. If a
given workload had a 30X speed-up on GPU4 and a 6X speed-up
on GPUI, then that workload would be plotted at (30, 6) in this
figure. The dotted lines show relationships between GPU1 and
GPU4: black shows where performance between the two GPUs
is equal, green shows where GPU4 is 4 x faster than GPU1, and
blue shows where GPU4 is 16x faster than GPU1. Finally, the
three dotted circles indicate three clusters of similarly performing
experiments.

provement in performance, especially in cases where memory
transfers were not considered. The newest GPU (GPU4) provided
a maximum speed-up of 160X in case of particle advection and
130X in case of streamlines. The oldest GPU (GPU1) provided a
maximum speed-up of 16X in all cases.

Figure 2 plots the speed-ups for these extreme GPUs in our
study: Ampere (GPU4) versus Kepler (GPU1). This plot shows
three distinct clusters:

1. The first cluster contains workloads where neither GPU1 nor
GPU4 offered any improvements over serial CPU. These

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

workloads generally have a small amount of work to do.
That said, GPU4 still performs 4 x better compared to GPU1
for these workloads.

2. The second cluster contains workloads where both GPU1
and GPU4 offer significant speed-ups over serial CPU. Once
again, GPU4 is only 2 —4 X faster than GPUI.

3. The third cluster contains workloads with a bigger disparity
between GPU4 and GPU1 (much larger than 4X): "128X
speed-ups for GPU4 versus only "8X for GPU1. This is
where the majority of our workloads fall, and thus reflects
the most common outcome within our corpus of tests. The
best speed-ups were achieved by the workloads that only
advected particles and did not generate streamlines, which
leads into the next section on algorithm effects.

These clusters are revisited in the section discussing RQ4
which looks at hardware trends.

Effect of Algorithm

In the context of our performance study, there are two main
effects due to algorithm. First, the streamline algorithm stores
each particle position (12 bytes of position data for every advec-
tion step), which can stress the memory system. Second, the out-
put of the streamline algorithm is much larger than particle advec-
tion, and so the configurations where data is transferred back to
the CPU can potentially face bottlenecks. Figure 1 illustrates the
impact of each effect. First, the second and fourth sub-figures of
Figure 1 show the experiment results without transfer, i.e., they
show the differences solely due to storing more particle posi-
tions. The average speed-up for streamlines (fourth sub-figure)
is 10.45X, while the average speed-up for advection (second sub-
figure) is 12.28X, i.e., streamlines’ extra memory stressors cause
a 17% slowdown. (Note that some streamline experiments could
not complete due to exceeding memory, and the corresponding
advection experiments were removed for this analysis.) Next, the
first and third sub-figures of Figure 1 inform the effects of transfer.
For the experiments involving transfer, the average speed-up for
streamlines (third sub-figure) is 1.92X, while the average speed-
up for advection (first sub-figure) is 2.23X. The gap between the
two algorithms has narrowed from 17% to 16%, i.e., the fixed
cost of transferring data set causes them both equal slowdown
and the extra memory stressors for streamlines becomes slightly
less pronounced. Finally, the averages presented in this analysis
are geometric means, which help with interpreting behaviors that
range between large speed-ups and slowdowns. Repeating the
analysis with arithmetic means gives 13.25X, 37.78X, 9.88X and
27.32X for the four sub-figures. While these numbers are skewed
higher by the experiments with many advection steps, the same
trends hold: “without transfer” has a 38% slowdown for stream-
line memory stressors, while adding transfer times narrows the
slowdown to 34%.

Finally, Figure 3 shows a scatter plot considering speed-ups
for the two algorithms on GPUs compared to a serial CPU. This
figure has several findings. First, streamlines consistently achieve
speed-ups within a factor of two of advection. Second, the ra-
tio between streamline speed-up and advection speed-up appears
to get larger as the overall speed-up improves. In other words,
in the cases where the speed-up is great (i.e., many advection

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

Algorithm # Particles

° transfer @ small

W/
2 WIHERSRF

o large
N
1]
o ~
80
gao-
=0
n >
~
c >
=R
gad
3L Devices
< GPUL
GPU2
GPU3
0 GPU4
o
0 50 100 150 200

Particle Advection (speedup vs. serial)

Figure 3: A scatter plot showing the differences between the par-
ticle advection and streamline algorithms. The X-axis represents
the speed-up achieved by a certain workload for the particle ad-
vection workload, and the Y-axis represents how much faster the
particle advection algorithm executed compared to the streamline
algorithm. A glyph at (X, Y) indicates the particle advection al-
gorithm running on a GPU achieved a speed-up of X times, and
that its speed-up was Y times better than the streamline algorithm
with the similar workload. The glyph color indicates the GPU de-
vice type, the glyph shape indicates whether or not data transfer
was involved, and the glyph size indicates the number of particles
(which informs how many GPU cores could be engaged).

steps), streamlines fall off the pace somewhat, due to stresses on
the memory system. Third, the GPUs perform differently. In par-
ticular, GPU2 has worse streamline performance than the other
hardware architectures.

Effect of GPU Transfer Mode

Figure 4 shows the effect of GPU transfer mode, i.e., if the
data starts on the CPU, then how much effect is there to transfer
the data to the GPU and back? In the “with transfer” experiments,
the vector field was always transferred to the GPU, as were the
starting seed positions. The data retrieved differed based on al-
gorithm: either every position of every step (streamlines) or just
final particle position (advection). This overhead was significant,
as no experiment that involved transfers went faster than 0.18s. As
a result, the overhead dominates the left portion of both figures:
when the runtime “without transfer” is fast, then the slowdown is
proportional to the data transfer time. For example, for stream-
lines on GPU4 with 10000 particles going 100 steps, the time
without transfer is 0.007s and with transfer is 0.372s for a transfer
slowdown of 50X. Both plots show an inflection point around ex-
ecution times of 0.5s, when the data transfer overheads are more
amortized. That said, relatively few streamline experiments are
able to benefit from this amortization, since the streamline exper-
iments that ran large numbers of advection steps to exceed 0.5s of-
ten ran out of memory. In other words, streamlines with memory
transfer was almost always a poor idea in our set of experiments
— with little work, the transfers dominated while with signifi-
cant work, the experiment could not complete. Advection, on the
other hand, showed significant benefit for the highest workloads.
Summarizing, the main findings from this analysis are: (1) small
workloads perform poorly due to data transfer overhead, (2) few
workloads perform well with the streamline algorithm due to data

1795

transfer overhead, and (3) large workloads can perform well with
the advection algorithm.

Particles Devices

e small GPU1

4 GPU2
large

® 9 GPU3

GPU4

28
27
26
25
24
23
22

Slowdown w/ Memory Transfer

21

20

2-3

@ PN @ v ¥
NN NN NN
Execution Time for Experiment(s)
28 Advection

27

¥ 5 O 4 N ®m F b © ~ 0 O
N NNNNNNNNNN
n

26
25
24
23
22

Slowdown w/ Memory Transfer

21

20

el RIAIRAIRR
Execution Time for Experiment(s)
Streamlines
Figure 4: Plotting the slowdown for using memory transfer as a
function of execution time. The figure is split into two, with ad-
vection experiments in the top figure and streamline experiments
in the bottom figure. A glyph at (X, Y) means that a given work-
load took X seconds to execute without transfer and that work-
load was Y times slower when running with transfer. There are
no glyphs for streamlines with execution times greater than four
seconds, as those experiments exceeded GPU memory.

