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Abstract
The impact of image compression algorithms varies signifi-

cantly across image contents in a way that is challenging to pre-
dict. The ongoing trend towards richer visual content, e.g. High
Dynamic Range and Wide Color Gamut, increases both the rel-
evance and complexity of this issue. This study analyzes first
grades of perceived quality of compressed images to determine
in which proportion their variance is due to compression levels,
image content and compression type, respectively. An ANOVA
analysis on 3 HDR datasets indicates that the variance of the sub-
jective evaluations is due for 45-62% to the compression level and
for 7-10% to the image content. Secondly, we present a framework
for identifying which features calculated on the source images are
efficient to predict the part of image content in grades of perceived
quality of compressed images. We build on traditional regression
analysis by adding an adaptation of the recent Model Class Re-
liance approach. In an experiment on 6 published datasets of
subjective quality grades of compressed images, OLS-R and KNN
models predicting the grades are built using two input variables:
the compression level and one feature characterizing the original
content. The Empirical Model Reliance is then calculated to mea-
sure the importance of the content feature in the regression model
as well as the Model Class Reliance to bound the impact of a re-
duced fit to the training data, i.e. indicating robustness towards
generalization. Results show that traditional regression analysis
alone is not robust for identifying the most relevant features and
confirms that when the most useful features for SDR are SI/block
contrast measures, other features characterize HDR content best,
such as DR and color features (colorfulness or saturation).

Introduction
The visual quality resulting from the compression of an im-

age depends on the chosen compression algorithm and settings but
also on the characteristics of the original content. Subjective eval-
uations of quality show that the content impacts significantly the
perceived quality. This is illustrated on results from Korshunov
et al. on HDR image compression [1]: in Figure 1 the average
perceived quality as a function of the compression level differs
significantly across content. On the compression side, the im-
pact of the image content needs to be controlled to ensure that the
test and evaluation of performance are not confined to the spe-
cific data they are tested on but will generalize to other content.
It is also relevant to predict and select the compression settings
that will yield the desired performance for each content specifi-
cally. To mitigate that uncertainty, one approach is to ensure us-
ing sufficiently varied content for performance evaluation. For
video compression two indicators characterizing the source are
standardized in ITU-T Rec. P.910 [2]: the Spatial perceptual in-

Figure 1: Perceived quality (mean opinion score - MOS) as a
function of the compression level (x-axis) from [1]. Each line
color corresponds to a different content. The MOS is averaged
over the three compression settings.

formation (SI) and the temporal perceptual information (TI). For
image compression, it is common good practice to use Spatial
perceptual information and colorfulness as two indicators repre-
senting the variations across images of a dataset [3]. For objective
quality metrics too, it has been shown that one of the biggest chal-
lenges is predicting quality across different contents [4]. As both
objective and subjective evaluations of perceived quality of com-
pressed images embed the effect of compression, original content
and their interaction in a single grade, isolating their respective
impact is not trivial and aligning quality across content is an active
research topic [5]. Another challenge comes from the trend to-
wards richer signal content such as High Dynamic Range (HDR)
or Wide Color Gamut (WCG), which in practice extends the range
of possible content [5, 6] .

This study focuses first on the respective impact of content
and compression levels on the perceived subjective quality. An
estimate of these proportions is presented and compared across
publicly available datasets of subjective image quality. Secondly,
we analyze further the part of variance of perceived quality due to
content by relating it to specific aspects of image characteristics.
The approach used here is regression analysis to evaluate the im-
portance of features for well performing models [7]. The research
questions addressed in this study are: RQ1 What are typical pro-
portions of the MOS due to content vs due to compression level
respectively in existing QA datasets ? RQ2 To what extent can
we explain/predict the variance due to content by features repre-
senting some specific characteristics of images?
The remainder of this paper is organized as follows: the related
literature is presented in the next section (State of the Art), then
the proposed method is detailed in Sec. Method for analysis be-
fore being applied to 6 publicly available datasets with subjective
evaluations of compressed images in Sec. Experiment.
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State of the Art
Evaluation of variation within a dataset

