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Abstract

Whole Slide Image (WSI) analysis plays a crucial role in
modern digital pathology, enabling large-scale feature extrac-
tion from tissue samples|[1l]. However, traditional feature extrac-
tion pipelines based on tools like CellProfiler[2|] often involve
lengthy workflows, requiring WSI segmentation into patches, fea-
ture extraction at the patch level, and subsequent mapping back
to the original WSI[4|]. To address these challenges, we present
PySpatial, a high-speed pathomics toolkit specifically designed
for WSI-level analysis. PySpatial streamlines the conventional
pipeline by directly operating on computational regions of in-
terest, reducing redundant processing steps. Utilizing rtree-
based spatial indexing and matrix-based computation, PySpa-
tial efficiently maps and processes computational regions, signifi-
cantly accelerating feature extraction while maintaining high ac-
curacy. Our experiments on two datasets—Perivascular Epithe-
lioid Cell (PEC) and data from the Kidney Precision Medicine
Project (KPMP) [|13|]—demonstrate substantial performance im-
provements. For smaller and sparse objects in PEC datasets, PyS-
patial achieves nearly a 10-fold speedup compared to standard
CellProfiler pipelines. For larger objects, such as glomeruli and
arteries in KPMP datasets, PySpatial achieves a 2-fold speedup.
These results highlight PySpatial’s potential to handle large-scale
WSI analysis with enhanced efficiency and accuracy, paving the
way for broader applications in digital pathology.

Introduction

Whole Slide Imaging (WSI) has revolutionized digital
pathology, providing high-resolution, comprehensive visual-
izations of entire tissue slides [8]. These large-scale im-
ages enable pathologists to analyze intricate tissue structures
and cellular features, supporting both diagnostic and research
workflows[5][3][12]. Despite its advantages, the inherent size and
complexity of WSIs pose significant computational challenges,
particularly in feature extraction and quantitative analysis[9].

Existing tools, such as CellProfiler [2], have been instrumen-
tal in advancing image-based analysis in pathology. However,
these tools typically operate at the patch level, and the workflow
based on these tools often involve multi-step workflows that in-
clude segmenting WSIs into smaller patches, extracting features
from each patch, and subsequently mapping these features back to
the original WSI[4]. While effective, these workflows are compu-
tationally expensive, time-consuming, and introduce significant
overhead due to redundant processing steps[9].
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To address these limitations, we introduce PySpatial, a high-
speed pathomics toolkit specifically designed for WSI-level anal-
ysis. PySpatial significantly simplifies the traditional pipeline by
eliminating the need for intermediate patch-level segmentation
and mapping. Instead, it operates directly on the WSI, reducing
unnecessary processing steps and streamlining the entire work-
flow. This difference is illustrated in Figure[I] where PySpatial’s
pipeline (top panel) directly processes WSIs to extract features,
bypassing the patch segmentation and coordinate mapping stages
required by CellProfiler (bottom panel). By avoiding these inter-
mediate steps, PySpatial achieves a more efficient and scalable
pipeline, particularly for large-scale WSI datasets.

Additionally, PySpatial leverages rtree-based spatial index-
ing to efficiently establish relationships between computational
regions and the original WSI. Furthermore, matrix-based batch
computation accelerates feature extraction by performing opera-
tions across entire computational regions simultaneously, rather
than on individual objects sequentially.

We validated PySpatial using two datasets: Perivascular
Epithelioid Cell (PEC) and Kidney Precision Medicine Project
(KPMP)[13]]. The PEC dataset, characterized by small and
sparse objects, demonstrated a nearly 10-fold speedup compared
to traditional workflows. In contrast, the KPMP dataset, con-
taining larger objects such as non-globally-sclerotic glomeruli,
globally-sclerotic glomeruli, and arteries/arterioles, achieved a 2-
fold speedup. These results highlight PySpatial’s robustness and
efficiency across diverse data types.

The key innovations and contributions of PySpatial are as
follows:

* Direct WSI-Level Pathomics Analysis: PySpatial enables
feature extraction directly at the WSI level, eliminating the
need for patch-based segmentation and significantly short-
ening the conventional processing pipeline.

Improved Feature Extraction Speed: By focusing on
computationally relevant regions and utilizes matrix-level
operations, PySpatial accelerates feature extraction by ap-
proximately 10-fold speedup on small objects (PEC dataset)
and nearly double speedup on larger objects (the KPMP
dataset) compared to existing methods.
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Figure 1: Comparison between PySpatial and CellProfiler pipelines for WSI feature extraction. The top panel illustrates the PySpatial
pipeline, which directly processes Whole Slide Images (WSIs) to extract features, simplifying the workflow and improving efficiency. In
contrast, the bottom panel represents the traditional CellProfiler pipeline, where WSIs are first divided into smaller patches, with their
coordinates recorded, followed by feature extraction at the patch level, and finally mapping features back to the original WSI. PySpatial
eliminates the intermediate patch-level processing, resulting in a more streamlined and computationally efficient workflow.