Takeaways for GPUs

Table 3 synthesizes the findings from this section. Each of
the four factors (# of advection steps, architecture, transfer mode,
algorithm) significantly affects performance:

*GPUs were not useful for many workloads with small num-
bers of steps, although the threshold for when they became
useful varied based on GPU transfer mode.

*For workloads doing the particle advection algorithm and
many advection steps, the GPU transfer mode becomes less
relevant.

*The streamline algorithm is a little slower than the particle
advection algorithm in all cases, but the magnitude of effect
is not as big as the other factors. That said, the streamline
algorithm is not viable for very large numbers of steps.

*The improvements in hardware architecture (GPUI to
GPU4) make an impact (4X-20X) in almost all cases where
a GPU can outperform a serial CPU. The most notable cases
where the change in hardware architecture does not make
an impact is with the 107 workloads with data transfer. In

1796

Table 3: The average speed-up, arranged by workload size, for
GPU1 and GPU4 over serial execution for both algorithms and
transfer modes. Each value represents the average of all work-
loads that used the specified number of steps. Note the 10% work-
load consists of 1M particles for 1K steps and 100K particles for
10K steps, while the 10'0 workload consists of only 1M particles
with 10K steps. The shorter duration (1K) workload ran faster, re-
sulting some apparent slowdowns between the 10° and 10'° cases.
In actuality, the 10K experiments did increase speed-up when go-
ing from 100K particles to 1M particles. Any time the CPU is
faster is denoted < 1 and any time an experiment could not com-
plete is denoted with an X.

of Advection Streamlines
Steps w/ X w/o X w/ X w/o X
Gl G4 |Gl G4 |Gl G4 |Gl G4
<100 <1 <1]<1 <1]<1 <1]<1 <1

100]<1 <12 5 |<1 <1|2 5

100)<1 <1 3 14 |<1 <1| 2 10

0’| 6 8|8 60| 5 7|8 39
10811 61 |12 138 9 38| 11 100
10°] 11 139|111 166 X X | X X
1010 8 155| 8 160 X X | X X

these cases, the data transfer time is large enough that the
increased computational power does not significantly affect
speed-up. Larger workloads do benefit from the increased
computational power from GPU4, while smaller workloads
are affected by transfer times to the point that a serial CPU
is preferable.

RQ2: How Much Speed-up Will a Multi-core CPU
Provide Over a Serial CPU Implementation?

Table 4: The 150 configurations used to explore RQ2. 120 of
these configurations were on multi-core CPUs and 30 served as
baseline experiments on a serial CPU. The largest serial CPU
streamline experiment was unable to complete, so results from
that experiment and its four multi-core counterparts are not pre-
sented in the analysis.

Algorithm | Particle Advection, Streamlines
Hardware | CPUs (Serial, Multi)

Parameter | Value Total
Data Sets | Noise 1
Seed Volume | Large 1
Seeds | All 5
Duration | All 3
2
5

Table 4 shows the parameters for the experiments for this
phase and Figure 5 plots the speed-up for multi-core CPUs using
both the advection and streamlines algorithms. Figure 5 shows the
expected result that newer CPUs with more cores perform better
than older CPUs with fewer cores. Compared to GPUs experi-
ments, this plot shows a relatively narrower range of outcomes —
multi-core CPUs perform better than serial in all but two cases.
These outcomes spanned a spectrum from 6X to 64X. Across all
experiments, the average CPU speed-up is 13.91X compared to a
serial CPU, with a breakdown into ranges as follows:

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

Particles # Steps
100 e 100

1000 A 1000
o7 ~ 10000 4 10000 .

100000

1000000
26 26
25 25
24 24
23 23
22 22
21 21
20 20

CPUL CPU2 CPU3 CPU4 CPUL CPU2 CPU3 CPU4
Advection Streamlines

Figure 5: A chart showing CPU speed-up compared to a serial
CPU. For both subfigures, the X-axis represents the CPU gener-
ation, older to newer from left to right. The colors represent the
number of particles in the workload and the glyphs represent the
duration of the workload.

|CPU Speed-up|[<1X 1-4X 4-16X 16-64X >64X]

| % of tests[0% 1% 41% 50% 8% ‘

In all cases, the multi-core CPUs fall short of their max-
imum possible speed-up, e.g., CPU4 (104-core Xeon) achieves
~70X speed-ups instead of 104X speed-ups. That said, this level
of speed-up is consistent with previous multi-core scaling studies.

Focusing on the results from the advection algorithm, all
CPUs demonstrated the same behavior. CPU1 is able to consis-
tently provide similar speed-up of “8X for all workloads, while
the other CPUs demonstrate a spread in terms of their speed-ups
based on the number of particles in the experiments. However,
the spread between the best and worse speed-up using any CPU
is smaller that the corresponding GPU experiments. The high-
est spread for CPUs is for CPU4 with a spread of "4.5X between
the best and the worse experiment, while the spread for the corre-
sponding GPU, GPU4, is "140X.

In terms of the parallel performance efficiencies, CPU2 and
CPU3 (> 75%) performed better than CPU4 and CPU1 (66%).
For all CPU2 and CPU3 experiments, speed-up increased for
both, i.e., speed-up increased when increasing the number of par-
ticles or increasing their duration. While CPUI is able to offer
its best performance even for the workloads of lower magnitude
due to minimal overhead of using threads, the limited number of
threads and slower memory prevents it from performing better for
workloads with a greater magnitude. On the other hand, CPU4,
which offers a lot of parallelism, suffers from an initialization cost
for smaller workloads (thread launch) and poor memory accesses
(across NUMA regions) for the larger ones.

The streamline results from Figure 5 shows the effects of
memory accesses from storing each advection step. The 32-core
CPU2 and CPU3 are both slowed by "2X. The 104-core CPU4
is affected more dramatically, as performance starts dropping as
the number of advection steps increases, sometimes falling be-
low the 32-core CPUs. In all, memory effects clearly denigrate
the streamline algorithm’s performance. Finally, Figure 6 shows
a comparison between the 12-core CPU1 and the 104-core CPU4
which emphasizes the varying behavior across these architectures.
It shows that the CPU1 has very consistent performance, while
CPU4 spans the spectrum from doing “12X faster to performing

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

Algorithm Particles

Advection small
Streamlines large

CPU1
N
@

20 21 22 23 24 25 26 27
CPU4

Figure 6: This scatter plot compares the performance of a 104-
core Xeon with a 12-core Xeon. If a workload was 64X faster
than a reference serial implementation on the 104-core Xeon and
6X faster on the 12-core Xeon, then a glyph would be placed at
(64, 6).

