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Abstract
Clothing is a lens through which a society expresses its cul-

ture and history. Its stylized portrayal in painting adds an im-
mensely rich layer of cultural self introspection—how artists see
themselves and their contemporaries, expressed through art. Par-
ticularly of interest in this study is color: how has color in cos-
tumes in portraiture painting changed over time, across art styles,
and for different genders? In this study, we apply computa-
tional methods drawn from computer vision, machine learning,
economics, and statistics to a large corpora of over 12k por-
trait paintings to analyze trends in color in Western art over the
past 600 years. For each painting, we obtained clothing seg-
mentation masks using a fine-tuned SegFormer model, performed
gender classification using CLIP (Contrastive Language-Image
Pre-Training), extracted dominant colors via clustering analy-
sis, and computed Color Contrast Index (CI) and Diversity In-
dex (DI). This study is, to our knowledge, the most comprehen-
sive, large-scale analysis of colors of clothing in paintings. We
share our methodology to make more widely accessible state-of-
the-art computational tools for scholars studying the history and
development of style in fine art paintings. Our tools empower
analyses of major trends in costume colors as well as specialized
domain-specific searches throughout databases of tens of thou-
sands of paintings—far larger than can be efficiently analyzed
without computer methods. These tools can reveal comparisons
between different painters and trends within particular artists’ ca-
reers. Our tools could be enhanced to enable refined analyses, for
instance on the social status of the portrait subject, and other vi-
sual criteria.

Introduction
In the past few decades, computer vision, machine learning,

pattern recognition, and artificial intelligence have been applied to
an expanding range of problems in the history and interpretation
of fine art, primarily two-dimensional art such as paintings and
drawings. Such so-called computer-assisted connoisseurship has
enriched traditional analysis methods—for instance the analysis
of brushstrokes,[1] color and style,[2] portrait pose,[3, 4] light-
ing in tableaus,[5, 6] composition in landscape paintings,[7] and
much more. Computer methods provided definitive evidence re-
futing the claims that some Western artists as early as Jan van
Eyck (c. 1395–1441) secretly built complicated optical projectors,
projected images onto their canvases or other supports, traced
these images.[8, 9] Computer methods are increasingly being in-
corporated into otherwise traditional academic courses and schol-

arship, a trend that shows no signs of abating.[10]
Fine art paintings have served as an important source of

information about the historical development of fashion and
costume.[11] For example, the Dutch Golden Age was a partic-
ularly rich period for such analysis, given the significant changes
in social, political, and especially religious concerns of the bur-
geoning merchant patrons that were captured in the expanding art
market.[12, 13, 14, 15] Analyses of costumes in portrait and genre
paintings from this historical period give insight into the costume
choices in later periods.[16]

It is natural that such studies should be aided by computer-
based image analysis tools. Such tools would empower studies of
trends in corpora of thousands or tens of thousands of paintings
over centuries—far greater than can be performed “by eye,” that
is, without automation. Moreover, computer-based methods can
empower more refined analyses, for instance ones that include
the sitters’ gender,[17] social status, and material studies (matte,
glossy, etc.), as is informative when estimating the type of fabric
(wool, silk, etc.).[18]

A prior effort developed automated tools for analysis of cos-
tume color in portrait paintings.[19] Our work builds upon and
extends this prior work and exploits state-of-the-art deep neural
network methods for segmentation, provides richer analysis of
color palette, and is tested on much larger corpora with finer cat-
egorization, based on metadata.

Methodology
Dataset

For our analyses, we used the Painter by Numbers dataset
from Kaggle,[20] which contains images of over 12,926 por-
trait paintings (originally from WikiArt.org). The images are
accompanied by metadata which include the date of execution,
artist, and style or art movement of the painting. The dates range
from 1425 to 2011, with the distribution shown in Fig. 1. We
note that there are 2,881 paintings without a valid date annota-
tion. There are 94 unique styles of the paintings represented in the
dataset, and the 20 with the highest counts are presented in Fig. 2.
The majority of paintings in the dataset are Western European.
The paintings are authored by 1,020 unique artists in total, with
the distribution for the most represented artists shown in Fig. 3.

