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Abstract 

Fisheye cameras providing omnidirectional vision with up to 

360° field-of-view (FoV) can cover a given space with fewer 

cameras for a multi-camera system. The main objective of the paper 

is to develop fast and accurate algorithms for automatic calibration 

of multiple fisheye cameras which fully utilize human semantic 

information without using predetermined calibration patterns or 

objects. The proposed automatic calibration method detects humans 

from each fisheye camera in equirectangular or spherical images. 

For each detected human, the portion of image defined by the 

bounding box will be converted to an undistorted image patch with 

normal FoV by a perspective mapping parameterized by the 

associated view angle. 3D human body meshes are then estimated 

by pretrained Human Mesh Recovery (HMR) model and the vertices 

of each 3D human body mesh are projected onto the 2D image plane 

for each corresponding image patch. Structure-from-Motion (SfM) 

algorithm is used to reconstruct 3D shapes from a pair of cameras 

and estimate the essential matrix. Camera extrinsic parameters can 

be calculated from the estimated essential matrix and the 

corresponding perspective mappings. By assuming one main 

camera’s pose in the world coordinate is known, the poses of all 

other cameras in the multi-camera system can be calculated. 

Fisheye camera pairs spinning different angles are evaluated using 

(1) 2D projection error and (2) rotation and translation errors as 

performance metrics. The proposed method is shown to perform 

more accurate calibration than methods using appearance-based 

feature extractors, e.g., Scale-Invariant Feature Transform (SIFT), 

and deep learning-based human joint estimators, e.g., MediaPipe. 

1. Introduction  
Human pose and shape estimation (HPSE) is a crucial function 

for many human-centric applications in various fields, such as 

immersive telepresence, interactive conferencing, sports analytics, 

healthcare monitoring, human motion tracking,  avatar and digital 

human creation, metaverse, AR/VR/MR/XR and entertainment. 

However, deep learning-based monocular 3D HPSE suffers from 

occlusion [1] and depth ambiguity [2] problems and may fail for rare 

or unseen poses due to limited and fixed training data [3]. Fisheye 

cameras provide omnidirectional vision with up to 360° field-of-

view (FoV), much wider than typical perspective vision from 

traditional cameras, providing advantages in many applications such 

as telepresence, autonomous driving, cinema, and surveillance. 

Systems of multiple fisheye cameras with wide baselines can 

provide more reliable multi-view estimates from less reliable 

monocular estimates from each individual camera without 

redefining a new multi-view 3D HPSE or retraining the existing 

monocular 3D HPSE. However, accurate and robust multi-camera 

calibration is required for such systems to accurately cover a wide 

region using a minimum number of fisheye cameras with 

overlapping FoVs and properly mitigate the self or mutual occlusion 

and depth ambiguity problems. 

SMPL (Skinned Multi-Person Linear Model) [4] and its 

extended version SMPL-X (Expressive Body Capture) [5] and 

upgraded version STAR (Sparse Trained Articulated Human Body 

Regressor) [6] are state-of-the-art 3D human body models based on 

skinning and blend shapes. They are becoming popular in both 

industry and academia for human body synthesis by NeRF or 3D 

Gaussian splatting. HMR (Human Mesh Recovery) [7] and its 

upgraded version HMR 2.0 (Humans in 4D) [1] are state-of-the-art 

end-to-end methods for reconstructing a full 3D mesh of a human 

body, even occluded or truncated, from a single RGB image by 

estimating its corresponding SMPL model parameters. Therefore, 

3D human meshes can be estimated from an image patch defined by 

a bounding box containing a detected person, without the need to 

wear any MoCap markers or IMU sensors. 

Deep learning-based monocular 3D human pose estimation 

may fail for rare or unseen poses due to limited and fixed training 

data [3]. It is challenging due to depth ambiguity and broad diversity 

in human poses, appearances, and camera viewpoints. Training 3D 

pose estimation is severely limited by dataset bias, because 

collecting accurate 3D pose annotations for 2D images as ground 

truth for model training is costly and time-consuming and collected 

training data is usually biased towards specific environment and 

selected actions. The 2D-image-to-3D-posture mapping by a 

monocular 3D human pose estimator is not unique subject to depth 

ambiguity, which may result in, for example, different degrees of 

body tilt even for common human postures regardless of the 

camera’s shooting angle [2]. In worst-case scenarios, incorrect body 

tilt depends on hand / body stretches for lack of diversified human 

poses in training data. 

Fisheye cameras provide omnidirectional vision with up to 

360° FoV and output images typically in equirectangular or 

spherical format, which cause serious object shape distortion (i.e., 

deformation), especially for objects captured away from the equator 

(in equirectangular format) or the optical axis (in spherical format). 