~70X faster. CPU4 is able to offer better scalability as the work-
load increases as each core gets substantial work relative to over-
head of assigning work. Eventually, for streamlines, the perfor-
mance is capped at at 40X, and for particle advection, the speed-
ups can exceed 64X.

Takeaways for CPUs

Table 5: The average speed-up by CPU1 and CPU4 over serial ex-
ecution for the two algorithms for different workload sizes. This
table can be used to estimate the speed-up that can be expected
for executing a certain workload. Any time an experiment could
not complete is denoted with an X.

Advection | Streamlines
Workload |[CPU1 CPU4|CPU1 CPU4
104 7 21 6 30
105 7 51 6 16
100 7 37 5 24
10| 8 64 7 38
108 8 70 7 38
10°| 8 72 7 35
1010] 8 78 X X

Table 5 shows the average speed-ups with respect to work-
load and architecture. For both algorithms, multi-core CPUs are
able to achieve the best performance once the workload has a
total number steps > 107. CPUs with a lower number of total
cores (e.g., CPU1) are able to achieve their best performance even
for workloads of lower magnitudes. CPUs with more cores (e.g.,
CPU4) show a steady increase in speed-ups with increases in the
workloads.

RQ3: How Does GPU Performance Compare to
Multi-Core CPU Performance?

Table 6 shows the parameters for the experiments for this
phase and Figure 7 compares multi-core CPU performance with
GPU performance for each of the four machines. Of note, the
computational power of the CPU and GPU appears to be some-
what balanced across the machines, with the 12-core Xeon paired

1797

Device Memory Particles

sesrins 8 WRURRr g gl

22 22 22 22
21 21 21 21
o 20 — 20 20 20
5 21 2-1 2-1 2-1
g 22 2-2 2-2 22
S 23 2-3 2-3 23
2 24 2-4 2-4 24
2 925 25 25 25
226 2-6 2-6 2-6
g 27 2-7 2-7 27
a 28 28 28 28
N 9.9 29 29 29
2-10 2-10 2-10 2-10
2-11 2-11 2-11 2-11

104 105 106 107 108 1091010 104 105106 107 108 1091010 104 105106 107 108 1091010 104 105106 107 108 1091010

Advection Steps # Advection Steps # Advection Steps # Advection Steps
Kepler vs. Xeon (12) [GPU1 vs. CPU1] Pascal vs. Xeon (32) [GPU2 vs. CPU2] Volta vs. Power9 (32) [GPU3 vs. CPU3] Ampere vs. Xeon (104) [GPU4 vs. CPU4]

Figure 7: Comparison of GPU speed-ups for particle advection over their multi-core CPU counterparts with log scale in the Y-axis. This
enables the identification of cases where the GPUs perform worse or better than a multi-core CPU. The horizontal line at ¥ = 1 is where
the GPU performance equals that of a multi-core CPU. All data points below the line indicate slower GPU performance for an experiment.

Algorithm GPU Mode

Advection @ w/o Xfer
Streamlines A w/ Xfer

28 28 28 28
27 27 27 27
26 26 26 26
25 25 25 25
24 24 24 24
23 23 <23 <23
22 F22 22 22
021 (_’)21 (_’)21 (_’)21
20 20 20 20
21 21 21 21
22 22 22 22
23 23 23 23
2-4 2-4 2-4 2-4
2-42-32-22-12021222324252627 2-42-32-22-12021222324252627 2-42-32-22-12021222324252627 2-42-32-22-12021222324252627
CPU1 CPU4 CPU1 CPU4

27 27
26 26
25 25w
24 24
23 ; 23
5‘22 22
a2! 321
020 020

PU4
’\"'\.)’\"’\IJ'\"’\"'\.GNNNNNNNNN
LohbbhbhorneEOG u®

PU4
’\"'\.)’\"’\IJ'\"’\"'\.GNNNNNNNNN
LohbbhborneEO G u®

2-42-32-22-12021222324252627 2-42-32-22-12021222324252627 2-42-32-22-12021222324252627 2-42-32-22-12021222324252627

CPU1 CPU4 CPU1 CPU4
Figure 8: A small multiples chart comparing speed-ups for GPUs and multi-core CPUs compared to a serial CPU. Each figure contains a
scatter plot with CPU results along the X-axis and GPU results along the Y-axis. Each point in the scatter plot corresponds to a workload
when comparing to serial CPU times; if a workload was 30X faster on a multi-core CPU and 15X faster on a GPU, then a glyph would
be placed at (30, 15). The overall layout of the small multiples chart is 4x2. The two rows correspond to data transfer, with top row
plotting without data transfer and the bottom row plotting with data transfer. The four columns go through the combinations of best and
worst CPU and GPU. The worst GPU in our study, GPU1 (Kepler), is in the left two columns, while the best GPU in our study, GPU4
(Ampere), is in the right two columns. The worst CPU in our study, CPU1 (Xeon 12 cores), is in the first and third columns, while the
best CPU in our study, CPU4 (Xeon 104 cores), is in the second and fourth columns.

IS&T Infernational Symposium on Electronic Imaging 2025
179-8 High Performance Computing for Imaging 2025

Table 6: The 360 configurations used to explore RQ3. 120 ex-
periments were run on multi-core CPUs, 120 experiments were
run on GPUs and did not involve data transfers, and the final 120
experiments were run on GPUs and involved data transfers.

Parameter | Value Total
Data Sets|Noise 1
Seed Volume |Large 1
Seeds | All 5
Duration [All 3
Algorithm | Particle Advection, 2
Streamlines
Hardware | CPUs (Multi), 12
GPUs (w/o Xfer, w/ Xfer)

with the Kepler GPU (CPU1 and GPU1), the 32-core Xeon paired
with the Pascal GPU (CPU2 and GPU2), the 32-core Power9
paired with the Volta GPU (CPU3 and GPU3), and the 104-core
Xeon paired with the Ampere GPU (CPU4 and GPU4). In terms
of results, an overwhelming trend is the imbalance in the range of
outcomes — some multi-core CPU experiments are as much as
1000X faster than their GPU counterparts, although GPU exper-
iments are never more than 4X faster than their multi-core CPU
counterparts. For experiments without data transfer, the key fac-
tor in whether the GPU or CPU will be faster is the number of
particles advected. For the most part, if 10,000 or more particles
are advected, then the GPU is faster (since all GPU cores can be
engaged), and if 1,000 or fewer particles are advected, then the
CPU is faster (since the GPU cores cannot all be engaged).

Experiments involving data transfer and streamlines are al-
most always faster on the CPU. The only exceptions involve
cases with 100M advection steps, and even then speed-ups were
only modest (< 2x). One reason is that GPUs can only outper-
form multi-core CPUs when there is significant work, but, for the
streamline algorithm, the amount of work needed to offset transfer
costs is so great that it exceeds GPU memory.