Using this dataset of portraits, we complete a series of steps
in pre-processing and feature extraction for the analysis on the
clothing colors, outlined in 5. This includes (1) obtaining seg-
mentation masks of clothing in the paintings, (2) extracting domi-
nant colors via K-Means clustering, and (3-4) computing the Con-
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Figure 1: Histogram of Number of Works by the Top 20 Most-
Represented Art Styles in the Dataset

Figure 2: Distribution of Paintings by Year

trast Index and Diversity Index. Finally, we visualize and analy-
sis these results, comparing the indices across different art styles,
time periods, genders, and individual artists.

Semantic Segmentation of Clothing
First, we obtained segmentation masks for the portrait

paintings using a fine-tuned SegFormer B2 model for clothing
segmentation.[21] Sample segmentation masks are presented in
Figs. 4 and 5.

Although we do not have ground truth for the segmentation
masks, manual inspection of a random sample of segmentation
results shows that the resulting masks are mostly accurate, par-
ticularly for styles that are more “realistic.” We have manually
filtered out masks that are clearly incorrect. While small inac-
curacies in segmentation masks remain, we found that these do
not detract from the data signal when taken in aggregate over the
entirety of the corpora, as is shown in our later analyses.

Gender Classification of Portraits
Since the original dataset does not contain information on the

gender of the portrait subjects, we used OpenAI’s CLIP model for
a zero-shot classification. For each portrait, we extract the joint
embeddings for both the image and text prompts (“a painting of a
male person,” “a painting of a female person”). We then obtain the
classification logits, which are converted to probabilities for the
predicted gender for each portrait. Out of the total 12878 portraits
paintings, 6867 (53.3%) are classified as female and 6011 (46.7%)
are male.

Color Representation in CIELAB Space
As the initial step in our color analysis, we converted the

pixel presentation of the paintings from the default RGB space
to CIELAB space. Defined by the International Commission on
Illumination (CIE), this color space uses three values: L∗ repre-

Figure 3: Histogram of Number of Works by the Top 20 Most-
Represented Artists in the Dataset

Figure 4: Sample segmentation mask. Thomas Gainsborough,
John Montagu, 4th Earl of Sandwich

sents lightness (0 to 100), a∗ indicates the relative value of the
red-green component of a color (-128 to 127, with positive for
red and negative for green), and b∗ is the yellow-blue compo-
nent (-128 to 127, with positive for yellow and negative for blue).
Intended to mimic the opponent color processing of the human
visual system, the CIELAB representation is more suited for our
numerical analysis since perceptual differences in colors can be
approximated by taking the Euclidean distance between them in
the CIELAB space. We visualize the distribution of raw pixels of
clothing across all paintings via scatterplots of the a∗ and b∗ val-
ues of all pixels, grouped by half-century intervals and by gender.
The figures are included in Appendix A.

Dominant Colors via Clustering
In order to better understand the overall distribution and pat-

terns in color trends, we extracted the dominant colors in each
portrait’s clothing mask using K-Means clustering (with k = 3).
Furthermore, to gain a more holistic picture of the interaction of
colors both within individual paintings and across different paint-
ings, we used key metrics to measure the color contrast and diver-
sity. These metrics have previously been applied in the economic
analyses of art in Worth of Art.[22] Here, we find a novel applica-
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Figure 5: Flowchart of clothing color analysis.

tions for these metrics in the analysis of the portrayal of clothing
from a meta-art historical perspective.

Color Contrast Index

The Color Contrast Index (CI) is defined as the log sum of
the pairwise Euclidean distances between the centroids of three
dominant color clusters of a painting, expressed in CIELAB
space.[22] Roughly, this represents how perceptually different
(far apart) the primary colors in the clothing are. The dominant
colors are obtained via K-Means clustering (with k = 3) on all pix-
els in the segmented clothing mask, as described above. The cen-
troids, C1,C2,C3, are each represented as a 3-tuple (L,a∗,b∗) in
CIELAB color space. Thus, the Contrast Index can be expressed
as

CI = log(d(C1,C2)+d(C1,C3)+d(C2,C3)) (1)

where each pairwise distance d(Ci,C j) is defined as

d(Ci,C j) =
√

(Ci,L −C j,L)2 +(Ci,a∗−C j,a∗)2 +(Ci,b∗−C j,b∗)2

(2)