The two indicators standardized by the ITU to characterize
sources for video compression SI and TI [2] have been updated in
2022 to address the different range and coding scheme of HDR
content. Although no standard currently recommends equiva-
lent indicators for image compression, it is good practice to in-
dicate SI and colorfulness for 8bits RGB images (measured typi-
cally by [8]) and additionally Dynamic Range and Image Key for
HDR content [9]. An analysis of characteristics of publicly avail-
able quality assessment datasets was performed in [3] in terms
of source content, test conditions and obtained MOS scores. The
author computes SI, colorfulness (and motion vectors for videos)
and calculates their respective range and uniformity (calculated as
the entropy on 10 bins) to characterize the variety among source
contents. This study from 2012 is limited to SDR/BT.709 con-
tent and studies separately the content and the MOS but does not
investigate their interactions. A framework was designed in [10]
by Narwaria et al. where the authors apply iteratively an objec-
tive measure to evaluate the impact of contrast reduction on HDR
content with BT.709 primaries. The sensitivity of the content to
contrast reduction is used to assess how complex it will be for
tone mapping algorithms. Specifically for image compression,
different studies have researched how to measure and predict how
”easy” an image will be to compress. A measure of this cod-
ing efficiency (also termed compressibility or complexity) is pre-
sented in [11] as the AUC (Area Under Curve) under a MOS-rate
curve. Yu et al. define the coding complexity as the number of
bits needed when compressing at fixed QP [12], seen as the best
approximation for Kolmogorov complexity. Determining the rel-
evant characteristics of the perceived quality of images can also
be used to focus modeling efforts. For example to predict the
perception of dynamic range of HDR content (BT.709 primaries)
in [9] or which display characteristics are relevant for quality on
HDR displays in [13].

Evaluation of feature importance for regression
models

In subjective experiments on the quality of compressed im-
ages, the measured dependent variable is the perceived quality and
the independent variables are the compression levels, the content
and possibly additional variables such as compression settings or
repetition order. The proportion of the variance of the subjective
grades due to the independent variable ”content” and to the in-
dependent variable ”compression level” is the effect size of the
factor as calculated by N-way ANOVA [14]. However, ”con-
tent” is then a categorical variable and this gives no information
over which aspects of the content are key. Regression analysis
can tackle that question by comparing which features input to the
regression models are most useful for prediction. Common ap-
proaches are hierarchical or iterative regression in which features
are added one by one to regression models (usually simple lin-
ear models) where the gain from adding a feature represents its
impact. In [15], Krasula et al. use a mixture of random and se-
quential approach (Las Vegas algorithm) for adding features to
linear regression model predicting quality of tone mapped images.
Step-wise regression is applied by Hulusic et al. [9] to predict per-
ceived dynamic range of HDR images.
Regression analysis has recently been the focus of renewed re-

search interest in relation to explainability in AI/ML. In this study,
we follow the approach formalized by Fisher et al. in [7] to eval-
uate the importance of a set of features of interest {Xi} for the
prediction of a dependent variable Y . Fisher et al. define a set
of ”well performing models” FR = { f j \ Loss( f j) ≥ fre f − ε}
named Rashomon set, of the regression models which perfor-
mance falls within a margin ε of a ”model of interest” fre f that
serves as reference. The authors then measure how much each
model of the Rashomon set rely on the feature of interest. For
a given feature of interest Xi and a fixed model f j from the
Rashomon set FR this empirical model reliance M̂R(Xi, f j) is cal-
culated as:

M̂R(Xi, f j) =
êswitchXi( f j)

êorigin( f j)

where êorigin( f j) is the expected loss for f j and êswitchXi( f j) is
the expected loss for f j when noise is introduced on Xi. The noise
introduced on Xi should remove the correspondence with the mea-
sured variable but retain the overall distribution of Xi. To this aim,
the authors use permutations of Xi so M̂R(Xi, f j) measures the im-
pact on the model performance when breaking the relation of the
feature of interest Xi to the target variable Y but without modifying
the distribution of Xi. Finally an empirical model class reliance
M̂CR is calculated for each feature of interest Xi as the bounds for
empirical model reliance:

M̂CR = [ min
f j∈FR

M̂R(Xi, f j), max
f j∈FR

M̂R(Xi, f j)]

It corresponds to how much the M̂R can vary when relaxing the
model fit but retaining a minimum performance constraint. The
authors also detail how to render the calculations tractable for spe-
cific classes of regression models such as linear models used here.