Finally, Figure 8 shows results when comparing the extreme
of each architecture: best CPU (CPU4) vs worst GPU (GPU1),
best CPU (CPU4) vs best GPU (GPU4), worst CPU (CPU1)
vs worst GPU (GPU1), and worst CPU (CPU1) vs best GPU
(GPU4). CPU4 beat the worst GPU1, and often by significant
amounts, in all but a few configurations. CPU4 was also able
to beat the GPU4 in most configurations. When considering ex-
periments with data transfer, CPU4 is able to either beat or keep
up with GPU4 in almost all cases, with the only exception being
those with large workloads. CPU1 beat GPU1 only for smaller
workloads. When comparing the CPU1 and the GPU4, GPU4
was substantially faster for almost all of the cases, losing only in
the cases that involve small workloads.

Takeaways for GPUs and CPUs

Table 7 presents the average speed-up by using GPUs over
multi-core CPUs. A value greater than 1 means that the GPU
performed as many times better than their comparator CPU. The
table informs when GPUs will be better than CPUs for a partic-
ular workload. In general, for workloads where the total number
of steps is less than 108, GPUs should not be used as they per-
form worse than the comparator CPUs. The range where GPUs
are helpful for generating streamlines is very narrow, as they need

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

Table 7: A table informing whether to use a GPU or a multi-core
CPU for a certain workload. Each table entry corresponds to the
average speed-up with running on a GPU as opposed to a multi-
core CPU. This table displays two machines: GPU1 compared
to CPUI (denoted M1, for “machine 1) and GPU4 compared to
CPU4 (M4). Any time the CPU is faster is denoted < 1 and any
time an experiment could not complete is denoted with an X.

Workload

Advection— Streamlines
w/ X w/o X w/ X w/o X
M1 M4 M1 M4|M1 M4 M1 M4
<107]<1 <1 <1 <1<l <1 <1 <1
107]<1 1.0 <1 <1|<1 11 <1 1.02
108(1.4 15 <1 1.9/1.3 1.5 <1 258
10°/114 14 19 22| X X X X
1019110 1.0 1.9 20| X X X X

significant amount of work to offset the costs of memory opera-
tions but are not able to support workloads which have memory
requirements higher than the available GPU memory.

RQ4: What Are the Trends in Performance by Us-
ing Newer Hardware?

The three clusters identified in Figure 2 of the GPU analysis
for RQ1 highlight the hardware trends over the past decade and
offer insights for the future.

Cluster 1 includes workloads with minimal computational
demands, where GPUs offer limited benefit. Although per-
formance improvements between GPU1 and GPU4 cause these
workloads to cross the threshold of outperforming a serial CPU
when data transfer is not involved, it is unlikely that future GPUs
will become significantly more effective for such small-scale
tasks.

Cluster 2 includes workloads with modest speed-ups com-
pared to serial CPUs. GPU1 offered 3X to 8X speed-ups for these
workloads and GPU4 improved these to 8X to 20X However,
given the advancements in multi-core CPUs, GPUs may not be
the optimal choice for these workloads. Visualization program-
mers deciding between multi-core CPU and GPU implementa-
tions for these tasks would likely be better served by a multi-core
CPU approach.

Cluster 3 includes workloads where recent GPU improve-
ments have had the greatest impact. While GPU1 offered speed-
ups of 8X to 16X, GPU4 pushed these gains to 64X to 128X.
These workloads generally outperform their multi-core CPU
counterparts, and with continued advancements in GPU technol-
ogy (more cores, better memory infrastructure), further improve-
ments are anticipated.

Finally, Figure 9 presents the scaling behaviors of all the
GPUs and CPUs considered in our study. It combines the clusters
identified in Figure 2 and uses it to enumerate the experiments
in Figures 1 and 5. Additionally, Figure 9 introduces a fourth
cluster (Cluster 4), representing streamline experiments that could
not be completed on the GPUs due to limited memory capacity.
From a workload perspective, each new generation of GPUs and
CPUs showed significant speed-up improvements for the largest
workloads (Cluster 3). This is primarily because newer CPUs and
GPUs feature more cores, and each core performs substantially
better than its predecessors. Workloads that fully utilize the cores

1799

(a) GPU Scaling Cluster
1

2
200 200 3
4

50 50

0 — 0 —
GPUL GPU2 GPU3 GPU4 GPUl GPU2 GPU3 GPU4
Advection w/o Transfer Streamlines w/o Transfer

(b) CPU Scaling

100 100

50 50

Advection Streamlines

Figure 9: Figure plotting the speed-ups achieved for a workload
by different generation of GPUs and CPUs for the two algorithms.
(a) shows GPU scaling similar to Figure 1, and (b) shows CPU
scaling data similar to Figure 5. Both of these figures use a linear
Y axis unlike the reference figures which use a log-scaled Y axis.
The lines are colored by the cluster they are categorized in Figure
2. Cluster 1 represents the poorest performing cluster and Cluster
3 represents the best performing cluster. Note that the additional
Cluster 4 represents experiments that successfully completed on
CPUs but failed on GPUs due to limited memory. This cluster is
not depicted in Figure 2.

of the latest hardware benefit the most from these advancements.
In contrast, for smaller workloads (Clusters 1 and 2), newer GPUs
did not provide significant performance gains over previous gen-
erations. However, newer CPUs managed to offer modest speed-
ups for these smaller workloads.

From an algorithmic perspective, newer GPUs exhibit con-
sistent scaling behavior for both particle advection and streamline
workloads. Specifically, workloads in Cluster 3 scale very well,
while those in Clusters 1 and 2 do not. This trend does not hold
for CPUs. While newer CPUs scale similarly for particle advec-
tion, they show much smaller gains for streamlines, sometimes
performing worse than previous generations.

Nevertheless, there remains value in using CPUs for very
large streamline workloads (total steps > 10%). Due to high
memory requirements, GPUs are unsuitable for these tasks, while
CPUs can still offer decent speed-ups. These large workload cases
are captured in Cluster 4 of Figure 9.

Hence, the findings can be summarized as:

» Newer generations of GPUs offer better scaling for both par-
ticle advection and streamlines, but only for workloads that
can fully utilize all GPU cores.

» Newer generations of CPUs demonstrate superior scaling

179-10

for particle advection but not for streamlines. However,
they are still capable of handling very large workloads ef-
fectively.