Color Diversity Index
The Color Diversity Index (DI) captures, roughly speaking,

how evenly distributed the pixel values are across L, a∗, and b∗

ranges.[22] It is based on the normalized Herfindahl-Hirschman
Index, which is a metric used in economics to measure market
concentration and competition. This is adapted to analyse the
“concentration” of colors. To calculate the Color Diversity In-
dex (DI), we first partition the CIELAB evenly into 125 “bins” (5
bins for each axis) and assign each pixel of the clothing mask to
its respective bin. For each bin i, we calculate σi, the percentage
out of all pixels that fall into that bin,

DI =
1−∑

125
i=1 σ2

i

1− 1
125

(3)

A painting in which all pixels are the same color (or very
similar colors that all fall into the same “bin”) would have a DI of
0, indicating that the color distribution is not diversified. On the
other hand, a perfectly diversified painting would have exactly
1/125 of its pixels in each bin and have a DI of 1.

CLIP Embeddings and TSNE Visualization
Additionally, we obtained CLIP (Contrastive Language-

Image Pre-Training [23]) image encodings for all portraits, for
both the full painting as well as the segmented clothing mask.
Then, we visualized the high-dimensional (512) latent space rep-
resentation by first using Principle Component Analysis for di-
mensionality reduction, then further projecting the resulting PCs
to 2 dimensions using t-SNE (t-Distributed Stochastic Neighbor
Embedding).[24] The resulting figure is included in Appendix B.

Results
Using the methods described above, we computed the dom-

inant colors, Contrast Index (CI) and Diversity Index (DI) for all
segmented clothing masks. We then visualize and analyze the
distribution of the resulting indices and compare them across dif-
ferent art styles, half-century intervals, genders, and individual
artists, with the figures and highlighted results presented in this
section. We also include representative works from each of these
analyses for better visualization.

First, we visualize the overall distribution of the Contrast In-
dex and Diversity Index in Fig. 6 left and right, respectively. We
note that distribution of CI across all paintings is roughly uni-
modal, left-skewed, with values ranging from 1.69 to 5.73 with
a mean of 4.71. Similarly, the distribution of DI is left skewed,
though with a smaller “peak” closer to the left tail, with values
ranging from 0.000264 to 0.950915 and mean of 0.61.

We visualize the comparison of the Contrast Index across
different art styles (with at least 30 examples in the dataset), or-
dered by increasing median value of CI, and we present the re-
sult in Fig. 7. We note that Symbolism (with 240 samples) has
the lowest CI with a median of 4.54. Similarly, Social Realism
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Figure 6: Overall Distributions of Contrast Index (left) and Diver-
sity Index (right).

and Impressionism also rank low on CI. On the other hand, Pop
Art (105 samples) has the highest CI with a median of 5.03, and
Ukiyo-e and Fauvism trail just behind. The most representative
paintings for each of these styles are displayed in Fig. 8 9 and for
comparison.

Figure 7: Box-plots of Contrast Index, Grouped by Style (in as-
cending order by median)

Figure 8: Representative masks from Symbolism (left), Social
Realism (middle), and Impressionism (right) styles.

A similar box-whisker plot visualization of the Diversity In-
dices across various styles is displayed in Fig. 11. Here, Manner-
ism (230 samples) has the lowest DI with a median of 0.58, and
Fauvism has the highest DI with a median of 0.78. We note that
for DI in particular, there is a general increase in DI values for
styles over time, with a notable exception of Early Renaissance
having a relatively high DI (0.74 median). Representative exam-
ples are shown in Fig. 10

Observing the distributions of CI across half-century inter-
vals (in temporal order) in Fig. 12, we note that there is a some-
what cyclic pattern in the median values of CI over time. The
spread increases, with the exception of the last interval (which

Figure 9: Representative masks from Pop Art (left), Ukiyo-e
(middle), and Fauvism (right) styles.

Figure 10: Representative masks from Mannerism (left), Fauvism
(middle), and Early Renaissance (right) styles.

Figure 11: Box-plots of Diversity Index, Grouped by Style (in
ascending order by median)

may be partly due to its relatively smaller sample size of 22 paint-
ings).