Applying object detection trained on undistorted perspective images 

to images from fisheye cameras usually results in lower accuracy 

due to shape distortion. Applying view-angle dependent perspective 

mapping before object detection to images from fisheye cameras 

achieves higher accuracy while introducing excessive computation 

cost. For accurate and efficient object detection on images from 

fisheye cameras, new architectures were designed specifically for 

spherical data. Kernel transformer network (KTN) [8] was proposed 

to efficiently perform spherical convolution (SphConv) [9] on 

images in equirectangular format, and can be applied to CNN based 

object detection, e.g., Faster R-CNN [10], for accurate and efficient 

object detection on images from fisheye cameras. 

Multi-camera systems with wide baselines can provide more 

reliable multi-view estimates from less reliable monocular estimates 

without redefining a new multi-view 3D HPSE or retraining the 

existing monocular 3D HPSE, but accurate and robust multi-camera 

calibration is required. Procrustes transformation (i.e., rigid-body 

transformation with degrees of freedom in scale and rotation) is 
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usually applied to ignore local rotation and scaling for loss 

calculation in training human pose estimator and human body mesh 

recovery, causing the trained models subject to local rotation and 

scaling errors. Even well-trained monocular HPSE methods may 

suffer from excessive errors due to self or mutual occlusion and out-

of-view truncation of human bodies. Therefore, multi-camera 

systems supporting multi-camera fusion may achieve accuracy 

much less susceptible to partially visible human bodies due to 

occlusion and truncation. 

2. Motivation 
Fast and accurate automatic multi-camera calibration without 

using predetermined calibration patterns or objects is highly 

desirable for various human-centric applications, where human 

bodies are mostly visible in the scenes, particularly for ad hoc or 

amateur video capturing. It is especially preferred for systems with 

wide baselines where using traditional calibration patterns or objects 

become problematic due to difficulty in correspondence matching 

among inputs from different cameras. While fisheye cameras can 

provide up to 360° FoV to cover a wide region with fewer cameras, 

there are additional challenges due to shape distortion caused by 

their distorted output images typically in equirectangular or 

spherical format. Most deep learning-based monocular HPSE 

models are trained on images in perspective view with normal FoV 

(≈ 60°), therefore, perspective mapping is usually a necessary pre-

processing step for accurate HPSE. The main objective of the paper 

is to develop feasible algorithms to fully utilize human semantic 

information, e.g., human body meshes, which may be readily 

available in many human-centric applications, for fast and accurate 

automatic calibration of multiple fisheye cameras. 

Existing multi-camera automatic calibration methods [11][12] 

using 2D joints from estimated human skeleton as key points for 

estimating intrinsic and extrinsic camera parameters are feasible, but 

the matching and selection of corresponding key points for camera 

calibration are limited due to fewer typical number of 2D joints in a 

2D human skeleton compared with the typical number of vertices on 

a 3D human body mesh. For multi-person scenarios, correspondence 

matching is usually time consuming and error-prone [12]. Re-

identification (re-ID) networks may be required to support multi-

person within camera FoVs and facilitate human tracking while 

increasing complexity and reduce accuracy by utilizing human 

bounding boxes instead of 2D joints [13]. Human semantic features 

extracted by human body meshes can be used for better camera 

calibration [14]. However, none of the above methods support 

automatic calibration of multiple fisheye cameras suffering from 

serious shape distortion.  

A spherical Faster R-CNN implementation was proposed in [8] 

where the backbone CNN is replaced by SphConv [9] to transfer the 

features from planar images to spherical images. The feature map is 

then projected onto tangent planes before the region proposal 

network (RPN) is applied on the projected feature maps. Redundant 

proposals from all tangent planes are removed using a proposed 

spherical non-maximum suppression (NMS) process [8]. The 

refined proposals are then fed into the detector network to generate 

the final object detection outputs. The spherical Faster R-CNN 

detector can successfully detect objects despite the serious object 

shape distortion in the spherical images from fisheye cameras. 

The main objective of the paper is to verify that automatic 

calibration of multiple fisheye cameras can be achieved using 

pretrained models and its accuracy can be improved with adaptive 

sampling of recovered mesh vertices by matching correspondence 

of key points and checking consistency among selected key points. 

3. Main Method 
Figure 1 depicts a top-level block diagram for the proposed 

automatic calibration method for multiple fisheye cameras based on 

recovered human body meshes. The human detector can be 

implemented using spherical Faster R-CNN [8] which detects 

various objects of different classes, scales, and aspect ratios in 

equirectangular or spherical images from each camera, and outputs 

a bounding FoV with an object class and a softmax score in [0, 1] 

for each detected object. In the system, only humans detected with 

the object class Person and a score larger than a preset threshold of 

0.6 will trigger the following processes. The human detector outputs 

an α-degree bounding FoV centered at (θ, φ) associated with each 

detected human, where θ is the polar angle and φ is the azimuthal 

angle in the input spherical image Is from a fisheye camera. For each 

detected human, a perspective mapping ℙ(Is, α, θ, φ) = Ip will be 

performed to project the associated α-degree FoV from Is to a W×W 

pixels image patch Ip on the tangent plane at view angle (θ, φ). 