Methods
PySpatial Workflow Details

As shown in Figure 2} the PySpatial workflow consists of
several key stages, including the extraction of computational re-
gions, efficient matrix-based batch computation, and comprehen-
sive feature extraction, all while maintaining spatial relationships
through an R-tree mapping structure [10].

Whole Slide Images (WSIs) are typically labeled by deep
learning models or manual annotation by pathologists to define
regions of interest (ROIs). These labeled regions, referred to as
Computational Regions, represent areas containing meaningful
pathological information. However, these regions are often sparse
and scattered across the WSI, as shown in Figure 2] where the
orange-highlighted areas represent labeled computational regions
in a PEC dataset. This sparsity underscores the need for a focused
and computationally efficient approach to feature extraction.

To preserve the spatial context of these computational re-
gions, PySpatial employs an R-tree spatial indexing structure[11]].
This structure establishes an efficient mapping between the ex-
tracted computational regions and their original spatial locations
on the WSI. The R-tree not only facilitates rapid access and re-
trieval of specific computational regions but also ensures that the
spatial relationships between objects remain intact throughout the
processing workflow.

Once the computational regions are identified and indexed,
PySpatial converts these regions into a matrix representation,
enabling high-throughput batch processing. Instead of analyz-
ing individual objects sequentially, PySpatial performs operations
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across the entire matrix simultaneously. For instance, geometric
properties such as perimeter and area can be calculated in a sin-
gle batch operation across all objects within the computational
regions. This matrix-based computation approach eliminates re-
dundant calculations, reduces computational overhead, and sig-
nificantly accelerates the feature extraction process.

Following the matrix computation, PySpatial extracts fea-
tures across four primary categories: Size & Shape, Texture, In-
tensity, and Intensity Distribution. The Size & Shape module
captures geometric attributes such as area, perimeter, and ob-
ject morphology. The Texture module analyzes surface patterns
and texture granularity within the objects. The Intensity module
measures pixel intensity values, reflecting image brightness and
contrast. Lastly, the Intensity Distribution module evaluates how
pixel intensities are spatially distributed across the computational
regions. Together, these modules generate a 247-dimensional fea-
ture vector for each object, providing a rich and comprehensive
representation of the WSI’s pathomic characteristics.

After feature extraction, PySpatial uses the R-tree index to
map the extracted features back onto the original WSI. This step
ensures that each feature is spatially aligned with its correspond-
ing object, preserving the spatial context for downstream analysis
and visualization. This final mapping step bridges the gap be-
tween computational processing and spatial interpretation, allow-
ing pathologists and researchers to link extracted features with
their original spatial locations on the WSL.

Through this streamlined workflow, PySpatial combines
computational region focus, R-tree spatial mapping, matrix-based
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Figure 2: PySpatial’s computational workflow for WSI feature extraction. The figure illustrates the computational workflow of PySpatial
for feature extraction from Whole Slide Images (WSIs). In the first stage, the computational regions (highlighted in orange) are identified
within the WSI, focusing only on areas of interest for analysis. In the second stage, an R-tree spatial index is built to efficiently map and
manage these computational regions, which are then matrix-encoded for batch processing. Four key feature categories are extracted using
specialized modules: Size & Shape, Texture, Intensity, and Intensity Distribution. In the last graph, the output features are summarized
and visualized in a pie chart, representing the proportion of each feature type extracted from the WSI.

batch computation, and modular feature extraction to achieve ef-
ficient, scalable, and spatially accurate pathomics analysis at the
WSI level.

non-globally-sclerotic

glomeruli

Whole Slide Image

Figure 3: Overview of KPMP Dataset Object Categories.The
image illustrates representative examples of the three ob-
ject categories in the KPMP dataset: non-globally-sclerotic
glomeruli (top), globally-sclerotic glomeruli (middle), and arter-
ies/arterioles (bottom). These objects are characterized by their
large size and relatively sparse distribution within WSIs.

Experiments

In this section, we describe the datasets, experimental setup,
and specific considerations related to memory optimization in
PySpatial. Two datasets, PEC and KPMP, were employed to eval-
uate the performance and scalability of PySpatial compared to
the traditional CellProfiler workflow. The experimental design
focuses on analyzing pipeline efficiency, feature extraction accu-
racy, and the computational challenges posed by large objects in
WSIs.
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Datasets

Two distinct datasets, PEC and KPMP, were used to evaluate
the PySpatial workflow.