Figure 14 shows the distributions of the Diversity Index of
clothing colors over time. Here, we notice that the DI median
roughly decreases from 1400 to 1699 (from 0.76 to 0.57 in 1650-
1699), but jumps sharply in the interval from 1700-1749 back up
to 0.75, after which it continues to decrease, then rebounds slowly
after 1850. To visualize this with examples, we present the most
“representative” portraits from each group (minimizes distance to
median CI). Representative examples are shown in Fig. 13

Perhaps the most interesting analysis arises when comparing
CI and DI values between genders, across time and art styles. In
Figs. 16 and 18, we plot the distributions of CI and DI (respec-
tively) across different styles, separately by gender. In Fig 16
for CI, we note that Art Nouveau has the largest difference in me-
dian CI, where the median CI for male-labeled portraits (124 sam-
ples) being 5.26 while for female-label portraits (178 samples) is
4.69. The style with the largest difference with the female CI be-
ing higher than male CI is High Renaissance (4.82 female and
4.78 male), followed by Mannerism and Northern Renaissance.
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Figure 12: Box-plots of Contrast Index, Grouped by Half-Century
Interval

Figure 13: Representative masks from 1440 (left), 1685 (middle),
and 1739 (right) styles.

Figure 14: Box-plots of Diversity Index, Grouped by Half-
Century Interval

Interestingly, Baroque has the smallest gender difference in CI,
with the median male CI at 4.794575 and female CI at 4.796321.
Represented portraits are presented in Fig. 15.

For the Diversity Index plot comparing styles by gender, we
notice that the styles with lower DI also tend to have greater gen-
der differences. New Realism has the greatest difference in DI
between genders, with female-labeled paintings having a median
DI of 0.769307 and male-labeled paintings being 0.458244. High
Renaissance, Mannerism, Academism, and Northern Renaissance

Figure 15: From left to right: representative portrait of High Re-
naissance (female), High Renaissance (male), Baroque (female),
Baroque (male)

Figure 16: Box-plots of Contrast Index, Grouped by Gender and
Style (in ascending order by median)

follow after with large differences in DI between genders.
With the exception of three styles—Expressionism, Surre-

alism, and Cloisonnism—for all other styles, the median DI of
clothing in female portraits is higher than that of male portraits
of the same style. We show representative female and male por-
traits from New Realism and Expressionsm styles to visualize the
effects of varying DI values, presented in Fig. 17

Figure 17: From left to right: representative portrait of New Real-
ism (female), New Realism (male), Expressionism (female), Ex-
pressionism (male)

Figure 18: Box-plots of Diversity Index, Grouped by Gender and
Style (in ascending order by median)

When we compare the distributions of Color Contrast Index
for paintings over time (grouped by half-century intervals) by gen-
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der, as displayed in Fig. 22, we notice that from 1400 to 1599, the
CI for female-labeled portraits have a higher median value than
those of male portraits. In the eras thereafter, there are continual
swaps between genders in terms of which has higher CI.

For a similar comparison of the Diversity Index in Fig. 23,
we note that for every single time interval from 1400 to now, the
DI for female portraits is always higher than that of male por-
traits—all except for 1950-1999. Interestingly, the magnitude of
this gap varies over time, roughly increasing from 1400 to 1699
(except for a slight decrease in 1600-1649). In the 1650-1699
interval, this difference in median DI between portrait subject
genders reaches 0.325976 (0.363811 for male and 0.689787 for
female). However, in the interval from 1700-1749, the gender
gap in DI suddenly shrinks to 0.011515 (0.736472 for male and
0.747987 for female), and the gender gap continues to decrease in
the ensuing years leading up to the end of the twentieth century, to
0.00271 (0.732191 for male and 0.729481 for female). In Fig 19,
we compare female and male representative portraits from 1500-
1599 and from 1650-1699. Fig 20 shows the same for 1700-1749
and 1750-1799, and Fig. 21 for 1800-1849 and 1950-1999.

Figure 19: From left to right: representative portrait of 1500-
1549 (female), 1500-1549 (male), 1650-1699 (female), 1650-
1699 (male)

Figure 20: From left to right: representative portrait of 1700-
1749 (female), 1700-1749 (male), 1750-1799 (female), 1750-
1799 (male)

Figure 21: From left to right: representative portrait of 1800-
1849 (female), 1800-1849 (male), 1950-1999 (female), 1950-
1999 (male)

Furthermore, we analyze pairs of art styles and intervals that
have statistically significant differences in the CI and DI values.
We ran Tukey’s HSD tests on the CI and DI of art styles and in-
tervals, separately, and include the results below in Appendix C.