The view-angle dependent perspective mapping associated 

with each detected person can be considered to be a virtual camera, 

with its optical axis pointing at the center of the associated bounding 

FoV and its view covering the associated bounding FoV. For each 

virtual camera, the ideal pinhole camera model is assumed to 

provide an undistorted perspective view to HPSE without suffering 

from the serious geometric distortion caused by the 360° fisheye 

camera. It enables HPSE to recover geometrically consistent human 

body meshes from multiple fisheye cameras with different view 

angles. Each 360° fisheye camera is typically composed of two 

back-to-back 180° hemispherical cameras (i.e., front and rear), each 

captures the incident rays incoming from a hemisphere. 

It is assumed that the intrinsic parameters of each 360° fisheye 

camera are pre-calibrated offline and known, while the extrinsic 

parameters of each 360° fisheye camera will be estimated by the 

proposed automatic calibration method. For each virtual camera, it 

is assumed that its position coincides with the corresponding 360° 

fisheye camera, while its rotation matrix Rv and intrinsic matrix Kv 

can be derived directly from the associated bounding FoV: Rv ≈ 

ROT(φ) ROT(θ) and Kv = [fv 0 x0; 0 fv y0; 0 0 1], where ROT(φ) and 

ROT(θ) are rotation matrices about the Y and X axes, respectively. 

fv = W/2 tan(α/2) is the focal length and x0 = y0 = W/2 are the principal 

point offsets of the virtual camera. For each virtual camera, the 

extrinsic camera matrix from the 3D world coordinates to its 2D 

pixel coordinate is [Rv | 0] [Rf | tf], where Rf and tf are the rotation 

matrix and translation vector of the corresponding fisheye camera. 

The undistorted image patch captured by a virtual camera can 

be interpolated from the spherical image(s) captured by one or both 

of the hemispherical cameras inside the corresponding fisheye 

camera, depending on whether the bounding FoV is seen by one or 

both. Unified spherical model [15] can be applied for inverse 

mapping from the targeted perspective image patch Ip with W×W 

pixels back to the input spherical image(s) Is and nearest-neighbor 

or bilinear interpolation can be used in order to compute perspective 

mapping efficiently with minor image quality degradation. 

3D human body meshes are then estimated from these image 

patches by Human Mesh Recovery (HMR [7] or HMR 2.0[1]) 

followed by SMPL [4] model trained with prior knowledge about 

3D human body poses and shapes. The output of HMR model 

include the SMPL model parameters for pose (μ ∈ ℝ24×3×3) and shape 

(β ∈ ℝ10), and extrinsic camera parameters consist of a global 

orientation matrix R ∈ ℝ3×3 and translation vector t ∈ ℝ3. Given these 

parameters estimated by HMR, the SMPL model outputs a 3D 

human body mesh M ∈ ℝ3×N with N = 6890 vertices. The 3D human 

body mesh can be projected onto the 2D image plane of each virtual 
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camera using a perspective projection with the extrinsic parameters 

[R | t] estimated from each virtual camera by HMR. 

The vertices of each recovered 3D human body mesh are 

projected onto the image plane of the corresponding virtual camera. 

Structure-from-Motion (SfM) algorithms in OpenCV library were 

used to reconstruct 3D shapes from a pair of virtual cameras, using 

iterative RANSAC algorithm to remove outliers when the essential 

matrix is being calculated in each iteration. More details about wide-

baseline multi-camera automatic calibration using recovered human 

body mesh are provided in [14]. By assuming one main fisheye 

camera’s pose in the world coordinate is known, the poses (i.e., the 

camera extrinsic parameters) of all other fisheye cameras in the 

multi-camera system can be readily calculated from the estimated 

essential matrix and the view angle parameters for the associated 

perspective mappings for the corresponding pair of virtual cameras. 

Figure 2 shows the SfM setup and camera calibration pipeline using 

human body meshes recovered from a pair of virtual cameras. The 

calibration results of the overall system can be further optimized 

using Bundle Adjustment (BA) algorithm [12]. 

The following performance metrics for camera calibration can 

be used to evaluate its performance. 

(1) 2D reprojection error ρ serves as a metric of how well the 

estimated 3D structure aligns with the observed image data. 

After reconstructing the 3D points in the world coordinate frame 

by triangulation, the estimated projection matrices of the virtual 

cameras are used to reproject these 3D points back into 2D 

image space. The 2D reprojection error ρ is then computed as 

the Euclidean distance between the initially observed 2D points 

and the reprojected 2D points. 
  