Method for analysis
The complete pipeline for the study is depicted in Fig. 2. The

N-way ANOVA analyzes how the independent variables, Com-
pression level (CpLvl), Content (Cnt) and Compression type (Cp-
Typ) impact the dependent variable, the subjective quality scores.
In an ANOVA the independent variables are categorical. This sec-
tion presents our method of representing the Content variable via
a continuous variable, a feature characterizing the image content.
The three main steps are described in the following sections: cho-
sen features, regression analysis and estimation of the importance
of feature via Model Class Reliance.

Chosen features
In a first step, various features are calculated to characterize

different aspects of the source content. Group 1 - Spatial content
descriptors on luminance plane: Spatial information [2] and
contrast measures calculated on blocks: Weber contrast (CbW),
Michelson contrast (CbM), RMS contrast (CbRMS) [16, 15] are
used to characterize the spatial variation of content in the luma
channel. Group 2 - Amplitude related descriptors: Dynamic
range, Image Key and Area are used to characterize the amplitude
of the pixel intensities for HDR content [9]. Group 3 - Color:
3.a Colorfulness measures from [8] and [16], 3.b Color related
correlates from Color Appearance Models (CAM) [17, 18]. Col-
orfulness measures 3.a focus on low computational complexity:
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Figure 2: Pipeline of experiment. The analysis is done in 3 steps: ANOVA analysis on the subjective grades, regression analysis and
calculation of the relevance of each feature through the Model Class Reliance approach.

they combine the mean and variance of the chroma planes of im-
ages in a simple color opponent colorspace1 either linearly for M3
[8] or in the logarithmic domain to calculate the C1 and C2 mea-
sures in [16]. Color Appearance Models (CAM) model the early
stages of human vision to predict the perception of images in spe-
cific viewing conditions. We include as features the colorfulness
(M), chroma (C) and saturation (s) correlates from CIECAM02,
CIECAM16, Hellwig22 and ZCAM [17, 18] 2.
The viewing conditions (ambient light + display) are modeled as
best possible given the available information. For experiments
where the precise information is not available (e.g. crowdsourc-
ing) standard viewing parameters are assumed.

Regression analysis
For the regression analysis, the features presented in the pre-

vious section are calculated on the original quality images and
then used together with the compression levels to build regression
models predicting quality evaluations. We denote the regression
models fk(X1,X2) where X2 is the variable coding the Compres-
sion level, X1 is one of the features presented in Sec. Chosen fea-
tures to characterize the content and fk the regression model. Two
types of models, chosen for their simplicity and therefore robust-
ness, are used: Ordinary Least Squares (OLS) [14] and K-Nearest
Neighbors (KNN). OLS regression is rarely used because of its
sensitivity to multicollinearity between features, so it is fitting
here when there is no such risk as one input feature varies only
by compression level whereas the second varies only by content.
All modeling is done by splitting the dataset in 5 folds: at each it-
eration, training is done on 80% of the images and the remaining
20% are used for testing with no content present in both train-
ing and testing. The regression performance is evaluated through
Pearson correlation coefficient (PCC) and Spearman correlation
coefficient (SROCC).

Estimation of the feature importance
The first step of the Empirical Model Reliance method is

to define a ”model of interest” which performance will serve as
reference to establish a threshold for ”well-performing models”.
There is no consensual ”model of interest” for quality prediction

1(R-G, (R+G)/2 - B)
2Calculated with Colour https://colour.readthedocs.io/en/develop/

of compressed image, and instead we use two reference models
as indicators of performance: a full-reference (FR) quality metric
and the OLS model built using only X2 (Compression level) as
input. We calculate several state-of-the-art FR quality metrics as
they are currently the best performing type of models for image
quality predictions and we use the metric performing best as in-
dicator. Given that FR quality metrics and the fk have access to
different types of data, it is not possible to directly compare their
respective performance. The OLS model using only X2 (Com-
pression level) as input represents the baseline of linear prediction
without knowledge about the content that we are building on, it is
in that sense the lower performance threshold. For each model
fk, we first calculate the Empirical Model Reliance M̂R(X1, fk),
i.e. how much this specific model (with fixed coefficients) relies
on the value of the feature of interest X1 for its performance. Our
feature of interest X1 is only related to the original content and
does not depend on the compression level, therefore the expected
loss when introducing permutations, Eq. 3.3 in [7], can be rewrit-
ten in our case as:

êswitchX1( fk) =
1

ncpv(nct −1)

ncpv

∑
i=1

∑
ct j ̸=cti

(
y j − fk(X1,i,X2, j)