Conclusion

The four research goals of this paper were to understand the
benefits of using the parallelism of GPUs and multi-core CPUs
for particle advection. In RQ1, our goals were to determine how
much speed-up a GPU provided over using a serial CPU, and
the differences between different GPU architectures. Our study
shows that a GPU can provide speed-ups, but only for certain
types of workloads. Over all our tests, GPU speed-ups were rather
modest (2X-5X, depending on architecture). The maximal speed-
ups (6X-25X, depending on architecture) were achieved for the
larger workflows consisting of more than 1M steps. Because of
memory costs on the GPU, the type of algorithm used has a large
impact. The expected speed-ups across different architectures for
the streamline algorithm ranges from 3-9X, while the particle ad-
vection algorithm ranges from 4-27X. The takeaway message is
that a GPU implementation only makes sense when used on large
enough workloads to overcome the costs associated with mem-
ory usage and data transfers. Finally, RQ1 also explored the dif-
ference between GPU architectures, and, on the whole, the best
GPU in our study was “4X better than the worst. RQ2 inves-
tigated how much speed-up could be achieved using multi-core
CPUs over using a serial CPU. We found that multi-core paral-
lelism was always useful, and significantly useful if the number
of particles was 1000 or more. We also found that the speed-
up can vary based on the algorithm (streamlines strain memory
more) and CPU architecture. As far as comparing CPU architec-
tures, the 104-core Xeon ran fastest for all experiments with more
than 100 particles, but the amount of improvement varied. RQ3
investigated if there were clear choices to be made for the com-
munity in deciding what type of parallelism to deploy for particle
advection tools. For this question, the overall takeaway is that
multi-core CPUs tend to be more efficient than GPUs. The costs
for data transfer and memory usage are so high that it takes signif-
icant amounts of work to overcome. Further, because of the way
the algorithms parallelize the work, only large number of parti-
cles can engage all of the cores on the GPU. On the other hand,
CPUs with a large number of cores are very efficient at advect-
ing particles. Finally, RQ4 presented the trends of performance
improvement afforded by the advancements in both, GPUs and
multi-core CPUs. The findings suggest that the both the architec-
tures are able to benefit form the increasing concurrency of the
execution hardware. The difference between the performance of
the worse and the best GPUs and CPUs for the largest workloads
was “10X.

While these experiments were run on a specific set of CPUs
and GPUs, creating a potential concern about applicability as
CPU and GPU technology evolve, we think these particular
choices are helpful in informing our research questions. Most of
the GPUs from this study are similarly-powered to desktop “gam-
ing” GPUs that we feel will resonate with much of the audience
for this paper deciding whether to migrate their advection code to
the GPU. GPU4 is different, as it is similar to the “beefy” GPUs
being used on modern supercomputers. Further, the nature of
the findings serve to “future-proof” our study. Small workloads,
which are more common in the visualization space, do not pro-

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

vide significant benefits on either modest GPUs or beefy GPUs.
For large workloads, GPUs often win, and those winnings appear
that they will grow bigger and bigger as GPUs evolve (RQ4).

Finally, our findings are somewhat different than the those
by Pugmire et al. [32] who did a smaller study in 2018 comparing
GPU and multi-core CPU performance again using VTK-m. We
are using different architectures so direct comparison is difficult.
That said, their comparisons on “Summit Dev”” between Pascal
and 20 cores of IBM Power-8 showed more significant speed-ups
on the GPU than our comparisons on Summit between a Volta
and 32 cores of IBM Power-9 performance. While none of our
experiments match exactly, the most comparable involve our runs
of one million particles with one thousand steps versus their runs
of ten million particles with 100 steps. They achieved 1.4s with
a P100, while we achieved 2.39s. On the CPU side, our run was
4.8s, while their run was 19.9s. The GPU slowndown may be at-
tributable to many factors, but we point to changes in the last four
years of the VTK-m source code. During that time, the code has
been extended from “lean and mean” to be functional for a vari-
ety of use cases (FTLE, different grid types, electomagnetic fields,
etc.) and this has led to more branching, etc., that can slow down
GPUs. As aresult, our findings should be interpreted as expected
performance for a practical, richly-featured implementation.

In summary, we feel this paper provides information for the
visualization community to guide decisions for tool development
and deployment for particle advection. It will also help set ex-
pectations for algorithm performance on different hardware. This
will help focus the efforts of developers to provide efficient solu-
tions for the types of problems they plan to support and hardware
that is available. While programming models for GPUs are im-
proving, they are still challenging devices for development and
debugging. Realistic expections for the performance on GPUs
can be balanced against the development and maintenance cost
for the anticipated uses cases of the software. For visualizations
tools with large user bases, and use cases that are varied, this work
provides practical information for the development of heuristics
that can be used at run-time to make decisions on which hard-
ware to target. Finally, we feel this work has significant implica-
tions for distributed-memory parallelism and in situ use cases. A
distributed-memory implementation might need to support very
large workloads, but this workload might be spread across a num-
ber of nodes. In such a case, there is globally a lot of work to
do, but locally only modest amounts of work to do. For in situ
processing, there are different options for how algorithms can be
run. Is the simulation data already on the GPU? Are there CPU
cores idle while the simulation runs? Is the GPU idle while simu-
lation does communication, or switches to using the CPU cores?
Is there enough work to warrant a transfer from the CPU to GPU,
or vice versa? The best choice will vary based on the answers
to these questions, and the findings in this paper can help inform
these decisions.

Acknowledgments

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Depart-
ment of Energy Office of Science and the National Nuclear Secu-
rity Administration.

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

References
[1] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones,

W. Killian, A. J. Kunen, O. Pearce, P. Robinson, B. S. Ryu-

jin, and T. R. Scogland. Raja: Portable performance for

large-scale scientific applications. In 2019 IEEE/ACM In-
ternational Workshop on Performance, Portability and Pro-

ductivity in HPC (P3HPC), pp. 71-81. IEEE, 2019.

R. Binyahib, D. Pugmire, and H. Childs. In Situ Particle

Advection Via Parallelizing Over Particles. In Proceed-

ings of the Workshop on In Situ Infrastructures for Enabling

Extreme-Scale Analysis and Visualization (ISAV), pp. 29—

33. Denver, CO, Nov. 2019.

R. Binyahib, D. Pugmire, and H. Childs. HyLiPoD: Paral-

lel Particle Advection Via a Hybrid of Lifeline Scheduling

and Parallelization-Over-Data. In Eurographics Symposium

on Parallel Graphics and Visualization (EGPGV), pp. 1-5.

Zurich, Switzerland, June 2021.

R. Binyahib, D. Pugmire, B. Norris, and H. Childs. A

Lifeline-Based Approach for Work Requesting and Paral-

lel Particle Advection. In IEEE Symposium on Large Data

Analysis and Visualization (LDAV). Vancouver, Canada,

Oct. 2019.

[5] R. Binyahib, D. Pugmire, A. Yenpure, and H. Childs. Paral-
lel Particle Advection Bake-Off for Scientific Visualization
Workloads. In IEEE International Conference on Cluster
Computing (CLUSTER), pp. 381-391. Kobe, Japan, Sept.
2020.

[6] K.Biirger, F. Ferstl, H. Theisel, and R. Westermann. Interac-

tive Streak Surface Visualization on the GPU. IEEE Trans-

actions on Visualization and Computer Graphics, (6):1259—

1266, 2009.

K. Biirger, P. Kondratieva, J. Kruger, and R. Westermann.

Importance-Driven Particle Techniques for Flow Visualiza-

tion. In 2008 IEEE Pacific Visualization Symposium, pp.

71-78. IEEE, 2008.

K. Biirger, J. Schneider, P. Kondratieva, J. H. Kriiger, and

R. Westermann. Interactive Visual Exploration of Unsteady

3D Flows. In EuroVis, pp. 251-258, 2007.

