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Abstract
In medical segmentation, the acquisition of high-quality la-

beled data remains a significant challenge due to the substantial
cost and time required for expert annotations. Variability in imag-
ing conditions, patient diversity, and the use of different imaging
devices further complicate model training. The high dimension-
ality of medical images also imposes considerable computational
demands, while small lesions or abnormalities can create class
imbalance, hindering segmentation accuracy. Pre-training on
synthetic datasets in medical imaging may enable Vision Trans-
formers (ViTs) to develop robust feature representations, even
during the fine-tuning phase, when high-quality labeled data is
limited. In this work, we propose integrating Formula-Driven Su-
pervised Learning (FDSL) synthetic datasets with medical imag-
ing to enhance pre-training for segmentation tasks. We imple-
mented a custom fractal dataset, Style Fractals, capable of gen-
erating high-resolution images, including those measuring 8k x
8k pixels. Our results indicate improved performance when us-
ing the SAM model for segmentation, in conjunction with robust
augmentation techniques, increasing performance from 62.30%
to 63.68%. This was followed by fine-tuning on the PAIP dataset,
a high-resolution, real-world pathology dataset focused on liver
cancer. Additionally, we present results using another synthetic
dataset, SegRCDB, for comparative analysis.

Introduction
Pre-training Vision Transformers (ViTs) [1], [2] typically in-

volves a two-stage process: initially, the model is exposed to
large-scale labeled or synthetic data to learn foundational vi-
sual representations, followed by fine-tuning on more specialized
tasks. Vision Transformers, being data-intensive architectures,
require substantial datasets for effective training, with state-of-
the-art performance in transfer learning often necessitating pre-
training on over 100 million images [3]. Formula-Driven Super-
vised Learning [4] has emerged as an alternative to traditional
supervised training on real images. Formula-driven techniques
encompass methods for generating synthetic images from math-
ematical formulas, including fractals [5], geometric patterns [4],
polygons [6], and other fundamental shapes. Attributes such as
complexity, smoothness, brightness, texture, fill-rate, and others
can be customized to generate labeled datasets of arbitrary size
without the need for human intervention. Moreover, formula-
driven synthetic image generation helps mitigate ethical concerns
such as societal bias or copyright infringement [7, 8, 9].

In medical segmentation using deep learning, key challenges
persist, particularly in obtaining high-quality labeled data. This
process remains difficult due to the significant cost and time re-
quired for expert annotations. Variability in imaging conditions,

patient diversity, and differing imaging devices further compli-
cate model training. The high dimensionality of medical images
imposes substantial computational demands, and small lesions or
abnormalities often introduce class imbalance, hindering segmen-
tation accuracy.

Using synthetic datasets for pre-training in medical imaging
enables ViTs to develop robust feature representations, even with
limited high-quality labeled data. This approach facilitates the ef-
fective generalization of Vision Transformers to high-resolution
segmentation tasks, enabling the capture of subtle details that are
critical in medical contexts. By refining learned representations,
pre-trained ViTs significantly enhance segmentation accuracy, re-
duce the need for extensive annotations, and improve overall per-
formance, making them especially valuable for high-precision ap-
plications in healthcare. We propose integrating these two do-
mains by utilizing a custom Fractal dataset to pre-train Vision
Transformer models on large datasets. As previously mentioned,
Vision Transformers yield favorable results when trained on ex-
tensive datasets such as LION-5B [10], YFCC-100M [11], or JFT-
300M [12], each containing over hundred million images. These
models are not only data-hungry but also require robust augmen-
tation techniques such as AutoAugment [13], CutMix [14] and
MixUp [15] during each training epoch, as the attention mecha-
nism they employ benefits from variations in the original training
images.