The PEC dataset was manually annotated by pathologists us-
ing the QuPath software, a widely adopted tool for digital pathol-
ogy annotation [6][7]. The annotated regions of interest (ROIs)
were then exported as geojson files, which record the spatial lo-
cation and geometry of each object within the WSIs. A key char-
acteristic of the PEC dataset is that the objects are small in size
but numerous within a single WSI. This high object density cre-
ates a computational challenge when processing large-scale WSIs
efficiently.

The KPMP dataset[13]] (Kidney Precision Medicine Project)
was directly provided with pre-defined mask annotations that
identify three distinct object types: non-globally-sclerotic
glomeruli, globally-sclerotic glomeruli, and arteries/arterioles, as
shown in Figure E} In contrast to the PEC dataset, the KPMP
objects are larger and fewer in number within each WSI. These
larger objects introduce unique computational challenges, partic-
ularly when attempting to process them in batch matrix operations
due to memory limitations.

The contrasting characteristics of these datasets—small and
densely distributed objects in PEC versus large and sparsely dis-
tributed objects in KPMP—offer complementary scenarios for
evaluating PySpatial’s adaptability and efficiency across different
pathological image analysis tasks.

Experimental Setup

To benchmark PySpatial against traditional workflows, both
datasets were processed using two distinct pipelines: the tradi-
tional CellProfiler workflow and the PySpatial workflow.

In the CellProfiler workflow, the WSI is first divided into
smaller patches, and the spatial coordinates of each patch are
recorded. Each patch is then independently analyzed to extract
object-level features. Finally, the extracted features are mapped
back to their original spatial locations in the WSI using the
recorded coordinates. While this approach is functional, the mul-
tiple intermediate steps (e.g., patching, coordinate mapping, and
feature merging) introduce computational overhead and increase
processing time.

In contrast, the PySpatial workflow eliminates the intermedi-
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ate patching step by directly focusing on computational regions.
These regions are defined based on annotations from either deep
learning models or manual labeling by pathologists. Using an
R-tree spatial index, PySpatial establishes a mapping between
the extracted computational regions and their spatial locations in
the original WSI. The computational regions are then converted
into matrix representations, enabling efficient batch processing
for feature extraction. Once the feature extraction process is com-
plete, the R-tree index ensures that the features are accurately
mapped back onto the WSI for downstream analysis.

For each dataset, the processing time for both workflows
was recorded and compared to assess PySpatial’s speed-up per-
formance. Additionally, the accuracy of extracted features was
evaluated to ensure consistency between PySpatial and CellPro-
filer results.

Memory Constraints and Matrix Optimization

While PySpatial’s matrix-based batch computation signif-
icantly accelerates feature extraction, memory constraints can
arise when processing datasets with large objects such as those
found in the KPMP dataset. Each computational region is matrix-
encoded for batch processing, and the size of these matrices is di-
rectly influenced by the dimensions and number of objects within
a region.

In the case of KPMP data, where individual objects are large
but relatively few, the matrix size can exceed system memory lim-
its, making batch computation infeasible for certain regions. To
address this issue, PySpatial allows users to set a customizable
matrix size parameter, enabling them to optimize memory usage
based on their hardware capabilities.

Furthermore, when matrix-based computation is no longer
efficient or feasible due to exceptionally large objects, PySpatial
provides an alternative API that allows for direct computation on
individual objects without matrix aggregation. This flexibility en-
sures that PySpatial remains robust and adaptable across diverse
datasets, regardless of object size or distribution.

Results
Feature Description

PySpatial extracts a comprehensive set of 247 features cat-
egorized into four primary groups: Size & Shape, Texture, In-
tensity, and Intensity Distribution. As shown in Figure ] each
category encompasses multiple quantitative descriptors. For ex-
ample, Size & Shape includes features like Area and Perimeter,
Texture captures patterns through metrics such as Entropy and
Contrast, Intensity reflects pixel-level properties like Mean Inten-
sity and Max Intensity, while Intensity Distribution examines spa-
tial intensity patterns through descriptors like Zernike Phase and
Radial CV. This rich feature set enables PySpatial to provide a
detailed and multi-dimensional representation of objects within
WSIs, supporting downstream analysis and interpretation.

Running Performance Comparison

The performance comparison between PySpatial and the
traditional CellProfiler workflow in terms of processing time is
shown in Figure [f] This comparison covers two datasets: PEC
and KPMP, where the latter includes three object categories: non-
globally-sclerotic glomeruli, globally-sclerotic glomeruli, and ar-
teries/arterioles. The results demonstrate a consistent and sub-
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Figure 4: Overview of Feature Categories and Subtypes Extracted
by PySpatial. The diagram illustrates the 247-dimensional fea-
ture space categorized into Size & Shape, Texture, Intensity, and
Intensity Distribution, with representative subtypes shown in the
outer ring.

stantial reduction in processing time when using PySpatial across
all categories.