D. Camp, H. Childs, C. Garth, D. Pugmire, and K. 1. Joy.

Parallel stream surface computation for large data sets. In

leee symposium on large data analysis and visualization

(ldav), pp. 39-47. IEEE, 2012.

[10] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy.
Streamline Integration Using MPI-Hybrid Parallelism on a
Large Multicore Architecture. IEEE Transactions on Visual-
ization and Computer Graphics, 17(11):1702-1713, 2010.

[11] D. Camp, H. Krishnan, D. Pugmire, C. Garth, 1. Johnson,
E. W. Bethel, K. I. Joy, and H. Childs. GPU Acceleration
of Particle Advection Workloads in a Parallel, Distributed
Memory Setting. In F. Marton and K. Moreland, eds., Eu-
rographics Symposium on Parallel Graphics and Visualiza-
tion. The Eurographics Association, 2013.

[12] L. Chen and I. Fujishiro. Optimizing parallel performance of
streamline visualization for large distributed flow datasets.
In 2008 IEEE Pacific Visualization Symposium, pp. 87-94.
IEEE, 2008.

[13] H. Childs, S. Biersdorff, D. Poliakoff, D. Camp, and A. D.
Malony. Particle Advection Performance Over Varied Ar-
chitectures and Workloads. In 20714 21st International Con-

2

—

3

—

[4

—_

[7

—

[8

—_—

[9

—

(14]

[15]

(16]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

ference on High Performance Computing (HiPC), pp. 1-10.
IEEE, 2014.

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern,
D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. H. Weber,
et al. Vislt: An End-User Tool for Visualizing and Analyz-
ing Very Large Data. 2012.

H. C. Edwards and C. R. Trott. Kokkos: Enabling Perfor-
mance Portability Across Manycore Architectures. In 2013
Extreme Scaling Workshop (xsw 2013), pp. 18-24. IEEE,
2013.

E. Endeve, C. Y. Cardall, R. D. Budiardja, and A. Mez-
zacappa. Generation of Magnetic Fields by the Station-
ary Accretion Shock Instability. The Astrophysical Journal,
713(2):1219-1243, Apr 2010.

P. Fischer, J. Lottes, D. Pointer, and A. Siegel. Petas-
cale Algorithms for Reactor Hydrodynamics. In Journal of
Physics: Conference Series, vol. 125, p. 012076. IOP Pub-
lishing, 2008.

H. Guo, W. He, S. Seo, H.-W. Shen, E. M. Constantinescu,
C. Liu, and T. Peterka. Extreme-scale stochastic particle
tracing for uncertain unsteady flow visualization and analy-
sis. IEEE transactions on visualization and computer graph-
ics, 25(9):2710-2724, 2018.

B. Hentschel, J. H. Gobbert, M. Klemm, P. Springer,
A. Schnorr, and T. W. Kuhlen. Packet-Oriented Streamline
Tracing on Modern SIMD Architectures. In C. Dachsbacher
and P. Navritil, eds., Eurographics Symposium on Parallel
Graphics and Visualization. The Eurographics Association,
2015.

M. Jiang, B. V. Essen, C. Harrison, and M. B. Gokhale.
Multi-threaded streamline tracing for data-intensive archi-
tectures. In 4th IEEE Symposium on Large Data Analysis
and Visualization, LDAV 2014, Paris, France, November 9-
10, 2014, pp. 11-18. IEEE Computer Society, 2014.

W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross.
Toward a general i/o layer for parallel-visualization applica-
tions. IEEE Computer Graphics and Applications, 31(6):6—
10, 2011.

J. Kriiger, P. Kipfer, P. Konclratieva, and R. Westermann. A
Particle System for Interactive Visualization of 3D Flows.
IEEE Transactions on Visualization and Computer Graph-
ics, 11(6):744-756, 2005.

K. Lu, H.-W. Shen, and T. Peterka. Scalable computation of
stream surfaces on large scale vector fields. In SC’14: Pro-
ceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp.
1008-1019. IEEE, 2014.

K. Moreland, R. Maynard, D. Pugmire, A. Yenpure, A. Va-
canti, M. Larsen, and H. Childs. Minimizing Development
Costs for Efficient Many-Core Visualization Using MCD?3.
Parallel Computing, 108:102834, Dec. 2021.

K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith,
D. Pugmire, J. Kress, H. Schroots, K.-L. Ma, H. Childs,
et al. VTK-m: Accelerating the Visualization Toolkit for
Massively Threaded Architectures. IEEE Computer Graph-
ics and Applications, 36(3):48-58, 2016.

C. Miiller, D. Camp, B. Hentschel, and C. Garth. Distributed
parallel particle advection using work requesting. In 2013
IEEE Symposium on Large-Scale Data Analysis and Visual-

179-12

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

ization (LDAV), pp. 1-6. IEEE, 2013.

J. Nickolls. GPU Parallel Computing Architecture and
CUDA Programming Model. In 2007 IEEE Hot Chips 19
Symposium (HCS), pp. 1-12. IEEE, 2007.

B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Pe-
terka. Parallel particle advection and ftle computation for
time-varying flow fields. In SC’12: Proceedings of the In-
ternational Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 1-11. IEEE, 2012.
B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-
balanced parallel streamline generation on large scale vector
fields. IEEE Transactions on Visualization and Computer
Graphics, 17(12):1785-1794, 2011.

T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W.
Shen, W. Kendall, and J. Huang. A study of parallel par-
ticle tracing for steady-state and time-varying flow fields. In
2011 IEEE International Parallel & Distributed Processing
Symposium, pp. 580-591. IEEE, 2011.

D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. We-
ber. Scalable computation of streamlines on very large
datasets. In Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, pp.
1-12, 2009.

D. Pugmire, A. Yenpure, M. Kim, J. Kress, R. Maynard,
H. Childs, and B. Hentschel. Performance-Portable Particle
Advection with VTK-m. In Proceedings of the Symposium
on Parallel Graphics and Visualization, EGPGV °18, pp.
45-55. Eurographics Association, Goslar, DEU, 2018.

C. Sovinec, A. Glasser, T. Gianakon, D. Barnes, R. Nebel,
S. Kruger, D. Schnack, S. Plimpton, A. Tarditi, M. Chu,
et al. Nonlinear Magnetohydrodynamics Simulation Us-
ing High-Order Finite Elements. Journal of Computational
Physics, 195(1):355-386, 2004.

J. Zhang, H. Guo, F. Hong, X. Yuan, and T. Peterka. Dy-
namic load balancing based on constrained kd tree decom-
position for parallel particle tracing. IEEE transactions on
visualization and computer graphics, 24(1):954-963, 2017.

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

Appendix

This supplementary section explores the question “how
much does the data set impact the performance of particle advec-
tion based algorithms?,” posed as RQ5 in addition to the questions
in the main paper. For this exploration, four additional datasets
were considered. The first three of these are vector fields over a
5123 uniform grid.

*Astro comes from a GenASiS simulation code [16] of a
magnetic field simulation surrounding a solar core collapse
that results in a supernova.