In this study, we implemented a custom fractal dataset capa-
ble of generating high-resolution images, such as those measuring
8K x 8K pixels or larger. Our results indicate that performance
improves when utilizing the SAM model [16] for segmentation
combined with strong augmentation techniques, achieving a score
of 63.68% compared to 62.30% from the baseline. After fine-
tuning on the PAIP dataset, a high-resolution, real-world pathol-
ogy dataset focused on liver cancer, we achieved a performance
of up to 70.58%, compared to 72.54% from the baseline results.
Although we did not surpass the baseline, we believe these results
are promising, given that we performed pre-training using only
half the size of the real images provided in the baseline results.

Related Work
Medical image processing plays a crucial role in medical

analysis, enhancing diagnostic capabilities through a variety of
tasks, including cell counting, classification, detection, and seg-
mentation. Among these, medical image segmentation is the most
frequently applied task in clinical diagnosis. Inspired by the suc-
cessful utilization of Vision Transformers in various medical do-
mains, recent studies have proposed ViT-based models for skin
lesion segmentation [17, 18, 19]. Another notable application in-
volves retinal vessel segmentation and related tasks [20, 21, 22].
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Figure 1. Search engine for Style Fractal dataset.

Furthermore, a novel multi-class prediction approach for skin le-
sion classification has been introduced, combining ViT and ViT-
GAN techniques [23].

On another hand, Formula-Driven Supervised Learning is an
innovative deep learning approach that leverages synthetic images
generated from mathematical formulas, along with their corre-
sponding labels. Initially proposed by Kataoka et al. [24], this
method presents a novel pathway for the creation of large, diverse,
and dynamic datasets tailored for pre-training vision models. The
images generated through this approach encompass a variety of
shapes and patterns, such as polygons, geometric configurations,
and fractals [24, 4, 5, 6, 25]. A comparable approach to ours is the
one proposed by Shinoda et al. in their work on SegRCDB [26],
where they implemented basic polygonal and radial shapes for
segmentation tasks. However, their implementation is primarily
aimed at general segmentation tasks and does not focus on medi-
cal or high-resolution images. In contrast, FDSL addresses signif-
icant issues, such as societal biases and the handling of sensitive
information, including personal data and copyrights [8, 7, 9]. By
utilizing synthetic datasets derived from mathematical constructs,
FDSL bypasses these challenges, ensuring a secure and controlled
environment for model training while maintaining higher ethical
standards.

Method
This section provides a comprehensive overview of medi-

cal image segmentation and its significance as a digital tool in
medical diagnostics. Additionally, we introduced our proposed
dataset, Style Fractals, which is a variant of Formula-Driven Su-
pervised Learning (FDSL). Moreover, we presented the SAM
model, which served as the backbone for our segmentation ex-
periments. Furthermore, we highlighted the critical role of image
augmentation in training vision transformers and discussed state-
of-the-art augmentation techniques.

Medical Segmentation
Diagnostic imaging has become an indispensable tool in

modern medicine. With the rapid growth in the size and vol-
ume of medical images, the integration of computational meth-
ods for their processing and analysis has become essential. Med-
ical image segmentation involves the automatic identification and
labeling of regions of interest within medical images, including
modalities such as CT, MRI, and ultrasound. This process par-
titions an image into semantically meaningful segments, such as
organs, tissues, tumors, or other anatomical structures. Image seg-
mentation is fundamental to a wide range of biomedical imaging
applications, including tissue volume quantification, anatomical
structure analysis, partial volume correction of functional imaging
data, and computer-integrated surgical procedures to mentioned a
few examples [27, 28, 29, 30].
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Figure 2. Generator engine for Style Fractal dataset.

Style Fractals Dataset
In this work, we propose an enhanced version of the original

FractalDB to better adapt this synthetic dataset for large resolution
image segmentation in medical applications. To provide context,
we first describe the original FractalDB. The dataset comprises 1
million images organized into 1,000 categories, with each cate-
gory containing 1,000 images [24]. Formally, the dataset can be
defined in a metric space P as follows:

IFS = {P;w1,w2, · · · ,wN ; p1, p2, · · · , pN}. (1)

where wi : P →P are transformations, pi are probabilities,
and N is the transformations. A fractal S = {xt}∞

t=0 ∈ P can be
generated P = R2. Each transformation is a type of affine trans-
formation or augmentation. These transformations are character-
ized by six parameters θi = (ai,bi,ci,di,ei, fi) including shifting
and rotation:

wi(x;θi) =

[
ai bi
ci di

]
x+

[
ei
fi

]
. (2)

The parameters (ai,bi,ci,di,ei, fi, pi) are randomly initial-
ized and retained if the fill ratio, defined as the proportion of
fractal dot pixels to the total image pixels, exceeds a predefined
threshold. Parameter adjustments are achieved by multiplying one
of the six Iterated Function System (IFS) parameters by specific
weights, resulting in modified images that maintain the overall
category shape while altering finer details. At this stage, we high-
light the key differences introduced in our Style Fractal dataset.
The original FractalDB implementation is written in Python, uti-
lizing a serial execution model and a NumPy-based rendering en-
gine, which leads to suboptimal performance. To enhance com-
putational efficiency, we ported the code to a C++ engine and im-
plemented the IFS iteration using OpenMP. As shown in Equa-
tion 2, the computation of points for each fractal is inherently se-
quential. However, the generation of each fractal instance can be
parallelized by distributing the workload across multiple threads,
thereby significantly accelerating the overall rendering process.

Style Fractal dataset creation process is divided into two ma-
jor steps: the search of CSV file descriptors and the generation
instances for each category. Both steps utilize the IFS function
to generate fractal images. First, we generate fractal images with
a predefined number of points and assess the fill ratio. This is
shown in Figure 1. In the second stage, we use the parameters
obtained from the first stage and apply the aforementioned affine
transformations shown in Figure 2.

We introduce three key modifications to the original Frac-
talDB, which form the basis of our proposed Style Fractals
dataset. First, we incorporate the capability to render high-
resolution images. Although this may initially appear straight-
forward, the search space and perspective projection processes
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Figure 3. Style Fractals dataset using high reso-

lution for pre-traning.
Figure 4. Augmentation like style to render Style
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truth mask.

Figure 5. Augmentation like style to render Style

Fractal dataset using colors on different fractal pat-

tern.

require significant adjustments. For instance, rendering at a res-
olution of 512× 512 pixels necessitates approximately 2 million
fractal points. However, increasing the canvas size demands a
broader search space to maintain image fidelity, as illustrated in
Figure 3. Second, we introduce the functionality to occlude or
partially render specific regions of the fractal. This enables the
generation of custom ground truth masks, facilitating the train-
ing of more sophisticated segmentation models. An overview of
these augmentation strategies is provided in Figure 4. Lastly, we
enhance the dataset by assigning a unique color space to each
fractal pattern. The color is chosen randomly while preserving
the consistency of the RGB channels. These enhancements col-
lectively define the Style Fractals dataset, enriching its variability
and applicability in image segmentation tasks.

Segment Anything Model - SAM
The Segment Anything Model (SAM) [16] is a vision model

utilizing a ViT-H/16 architecture, which incorporates 14x14 win-
dowed attention and four equally spaced global attention blocks,
tailored for segmentation tasks. Introduced by Meta AI, SAM
was trained on an extensive dataset comprising over a billion seg-
mentation masks, which endows it with robust capabilities. SAM
is particularly notable for its zero-shot generalization, as it can
segment objects in images without requiring task-specific fine-
tuning, making it highly versatile. Thanks to its massive training
dataset and transformer-based architecture, SAM produces highly
accurate segmentation masks with minimal user input. However,
SAM is not without limitations. It may struggle with highly com-
plex scenes or occluded objects, sometimes missing fine-grained
details or intricate boundaries. Additionally, the segmentation ac-
curacy is influenced by the quality and placement of the prompts
provided. In this study, we leveraged SAM for pre-training using
the Style Fractal dataset, adapting the sequence length as sug-
gested by Enzhi et al. [31]. Moreover, we specifically utilized
model b for this work.