)2 (1)

where ncpv is the number of compressed versions for each con-
tent, cti is the original content corresponding to stimuli i and
Y = {y j, j ∈ [[1,nSamples]]} is the target variable. For the OLS
model case, the regression model is defined by β = (β1,β2), so
following the same development as Eq. 3.3 to 7.2 in [7], Eq. 1
can be rewritten as

êswitchX1( fk) =
1

ncpv

(
Y ′Y −2

[
X ′

1WbkY
X ′

2Y

]
β

+β
′
[

X ′
1X1 X ′

1WbkX2
X ′

2WbkX1 X ′
2X2

]
β

) (2)

where matrices are noted in bold font and capital letters are used
for vectors. Eq. is similar to Eq. 7.2 in [7], with the replace-
ment of the matrix W, by the matrix Wbk = 1

nct−1 1n1′n − Bbk
where Bbk ∈ Rncpvxncpv has for elements Bbk(i, j) = δ (cti,ct j).
The lower and upper bounds for M̂R, empirical Model Class Re-
liance M̂CR+ and M̂CR−, are calculated following the procedure
for linear models from [7] with an adaptation of Eq 7.3 [7] to our
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Table 1: Main characteristics of the datasets used

Name
# contents
# samples

Colorspace Codec Subjective evaluations

Kadid10k [19] 81 / 810 sRGB JPEG2000 / JPEG
DCR visible ref. - 30 eval. per PVS / Crowd-
sourcing

CID 22 [20] 49 / 1512 sRGB JPEG / JPEG2000 / JPEG-XL
Adapted PC - ≥49 eval. & DSIS - 101 eval.
/ Controlled & Crowdsourcing

TID-UPIQ [21, 5] 25 / 250 sRGB JPEG2000 / JPEG
Pairwise Comparison - ≈ 38 eval. / Con-
trolled & Crowdsourcing

Narwaria-UPIQ [22,
5]

10 / 140 HDR/ BT.709
TMO / JPEG / iTMO - TMO approx. of
iCAM06 using MSE/SSIM

ACR-HR - 26 eval. per PVS, scaled to JOD
/ Controlled

Korshunov-UPIQ
[1, 5]

20 / 240 HDR/ BT.709 JPEG-XT at 3 profiles DSIS - 22 eval. per PVS, scaled to JOD /
Controlled

IRISAWCG4K
[6]

8 / 96
HDR/ WCG
(BT.2020)

HEVC - 3 Chroma settings: 8b, 10b with
and 10b W/O Chroma QP offset

DSIS visible ref. - 13 eval. per PVS/ Con-
trolled

case following Eq. 1. For linear models as used in this study,
relaxing the fit to bound the range of M̂R values means allow-
ing variation in the β coefficient vector that define the model.
M̂CR+ and M̂CR− are determined through quadratic expression
on β (and solved via a quadratic solver).

Experimental results
Dataset

The method was tested on six publicly available datasets of
subjective evaluations of compressed images. The main charac-
teristics of the datasets used in the experiment are summarized in
Table 1. For the datasets containing other types of defects than
compression-based ones, such as Kadid10k [19], CID22 [20] and
TID2013 [21], we only selected the subset of distortions induced
by standardized image compression: JPEG, JPEG2k and JPEG-
XL. Three datasets [22, 1, 6] are focused on compression of HDR
content with BT.709 primaries for the first two and WCG for the
last one. In [22] and [1], the authors process HDR images through
tone mapping, JPEG compression and inverse tone mapping. In
the first study Narwaria et al. optimized iCAM06 TMO/iTMO
via MSE or SSIM and retain only the SDR version in the com-
pression part. In [1], Korshunov et al. use the three profiles of the
JPEG-XT standard to create an extension layer and reconstruct the
HDR part after the compression of both base and extension layers
via JPEG. For the regression analysis, the psychometric scaling of
subjective grades to align them on a similar scale performed in [5]
is used. Finally, in [6], Rousselot et al. apply HEVC compression
on images in WCG (BT.2020). Their focus is specifically on the
importance of color and the 3 compression settings they use differ
by the handling of the chrominance channels.