* Fusion comes from the NIMROD simulation code [33] of a
magnetic field in a fusion tokamak device used to model the
behavior of burning plasma.

¢ Fishtank comes from the NEK5000 simulation code [17] of
a fluid flow inside a chamber when water of different tem-
peratures is injected through a small inlet.

*Zero, consists of a single hexahedron with all vectors having
zero magnitude. This data set served as a reference for cache
performance.

RQ5: How Does Data Set Impact Perfor-
mance?

Table 8: The configuration for experiments that were executed
to answer RQS. Based on the parameters used, a total of 936
experiments (of the possible 1080) were considered to answer this
question of which 72 were run with Zero data set and served as a
baseline (“Zero” data set used only one seeding volume).

Parameter | Value Total
Data Sets | All
Seed Volume |All
Seeds | {100, 10000, 1000000}
Duration [All
Algorithm | Particle Advection
Hardware | CPUs (Multi), GPUs (w/o Xfer)

0 = WWwwom

This section considers the effect from data set on perfor-
mance on GPUs and multi-core CPUs. Table 8 shows the pa-
rameters for the experiments we conducted for this phase. Data
set can affect performance in two fundamental ways: caching and
divergence. With respect to caching, some data sets may attract
particles to key regions, potentially increasing cache performance,
while other data sets may move particles throughout the region
uniformly, potentially decreasing cache performance. With re-
spect to divergence, the fundamental issue is early termination,
i.e., if a particle is supposed to advect for a duration of N steps,
but it stops after K steps, where K < N. This early termination can
happen because a particle entered a zero-velocity region (making
further steps unnecessary) or because it exited the data set’s spa-
tial domain (making further steps impossible). In the context of
a parallel architecture, the effect of early termination is that some
threads will be asked to do asymmetric work — threads assigned
particles that terminate early will perform fewer advection steps
— which can create performance degradation due to divergence.

Measuring the effect of data set on performance is non-
trivial. The execution time for a given workload on a given ar-
chitecture reflects a combination of factors: clock speed, number
of steps taken, and hardware efficiency (i.e., caching and diver-
gence). Since our interest is on the hardware efficiency changes

IS&T Infernational Symposium on Electronic Imaging 2025
8,(0 202% 9

High Performance Computing for Imaging

due to data set, we normalize our analysis with respect to clock
speed and number of steps taken. We did this normalization by
using a reference data set, which refer to as “Zero.” This data set
consists of a single cell with velocity value (0,0,0) everywhere in
the cell. For a workload W, a hardware architecture H, and a data
set D, our analysis used the following terms:
*Nw.n.p: the number of advection steps performed for work-
load W, hardware architecture H, and data set D.
* Ty H p: the execution time for workload W, hardware archi-
tecture H, and data set D.
*Aw g p: the average time per step for workload W, hard-
ware architecture H, and data set D. This is calculated as

A _ Twanp
WH.D = Nyup*

*Normy g p: the normalized time per advection step for
workload W, hardware architecture H, and data set D. This

is calculated relative to the Zero data set as Normy g p =

Aw.H.D
Aw . zero "

*AggrNormy p: the aggregated time per advection step for
hardware architecture H and data set D over all six work-
loads. This aggregation is performed with a geometric

. _ 1
mean, i.e., (H’MV,;? Normy, g p)s.

To understand the meaning of these terms, consider an ex-
ample. If Workload W4, hardware architecture GPU2, and
data set Astro, have Normy4 gpu2.asiro = 1.2, then the average
step was 20% slower than for the Zero data set. Further, if
AggrNormgpy2 Asiro = 1.4, then then the average step was 40%
slower than for the Zero data set over all workloads. The remain-
der of this section focuses on AggrNorm values. That said, the in-
dividual Norm values for each comparison (over the four data sets,
eight hardware architectures, and six workloads) can be found in
the supplemental material,

Table 9: AggrNorm values for all combinations of hardware ar-
chitectures and data sets. Each entry cell shows the aggregate
slowdown (over six advection workloads) for a given data set
compared to the Zero data set on a given architecture. For ex-
ample, the number 1.08 in the top left of the table means that the
Fusion data set took an average of 8% longer than the Zero data
set on Xeon 8 architectures.

Fusion Astro Fishtank Noise

CPU1 1.08 1.02 1.35 0.98

CPU2| 1.35 1.13 1.85 1.13

CPU3| 1.23 1.11 1.76 1.05

CPU4| 1.12 0.99 1.61 0.93

GPU1| 277 249 7.04 1.97

GPU2| 3.13 2.73 8.15 1.97

GPU3| 4.99 4.17 9.55 3.90

GPU4| 3.73 3.08 9.58 2.35

Table 9 contains the AggrNorm values for each combina-
tion of hardware architecture and data set. There are two primary
findings from this table: effects from hardware architecture and
effects from data set. With respect to hardware architecture, the
impact for CPUs is significantly less than that for GPUs. The
largest AggrNorm value for CPUs is 1.85, while the largest value
for GPUs is 9.58. This means that our experiments showed at
worst an 85% slowdown on CPU architectures, compared to a
858% slowdown for GPUs. Further, GPUs were almost always

twice as slow compared to the Zero data set, while CPUs were
able to run nearly as quickly in some cases. In short, caching and
divergence affected the CPUs much less than the GPUs. While
this is an expected outcome, the magnitude of the effect (1.85
vs 9.58) was surprising. Another finding for hardware was that
the AggrNorm values climbed on each subsequent generation of
GPU, from an average of 3.12 on GPUI to an average of 3.99 on
GPU4. So while later GPUs offer higher performance, degrada-
tions due to data set effects become more prominent. With respect
to data set, Table 9 informs the extent of slowdown due to data set.
The Noise data set (which has few zero-velocity spots and does
not regularly push particles outside its spatial boundary) is able
to perform similarly to the single-cell Zero data set on CPUs, and
performs better than the other data sets on GPUs. The Fishtank
data set is the clear worst performer, with GPU performance being
approximately three times slower than the other data sets. Once
again, while this type of effect is to be expected, we found the
magnitude of this effect to be surprising. That said, more analy-
sis is needed to figure out the cause of the slowdown: divergence,
caching, or both.

ws we ws we w2 ws we Lowe ws o wa
fishtank L fishtank M fishtank S

00 00 00

Figure 10: Figure demonstrating the proportion of fake steps con-
tributed by different termination criteria when particles are not
terminated at all.

Figure 10 and Table 10 isolate the effects from divergence.
As stated earlier, divergence occurs because of early termination.
Our solution is to modify our algorithm to not terminate these
particles — if a particle hits a zero-velocity region, then the al-
gorithm continues performance advection steps (and remaining

179-14

Table 10: Table demonstrating the relative slowdown in terms of
time per step for different architectures when particles are not ter-
minated at all. For example, for Xeon 8 CPU and Fusion data set
the number 1.06 represents that the experiment is 1.06x slower
than the ideal case.