Noticing that there where many style (and interval) pairs that
showed a significant differences in both CI and DI, we wondered,

Figure 22: Box-plots of Contrast Index, Grouped by Gender and
Half-Century Intervals (in ascending order by median)

Figure 23: Box-plots of Diversity Index, Grouped by Gender and
Half-Century Intervals (in ascending order by median)

do art styles tend to undergo changes in CI and DI in the same
direction (i.e., is there a correlation)? And similarly for the half-
century interval pairs, does CI and DI change in the same way
over time? We first plotted scatter-plots for the style pairs and
fitted a linear regression line, which is presented in Fig. 24.

Interestingly, we note that out of the 72 “common” pairs
(pairs of styles that show a significant difference in both CI and
DI), all but 6 of them see CI and DI change in the same direction.
Similarly for the time-interval pairs, in Fig. 25, 7 out of 9 common
pairs see changes in CI and DI in the same direction.

Lastly, we selected a few painters whose works were partic-
ularly well represented within our dataset—Ilya Repin, Amadeo
Modigliani, and Pablo Picasso—to analyze how their use of color
in painting clothing changes over time, through the use of Color
Contrast and Diversity Indices. These results are presented in
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Figure 24: Linear Regression of Changes in CI vs DI for Style-
Pairs with Significant Differences in both CI and DI

Figure 25: Linear Regression of Changes in CI vs DI for Half-
Century Interval-Pairs with Statistically Differences in both CI
and DI

Fig.26, 27, and 28, respectively.

Figure 26: Scatterplots of CI and DI of Ilya Repin’s Oeuvre

Figure 27: Scatterplots of CI and DI of Amedeo Modigliani’s oeu-
vre.

Figure 28: Scatterplots of CI and DI of Pablo Picasso’s oeuvre.

Conclusion
We have presented a comprehensive, computational analysis

of major trends in colors in clothing of portrait paintings over the
past 600 years. With a primary goal of sharing these novel ap-
proaches from computer vision applied for fine art analysis, we
hope this work can foster more cross collaboration between the
two fields. Our analyses can be extended to include more fine-
grained analysis of various qualities of the dominant colors across
styles and time periods. Since the start-of-the-art computer vision
models for segmentation are primarily trained on photographs,
rather than images of fine art, there is room for improvement in
segmentation and other computer vision tasks applied to paint-
ings. Further work could include a large scale study of materials,
stylistic cut, silhouette, and other attributes of clothing over time.
In conjunction with the work on computational analysis of head
pose in [3] and [4] as well as other prior works, these methods
comprise a compendium of computational tools that can aid art
scholars in the study of fine art.
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Appendix A

Figure 29: Aggregate CIELAB Colors for all portraits (left), all male portraits (middle), and all female portraits (right)

Figure 30: Aggregate CIELAB Colors over 50-year Intervals (1425-1449, 1450-1499, 1500-1549, 1550-1599)

Figure 31: Aggregate CIELAB Colors over 50-year Intervals (1600-1649, 1650-1699, 1700-1749, 1750-1799)

Figure 32: Aggregate CIELAB Colors over 50-year Intervals (1800-1849, 1850-1899, 1900-1949, 1950-1999)
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Figure 33: Aggregate CIELAB Colors over 50-year Intervals for female and male portraits (1425-1449, 1450-1499)

Figure 34: Aggregate CIELAB Colors over 50-year Intervals for female and male portraits (1500-1549, 1550-1599)

Figure 35: Aggregate CIELAB Colors over 50-year Intervals for female and male portraits (1600-1649, 1659-1699)

Figure 36: Aggregate CIELAB Colors over 50-year Intervals for female and male portraits (1700-1749, 1750-1799)
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Figure 37: Aggregate CIELAB Colors over 50-year Intervals for female and male portraits (1800-1849, 1850-1899)

Figure 38: Aggregate CIELAB Colors over 50-year Intervals for female and male portraits (1900-1949, 1950-1999)

Appendix B

Figure 39: TSNE embeddings for all portrait paintings, colored by date
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Appendix C

Figure 40: Pairs of Styles with Significant Difference in CI Values
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Figure 41: Pairs of Styles with Significant Difference in DI Values

Figure 42: Pairs of Half-Century Intervals with Significant Difference in CI Values
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Figure 43: Pairs of Half-Century Intervals with Significant Difference in DI Values
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