ANOVA analysis for respective effect size of con-
tent vs compression level

N-way ANOVA analysis was performed to evaluate the sig-
nificance of the different independent variables as factors, i.e. cal-
culate the % of variance from the subjective grades due to content
and compression level respectively. This is done on the three HDR
datasets as the grades per observer are available: Narwaria, Kor-
shunov and IRISAWCG4K. N-way ANOVA is applied on the fol-
lowing independent variables: Compression level (CpLvl), con-
tent (Cnt) and compression type (CpTyp). The analysis is first
calculated with all factors and their interactions, and then a second
time with keeping only the factors and interactions which have a

statistically significant effect on the measured variable. Results
are detailed in Table 2. For all datasets, the factors CpLvl and
Cnt have a significant influence on the subjective grades as fac-
tors and through their interaction. It is also to be noted that for all
datasets, the type of compression settings has little or no signifi-
cant impact on the grades (see column Codec in Tab. 1 for the list
of specific settings for each dataset). The desired outcome of this
analysis is the comparison of the effect size, reported as ω2 val-
ues in Table 2 [14]. The proportion of variance explained by the
full model is reported in the right-most column: it ranges from
65% for IRISAWCG4K to 78% for UPIQKorshunov. In terms
of model performance, this global ω2 is equivalent to the ad-
justed coefficient of fit R2, meaning that the corresponding PCCs
are 0.824, 0.887 and 0.801 respectively for UPIQNarwaria, UP-
IQKorshunov and IRISAWCG4K. The proportion of variance form
the subjective grades explained by CpLvl / Cnt are 45.5% / 10.1%,
62.4% / 7% and 49% / 6.9% respectively for UPIQNarwaria, UP-
IQKorshunov and IRISAWCG4K.

Estimating feature importance via regression
models
Performance analysis - The MCR method necessitates a refer-
ence level for the performance of the considered regression mod-
els. We have calculated two models that differ from the feature +
CpLvl models: the OLS model built with CpLvl only and state-of-
the-art image quality metrics. The selected metrics are: PSNR-Y,
PSNR-RGB, SSIM, MS-SSIM (with PU coding as pre-processing
for HDR content [5]) and the more complex ColorVideoVDP
[23]. For all datasets, the best performing quality metric is Col-
orVideoVDP (CVVDP), and it is the only one reported here for
space reasons. ColorVideoVDP and OLS models use very differ-
ent information: both original and degraded content for the full
reference metric vs. original content and compression levels for
the OLS-R models. Therefore a direct comparison is not relevant
but the image quality metric is more used here as a reference of
performance level. The performance in terms of SROCC for each
OLS model is visible in Fig. 3 for each dataset separately. The
PCC and SROCC performances of the best QM, the OLS with
only CpLvl as input variable and the OLS and KNN model with
1 content feature and CpLvl with highest performance are given
in Table 3. Modeling with KNN or OLS regression yields similar
performance levels. In terms of SROCC, the OLS-R models with
1 content feature and CpLvl achieve better performance than the
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Table 2: ANOVA analysis of the independent variables compression level and content

Dataset name
Compression level - CpLvl Content - Cnt Int. CpLvl x Cnt Model w. all significant factors
df / F / p ω2 df / F / p ω2 df / F / p ω2 Total ω2 Factors w. ω2 ≥ 1%

UPIQNarwaria
6 / 829.5
p=0

0.455
9 / 124.0
p=6.4E−202 0.101

54 / 7.5
p=7.1E−52 0.032 0.679

CpTyp x Cnt (0.07)
CpTyp (0.010)

UPIQKorshunov
3 / 5148
p=0

0.624
19 / 94.3
p=0

0.07
57 / 15.9
p=2E−139 0.034 0.787

CpTyp x Cnt (0.03)
CpLvl x CpTyp x Cnt (0.014)

IRISAWCG4K
3 / 584.5
p=8.2E−231 0.49

7 / 36.4
p=3.53E−46 0.069

21 / 2.2
p=0.001

0.007 0.651 CpTyp x Cnt (0.073)