Augmentation Techniques used for better Pre-
Training

It is well established that effective pre-training of Vision
Transformer models requires the use of strong augmentations
[2]. These augmentations typically involve affine transformations
such as rotations, occlusions, and the composition of multiple im-
ages. By incorporating these transformations, the model is ex-
posed to a diverse set of data in each epoch, enhancing its abil-
ity to generalize. State-of-the-art augmentation techniques, in-

cluding AutoAugment [13], MixUp [15], and CutMix [14], have
shown substantial improvements in model performance. In this
work, we propose to employ AutoAugment for pre-training our
Style Fractal dataset with the SAM model. AutoAugment is a
data augmentation approach designed to improve deep learning
model performance by automatically discovering the optimal set
of augmentation policies for a specific task. Introduced by Cubuk
et al. [13], AutoAugment searches for the combination of aug-
mentation policies that maximizes model performance on a given
dataset. This technique is particularly beneficial for computer vi-
sion tasks, where data augmentation plays a crucial role in im-
proving generalization.

Evaluation
In this section, we present the results of our experiments

evaluating the pre-training of the SAM model on the SegRCDB
and Style Fractal datasets. Following the pre-training phase, we
fine-tuned the model on the PAIP dataset. We provide an overview
of the experimental setup and the environment in which the exper-
iments were conducted. Additionally, we describe the Dice score
metric used in our evaluation. Our analysis focuses on the appli-
cation of stronger augmentation techniques, comparing the per-
formance of SAM on the PAIP dataset. Specifically, we utilized
AutoAugment policies for this comparison. Furthermore, we re-
port the performance of the pre-training process when applied to
large image resolutions.

Experimental Environment
We utilized the AI Bridging Cloud Infrastructure (ABCI) su-

percomputer [32], which is recognized for its optimization in AI
computing tasks. The supercomputer features V100 GPUs. The
nodes equipped with Volta architecture are composed of 1,088
compute nodes, each integrating two Intel Xeon Gold 6148 CPUs
(totaling 40 cores), 384 GiB of DRAM, four NVIDIA V100
GPUs, and InfiniBand EDR NICs. Additionally, each node is pro-
visioned with 1.6TB of local storage and has shared access to a
35PB Lustre parallel file system.

PAIP Dataset
The PAIP (Precision Medicine in Image Processing) 2019

Liver Cancer dataset is a comprehensive collection of medical
images designed to support research in liver cancer segmentation
and diagnosis. Its primary objective is to improve the precision
of medical imaging in the context of liver cancer by providing
high-quality annotated data for the training and evaluation of seg-
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Figure 6. A sample instance and ground truth from PAIP dataset.

mentation algorithms. The dataset consists of annotated CT scans
from liver cancer patients, with liver tumors clearly marked by
medical experts, thereby serving as ground truth for segmentation
tasks. The PAIP dataset includes a total of 2,457 Whole-Slide Im-
ages (WSIs). For testing purposes, the images are downsampled
to square formats, with 8k resolution used for larger test samples.
During training, the dataset is divided into three sets: 70% of the
images are used for training, 10% for validation, and 20% for test-
ing. To ensure the robustness of model performance, the dataset
is shuffled at the beginning of each epoch. A sample of the PAIP
dataset is shown in Figure 6.

Metric used for Evaluation
For the quantitative evaluation we choose the Dice score.

This metric measures the similarity between a predicted mask and
the ground truth mask. We can define this metric as:

Dice(X,Y) =
2×|X ∩Y |
|X |+ |Y |

where X and Y are the two sets being compared. |X ∩Y | repre-
sents the intersection of sets X and Y . |X | and |Y | represent the
cardinality of sets X and Y respectively. A score of 100% indi-
cates identical similarity between the prediction and the ground
truth.

Experiments on Augmentation
In this experiment, we evaluated the performance on the

PAIP dataset by applying several AutoAugment policies. The re-
sults are presented in Figure 7. We further elaborate on the differ-
ent levels of augmentation, categorized as primary, medium, and
strong.