Fusion Astro Fishtank Noise
CPU1 1.06 1.02 1.22 0.99
CPU2 1.14 1.05 142 1.11
CPU3 1.11 1.07 1.28 1.02
CPU4| 1.02 0.97 1.26 0.94
GPU1 1.84 1.62 1.75 1.61
GPU2| 1.54 1.46 1.78 1.48
GPU3| 3.42 3.02 3.70 3.06
GPU4 2.28 2.07 2.62 1.90

in the same position) and if a particle exits the spatial domain,
then we have it advect backwards in time (i.e., retrace the path
from where it came). For ease of reference, we refer to these
additional steps as “fake steps.” Figure 10 plots the proportion
of “real steps” versus “fake steps” (differentiating between those
from zero velocity and those from exiting the boundary) for all
data sets, workloads, and seeding volumes. It shows that:
ethe Fusion data set is made up of 50% fake steps due to
zero velocity (or, rather, that the number of steps taken under
normal conditions is 2X less than the workload specifies),
ethe Astro data set has a large range of outcomes (from 5%
fake steps to 70% fake steps, mostly from exiting the bound-
ary),
the Fishtank data set always has more than 50% fake steps
(from a combination of zero velocity and exiting the bound-
ary), and
*the Noise data set has the least number of fake steps, al-
though workloads with longer durations due ultimately find
zero-velocity locations.

These results inform Table 10, which repeats the analysis from Ta-
ble 9 but incorporates fake steps in the timings. As a result, these
experiments have no effects from divergence and slowdowns are
solely from caching effects. On the CPU side, Table 10 shows
that the Fishtank data set is still slower than the other data sets. In
this data set, a given particle will hit the ceiling of an assembly
and can move in any direction, and then will recirculate and hit
the ceiling again. As a result, this data set is the one that most
stresses cache, as each particle can travel through the entire vol-
ume. The slowdowns for Fishtank and Fusion are roughly half
of those in Table 9, while for Astro and Noise the slowdowns are
very similar. In all, these experiments show that data set does af-
fect CPU performance — two data sets appear to be affected by
caching and divergence in approximately equal measure, while
two other data sets appear to be affected only by caching. On the
GPU side, eliminating divergence improved slowdown factors for
all four data sets. The biggest effects were for Fishtank, with the
GPU4 experiments dropping from a slowdown of 9.58 in Table 9
to 2.62 in Table 10. For this data set, divergence was a much
larger cause of slowdown than caching. The effects are smaller
for other data sets. For example, the Noise data set on GPU4 im-
proved from 2.35 to 1.90. For this data set, cache performance
appears to be a bigger issue than divergence. We are reluctant
perform further analysis to quantify the relative effects of each.

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

.5 10
/ Workload

Figure 11: Comparison of CPU performance for different data sets. The Y-axis represents the ratio of time taken per step against the ideal
case (equivalent experiment executed on the “Zero” data set), while the X-axis represents the workload. The different glyphs represent the
seeding volume of the experiment. The green dots represent experiments where particles are not terminated at all. In contrast, the orange
dots represent experiments where particles are terminated whenever they encounter zero-velocity regions or encounter spatial boundaries.
Here a higher Y axis represents the experiment was y times slower than the ideal case.

In particular, the experiments in Table 10 have extra cache bene-
fits from zero-velocity steps, which contributes to the reduction in
slowdown.

Impact of Data Set on CPU and GPU Perfor-
mance

Section evaluated the impact of data sets on the performance
of particle advection. This appendix provides additional analysis
to understand this impact better by expanding the data summa-
rized in Table 9 and 10. Section presents the impact of data sets
for the CPUs, and Section presents the impact of data sets for the
GPUs.

CPU Performance on Different Data Sets

Figure 11 helps understand the outcomes for the different
data sets against the “Zero” dataset in two ways. First, it con-
siders the performance without terminating the particles (glyphs
represented in green) to uncover the impact of caching and mem-
ory accesses involved in particle advection. For almost all CPUs
and data sets, these experiments performed very close to the ideal

IS&T Infernational Symposium on Electronic Imaging 2025
8,(o 202% 9

High Performance Computing for Imaging

case, implying that the impact of caching and memory accesses
on CPUs for particle advection is minimal. Second, it consid-
ers the performance of terminating the particles normally (glyphs
represented in oranges) to uncover the impact of divergence in
work for different particles. Again, the experiments performed
very close to the ideal case for almost all CPUs data sets, imply-
ing that the impact of divergence on CPUs for particle advection
is minimal. The anomaly to both these observations was the Fish-
tank data set, which shows the effects of both poor caching and
more divergence. Although Figure 10 demonstrates that while not
terminating particles for the Fishtank data set leads to more cache-
friendly steps (zero velocity), the particles subjected to this data
set also suffer a high variance in the amount of duration contribut-
ing to real steps. These variances are the primary reason for this
anomaly.

GPU Performance on Different Data Sets

Figure 12 presents a similar analysis as Section , but for
GPUs. However, in contrast to CPUs, GPUs performance is im-
pacted significantly due to caching and divergence. Across all

179-15

.5 10
/ Workload

Figure 12: Comparison of GPU performance for different data sets. The Y-axis represents the ratio of time taken per step against the ideal
case (equivalent experiment executed on the “Zero” data set), while the X-axis represents the workload. The different glyphs represent the
seeding volume of the experiment. The green dots represent experiments where particles are not terminated at all. In contrast, the orange
dots represent experiments where particles are terminated whenever they encounter zero-velocity regions or encounter spatial boundaries.
Here a higher Y axis represents the experiment was y times slower than the ideal case.

the data sets, the two newer GPUs (GPU3 and GPU4) performed
poorly in experiments studying caching (green glyphs). In other
words, the newer GPUs can offer much better performance when
memory accesses for an application are cache friendly. Particle
advection involves random memory accesses, which hurts GPU
performance. Further, the performance of a particle advection for
a data set is tied to the amount of real work that the algorithm per-
forms proportional to the workload (orange glyphs). For the case
of divergence, the takeaway is that a low amount of real work rel-
ative to the workload results in poorer performance against the
ideal case.

Author Biography

Abhishek Yenpure received his BE in Information Technol-
ogy from the University of Pune (2013) and his Ph.D. in Com-
puter Science from the University of Oregon (2022). Since then
he has worked in the Scientific Computing team at Kitware Inc.
His work is focused on scientific visualization and the usage of
accelerated computing (GPUs, multi-core CPUs) to improving vi-
sualization workflows.

179-16

David Pugmire is a Distinguished Scientist at Oak Ridge
National Laboratory and a Joint Faculty Professor in the Electrical
Engineering and Computer Science Department at the University
of Tennessee. He received his Ph.D. in Computer Science from
the University of Utah in 2000. His research interests are in large-
scale parallelism for analysis and visualization of scientific data.

Hank Childs is a professor of Computer Science at the Uni-
versity of Oregon. He received a Ph.D. in Computer Science from
the University of California at Davis in 2006. His research fo-
cuses on Scientific Visualization, High Performance Computing,
and the intersection of the two.

IS&T Infernational Symposium on Electronic Imaging 2025
High Performance Computing for Imaging 2025