OLS-R model using only CpLvl for every dataset but this differ-
ence is statistically significant only for the UPIQTID dataset.
Model Reliance - Each of the models considered has two input
features: the compression level and a feature calculated on the
original content that is our feature of interest in the sense of [7].
The Empirical Model Reliance ÊMR values are presented for each
OLS model in Fig 3 in the lower part of the y-axis, separately for
each dataset. The SROCC of the OLS model indicates which fea-
tures are the most useful for predicting the part of the subjective
grades not due to the compression level. Interesting prediction
models are those achieving both better performance than CpLvl
alone and better other features. The ÊMR measures how much
a model relies on the feature of interest for the prediction when
being best fitted to the current dataset, and therefore the SROCC
performance value and the ÊMR should be read jointly. If we
consider for instance the features C2 and CIE02 s for the dataset
TID2013, the corresponding OLS models achieve similar SROCC
performances of 0.869 (ranking as 6th highest SROCC among 21)
and 0.863 (ranking as 10th highest SROCC) respectively. How-
ever, their M̂R values are 1.008 for C2 and 1.098 for CIE02 s.
Those values indicate that the OLS-C2 model actually does not
rely much on the feature C2 as the MSE increases by less than
1% when introducing noise in the said feature. On the contrary
the prediction error of the OLS-CIE02 s increases by almost 10%
when the values of CIE02 s are permuted.
Model Class Reliance - The results for Empirical Model Class
Reliance are presented in Fig. 4 where the feature importance is
represented on the x-axis in terms of model reliance values and the
model performance is represented on the y-axis in terms of MSE
loss. The M̂R is represented by the + symbols, it indicates the re-
liance value for the model best fitted for a dataset. For the M̂R, the
most desirable points are those closer to the bottom right corner of
the plots (lower loss and higher reliability). The upper and lower
bounds of MCR, M̂CR+ and M̂CR−, are the left and right parts of
the curves respectively starting from that + symbol. The M̂CR+

and M̂CR− indicate the range within which the empirical model
reliance M̂R could evolve when relaxing the constraint of minimal
loss, i.e. relaxing the constraint of best fit to the subjective data.
As expected in every case the M̂CR+ and M̂CR− curves grow fur-
ther apart when the minimal loss (y-axis) increases. The threshold
below which a model does not rely on a variable is the black line
at EMR=1 and the threshold above which a model does not im-
prove on the OLS model with CpLvl only is the horizontal dashed
line. The most interesting features are those whose M̂CR−-M̂CR+

curves are the closest to the bottom right part of the plots and with
the ”flattest” shape for the upper bound M̂CR+, i.e. indicating a
higher robustness with regard to the fit to the specific testing data.

the The plots 4a, 4b, present results for features from Group 1 and
DR from Group 2, and the plots 4c, 4d, for a selection of features
from Group 3 (a and b): M3H03,CIE16s, ZCAMs, HellwigM and
Hellwigs. For UPIQTID, features from group 1 are the most use-
ful and SI performs comparatively to the block contrast tried. For
the UPIQNarwaria dataset, the DR feature is among the most in-
teresting which is sensible given the content is HDR as well as
color-related measures M3 and saturation from CAMs CIE02 s,
CIE16 s and ZCAM s.

Conclusion and future work
This paper investigates the role of original content in visual

perception of compressed images, in contrast to that of the com-
pression level. By using ANOVA analysis on existing datasets,
we show that the respective proportion of variance in the sub-
jective evaluations is comprised between 45-62% for the com-
pression level and 7-10% for the image content. Secondly, we
present a framework building on regression analysis to robustly
determine which features characterize well image content with
the Model Class Reliance approach . Two measures are added to
the traditional ranking of features based on the performance of the
corresponding regression models: the Empirical Model Reliance
M̂R estimates how much a regression model relies on the con-
sidered feature when fully optimizing for a training dataset and
the Empirical Model Class Reliance provides upper and lower
bounds for M̂R when relaxing the loss optimization. Compar-
ing results for the SDR and HDR datasets studied shows that
the most useful features for SDR are SI/block contrast measures
whereas other aspects such as DR and color features are most
relevant for HDR content. An extension of the work to evaluate
whether across viewing conditions influences the results, as well
as to refine the measure of robustness depending on the compres-
sion level is planned.
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Table 3: Prediction of quality for each dataset through different methods: best image quality metric, OLS regression using only CpLvl
and regression models (OLS and KNN) build using 1 feature calculated on original content and the compression levels.