In the PEC dataset, characterized by numerous small and
densely distributed objects, PySpatial achieved a nearly 10-fold
speedup compared to CellProfiler. This significant improvement
highlights the efficiency of PySpatial’s matrix-based batch pro-
cessing approach, which minimizes redundant calculations and
optimizes computational operations across small objects.

In contrast, the KPMP dataset, where objects are larger
and relatively sparse, still exhibited notable performance
gains with PySpatial.  Across the three categories—non-
globally-sclerotic glomeruli, globally-sclerotic glomeruli, and
arteries/arterioles—PySpatial achieved approximately a 2-fold
speedup on average. While the acceleration in the KPMP dataset
is less pronounced compared to the PEC dataset, it underscores
PySpatial’s flexibility and scalability in managing varying object
sizes and distributions.

The difference in speed improvement between the two
datasets can be primarily attributed to object characteristics. The
PEC dataset benefits extensively from batch matrix computation,
which efficiently processes a large number of small objects simul-
taneously. On the other hand, the KPMP dataset’s larger objects
sometimes encounter memory constraints during matrixization,
limiting the full potential of batch computation. However, PyS-
patial also provides API, which allows users to skip matrixization
and directly compute object-level features, provides an effective
workaround to these constraints.

Overall, PySpatial consistently outperformed CellProfiler in
terms of processing time, regardless of object size or distribu-
tion. The results demonstrate that PySpatial not only accelerates
feature extraction but also adapts effectively to varying compu-
tational challenges posed by different datasets. This flexibility
makes PySpatial a robust and efficient toolkit for large-scale WSI-
level pathomics analysis.
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Figure 5: Comparison of Feature Frequency Distributions between PySpatial and CellProfiler. The figure presents frequency distributions
of selected features (Max Feret Diameter, Eccentricity, Hu Moment, and Mean Intensity) extracted by PySpatial (left panels) and Cell-
Profiler (right panels). Across different object types, both tools exhibit highly consistent distribution patterns, demonstrating the accuracy

and reliability of PySpatial’s feature extraction results.
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Figure 6: Comparison of processing time between CellProfiler
and PySpatial across different datasets. The bar chart com-
pares the performance of CellProfiler (blue bars) and PySpa-
tial (orange bars) in terms of processing time across four cate-
gories: PEC, non-globally-sclerotic glomeruli, globally-sclerotic
glomeruli, and arteries/arterioles. PySpatial demonstrates a sig-
nificant reduction in processing time across all categories, partic-
ularly in PEC data, where the improvement is most pronounced.
These results highlight PySpatial’s efficiency in handling both
small, densely distributed objects (PEC) and larger, sparsely dis-
tributed objects (KPMP categories).

Consistency Between PySpatial and CellProfiler

To validate the consistency of feature extraction between
PySpatial and CellProfiler, we compared the frequency distribu-
tions of several representative features across datasets, including
Max Feret Diameter, Eccentricity, Hu Moment, and Mean Inten-
sity. The results are illustrated in Figure[3]

The distributions of these features extracted by PySpatial
(left panels) and CellProfiler (right panels) exhibit remarkably
similar patterns, with matching peak positions, range distribu-
tions, and overall shapes.
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The observed consistency not only validates PySpatial’s
computational accuracy but also demonstrates its reliability for
WSI-level pathomics feature extraction.

Conclusion

In this work, we introduced PySpatial, a high-speed whole
slide image (WSI) pathomics toolkit designed to address the limi-
tations of traditional feature extraction workflows. Built upon the
robust foundation of CellProfiler, PySpatial significantly simpli-
fies the WSI analysis pipeline by eliminating intermediate steps
such as patch-level segmentation and coordinate mapping. In-
stead, PySpatial operates directly on computational regions using
R-tree spatial indexing and matrix-based batch computation, en-
abling efficient and scalable feature extraction at the WSI level.

Through extensive evaluation on two datasets—PEC and
KPMP—we demonstrated PySpatial’s remarkable performance
improvements. In the PEC dataset, characterized by small and
densely distributed objects, PySpatial achieved nearly a 10-fold
speedup compared to CellProfiler. In the KPMP dataset, where
objects are larger and more sparsely distributed, PySpatial main-
tained a consistent 2-fold speedup.

Furthermore, we validated the accuracy and consistency of
the features extracted by PySpatial. By comparing area feature
frequency distributions from both workflows, we proved that PyS-
patial produces results that are highly consistent with CellPro-
filer, ensuring computational accuracy while maintaining signifi-
cant efficiency gains.

In conclusion, PySpatial represents a robust, efficient, and
scalable solution for WSI-level pathomics analysis. Its ability
to balance computational speed and feature extraction accuracy
makes it a valuable toolkit for large-scale digital pathology stud-
ies. Future work will focus on expanding PySpatial’s capabilities,
including support for additional feature categories and further op-
timization for extremely large WSI datasets.
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