• Raw: No Augmentation.
• Primary: RandomResize + CenterCrop
• AutoAug low: Policy level 3
• AutoAug medium: Policy level 9
• AutoAug high: Policy level 15

For this experiment, we set the image resolution to 512 and
the number of epochs to 100. The SAM model size used was set
to ”b”. The baseline settings were adapted from Enzhi et al. [31].
As shown, the baseline achieved a Dice score of 62.3% when no

Figure 7. DICE score on different augmentation techniques on PAIP

dataset.

Figure 8. DICE score on PAIP dataset when pre-trained with synthetic

datasets. Low resolution.

augmentation was applied. With the inclusion of primary aug-
mentations, the Dice score decreased by 0.65%. Furthermore, ap-
plying smaller AutoAugment policies led to a further reduction
of 2.17%, which may be attributed to insufficient transformations
that potentially confused the network, hindering its training. In
contrast, applying medium and high AutoAugment policies im-
proved performance, with the strongest policy yielding a Dice
score of 63.68%.

Experiments on Large Image Resolutions
For the subsequent set of experiments, we extended the set-

tings from the previous tests using strong AutoAugment policies.
The objective of this experiment was to investigate the impact
of pre-training on various image sizes across the two synthetic
datasets, SegRCDB and our proposed Style Fractal. We only in-
cluded baseline results for an image size of 512 from the PAIP
dataset. However, the results for SegRCDB and Style Fractal are
based on fine-tuning to the PAIP dataset using the same image
size. The number of pre-training epochs was set to 50, and fine-
tuning was also performed for 50 epochs to align with the baseline
results of 100 epochs. Figure 8 presents the results for lower reso-
lution image sizes. The image sizes were incrementally increased
from 312 to 512 and then to 1024. For the SegRCDB dataset,
we employed the original settings proposed by the authors. As
observed, the baseline, which incorporated AutoAugment poli-
cies, achieved a performance of 63.68%. It is evident that neither
SegRCDB nor Style Fractal surpassed the baseline performance.
However, a clear trend emerges in which accuracy increases sub-
stantially as the image size is scaled up. Notably, Style Fractal
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Figure 9. DICE score on PAIP dataset when pre-trained with synthetic

datasets. High resolution.

consistently outperformed SegRCDB in all three cases. Although
the performance did not exceed the baseline, we consider the
62.98% achieved by Style Fractal to be a promising result, espe-
cially given that pre-training was conducted on synthetic datasets
for only 50 epochs.

Finally, we present the results of pre-training using large im-
age resolutions, as shown in Figure 9. In this experiment, fine-
tuning on the PAIP dataset with a resolution of 1024 pixels re-
sulted in an accuracy of 72.54%. We further increased the reso-
lution of the synthetic datasets to 4096 and 8192 pixels. As ob-
served in previous experiments, the baseline performance could
not be surpassed. Additionally, the performance of the models
diverged further from the baseline results when compared to the
low-resolution cases. It is also evident that Style Fractal continues
to outperform SegRCDB. The best result achieved was 70.58%,
which is only a 1.96% gap from the baseline. This suggests that
further improvements could be achieved through better augmen-
tation strategies, extended training durations, and the use of larger
models.

Conclusion
In this work, we proposed the use of synthetic datasets for

pre-training the SAM model in medical segmentation tasks. We
introduced a new synthetic dataset, Style Fractals, capable of gen-
erating custom ground truth fractals that can be leveraged to as-
sist in fine-tuning segmentation tasks for medical applications.
We evaluated our performance against baseline results and com-
pared it to the state-of-the-art synthetic dataset, SegRCDB. Our
experiments demonstrated comparable performance using syn-
thetic datasets, particularly when image sizes were increased and
strong augmentation techniques were applied, achieving an ac-
curacy of 70.58%, close to the 72.54% accuracy obtained by the
baseline. Future work includes a more detailed exploration of
ground truth masks and local feature transformations, larger pre-
training on synthetic datasets, and a comprehensive study on the
high-resolution fine-tuning process.
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