Dataset name Kadid10kCmp CID22 UPIQTID UPIQNarwaria UPIQ
Korshunov

IRISAWCG4K

Best
QM

Metric CVVDP CVVDP CVVDP CVVDP CVVDP CVVDP
PCC / SROCC 0.938 / 0.924 0.856 / 0.926 0.956 / 0.946 0.774 / 0.747 0.934 / 0.962 0.681 / 0.73

OLS
CpLvl PCC / SROCC 0.903 / 0.873 0.937 / 0.936 0.842 / 0.861 0.799 / 0.787 0.877 / 0.848 0.838 / 0.807

Best performing models using CpLvl + 1 feature on original content

OLS
Feature CbRMS CIE16 s CbM DR SI CbM

PCC / SROCC 0.903 / 0.883 0.94 / 0.942 0.874 / 0.903 0.853 / 0.859 0.871 / 0.879 0.853 / 0.854

KNN
Feature CbRMS CIE02 C CbRMS DR CbM CbW

PCC / SROCC 0.946 / 0.875 0.941 / 0.941 0.918 / 0.895 0.823 / 0.825 0.882 / 0.87 0.849 / 0.845

(a) Kadid10k Cmp (b) CID22 (c) TID-UPIQ

(d) Narwaria-UPIQ (e) Korshunov-UPIQ (f) IRISAWCG4K
Figure 3: Performance of OLS regression for each feature given as SROCC on the upper part of the y-axis and Empirical Model Reliance
(ÊMR) on the lower part of the y-axis (the axis is reversed, longer bars means higher values). On the upper half, the performance of the
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the line of ÊMR=1 indicating the threshold under which the model does not rely on the feature is given for reference.

Quality,” IEEE Transactions on Multimedia, 2022.
[6] M. Rousselot, “Quality Assessment of HDR/WCG Images Using

HDR Uniform Color Spaces,” Journal of Imaging, vol. 5, 2019.
[7] A. Fisher, C. Rudin, and F. Dominici, “All Models are Wrong, but

Many are Useful: Learning a Variable’s Importance by Studying
an Entire Class of Prediction Models Simultaneously,” Journal of
Machine Learning Research, vol. 20, no. 177, 2019.

[8] D. Hasler and S. E. Suesstrunk, “Measuring colorfulness in natural
images,” in Human Vision and Electronic Imaging VIII, 2003.

[9] V. Hulusic, K. Debattista, G. Valenzise, and F. Dufaux, “A model
of perceived dynamic range for HDR images,” Signal Processing:
Image Communication, vol. 51, 2017.

[10] M. Narwaria, “An objective method for High Dynamic Range
source content selection,” in 2014 6th International Workshop on
Quality of Multimedia Experience, QoMEX 2014, 2014.

[11] P. Hanhart and T. Ebrahimi, “Calculation of average coding effi-

ciency based on subjective quality scores,” Journal of Visual Com-
munication and Image Representation, vol. 25, 2014.

[12] H. Yu and S. Winkler, “Image complexity and spatial information,”
in Fifth International Workshop on Quality of Multimedia Experi-
ence (QoMEX), IEEE, 2013.

[13] A. Choudhury and S. Daly, “HDR Display Quality Evaluation by in-
corporating Perceptual Component Models into a Machine Learning
framework,” Signal Processing: Image Communication, 2019.

[14] Cohen J., Cohen P., West S., and Aiken L., Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences. Routledge,
2013.

[15] L. Krasula, K. Fliegel, and P. Le Callet, “FFTMI: Features Fusion
for Natural Tone-Mapped Images Quality Evaluation,” IEEE Trans-
actions on Multimedia, vol. 22, 2020.

[16] K. Panetta, C. Gao, and S. Agaian, “No reference color image con-
trast and quality measures,” IEEE Transactions on Consumer Elec-

209-7
IS&T International Symposium on Electronic Imaging 2025

Human Vision and Electronic Imaging 2025



(a) Feature set 1 - UPIQTID. (b) Feature set 1 - UPIQNarwaria.

(c) Feature set 2 - UPIQTID. (d) Feature set 2 - UPIQNarwaria.
Figure 4: M̂R and bounds M̂CR+ and M̂CR− when relaxing
the loss at different values for two set of features and datasets
UPIQTID and UPIQNarwaria). Feature set 1 is composed of:
SI, CbW , CbM, CbRMS and DR, Feature set 2 is composed of:
M3H03,CIE16s, ZCAMs, HellwigM and Hellwigs. The vertical
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no real impact on the model and the horizontal dashed line indi-
cates the loss when modeling with CpLvl only.
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