ρ = ║uestimated – ureprojected║2   (pixels).                            (1) 
  

(2) Rotation error ψ and translation error δ are key metrics used to 

quantify the discrepancy between estimated and ground truth 

camera poses. The rotation error ψ represents the angular 

deviation between the estimated and the ground true orientations 

of the virtual camera in the world frame, typically measured in 

degrees. The translation error δ refers to the Euclidean distance 

between the estimated and the ground true position vectors of 

the virtual cameras, expressed in meters within the world frame. 
  

ψ = angle (Restimated, Rgroundtruth)   (degrees).                    (2) 
  

δ = ║testimated – tgroundtruth║2   (meters).                            (3)
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Figure 1.  Top-level block diagram for automatic calibration method for multiple fisheye cameras based on recovered human body meshes. 
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Figure 2.  (a) Structure-from-Motion (SfM) setup using recovered human body meshes. (b) Structure-from-Motion (SfM) camera calibration pipeline. 
 

4. Simulation Results 
The overall calibration results can be evaluated using the 

following performance metrics: (1) 2D reprojection error and (2) 

rotation and translation errors compared with the ground truth 

camera extrinsic parameters. The first performance metric is 

universal for almost all use cases as a self-guiding performance 

metric without using ground truth labelled data, while the second 

performance metrics are useful in labs or other controlled 

environments for improving algorithm and fine-tuning hyper-

parameters. 

A multi-view dataset FTV360 [15] was used to simulate and 

evaluate the calibration methods for multiple fisheye cameras. The 

dataset provides multiple people performing complex motion (e.g., 
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walking, racing, gaming) and captured by 40 synchronized 30fps 

360° fisheye cameras arranged in a 5×8 rectangular grid. The 

spacing between adjacent fisheye cameras is about 1.5m in the rear-

front direction and 2.5m in the left-right direction. Each 360° fisheye 

camera used in capturing the FTV360 dataset is actually composed 

of two back-to-back 180° hemispherical cameras, which will be 

considered as two separate cameras in the following discussion. 

Wide ranges of angles between cameras can be selected using 

different camera pairs among the 40 fisheye cameras. Without loss 

of generality, a group of six adjacent fisheye cameras were selected 

as an example camera configuration. Two walking persons captured 

in the [indoor-walk] video sequence were selected from FTV360 

dataset to evaluate the performance of automatic camera calibration 

methods for multiple fisheye cameras. Figure 3 depicts two test 

cases for the selected group of six fisheye cameras from the FTV360 

dataset during the [indoor-walk] video sequence at a frame when a 

walking man or a walking lady can be seen by all six cameras in the 

group simultaneously. 

 

 
Figure 3.  Two test cases for a selected group of six adjacent fisheye cameras 
from the FTV360 dataset during the [indoor-walk] video sequence. 

 

Figure 4 and 6 show the representative video frames captured 

by each of the six cameras for the two test cases when the walking 

man and the walking lady, respectively, can be detected by all six 

cameras in the group with different view angles. It is obvious to find 

that the body shapes of  the walking persons are seriously distorted 

in a captured frame if they are away from the optical axis of the 

capturing hemispherical camera. The simulation results for the two 

test cases are shown in Table 1 to 4 below. Performance results are 

compared for SIFT, human joints, and human mesh methods. The 

proposed human mesh method achieves much higher accuracy than 

methods using appearance-based feature extractors, e.g., Scale-

Invariant Feature Transform (SIFT), and somewhat higher accuracy 

than methods using deep learning-based 2D human joint estimators, 

e.g., MediaPipe [2] or OpenPose [16], especially for camera pairs 

spanning larger angles. The proposed human mesh method is also 

much less susceptible to partially visible human bodies due to self 

or mutual occlusion and out-of-view truncation. 

As a visual inspection for the accuracy of correspondence 

matching between key points, undistorted image patches of the 

walking man and the walking lady with color lines connecting the 

matching key points are shown in Figure 5 and 7, respectively, for 

each method with camera pairs 729-730, 729-735, 729-740, 729-

739, and 729-734. It can be seen that many incorrect matches and 

very few correct ones resulted using the SIFT method, especially 

when the baseline and the angle of the camera pair become larger. 

The human joints and human mesh methods performed better, but 

the latter achieved much more correct matches and resulted in higher 

accuracy than the former did. 

  
Table 1: For walking man: 2D Reprojection Error (Camera 729 is 
the Reference) 
  

Methods 
≈ 118° 

Cam 729-
730 

≈ 180° 
Cam 729-

735 

≈ 210° 
Cam 729-

740 

≈ 268° 
Cam 729-

739 

≈ 288° 
Cam 729- 

734 

SIFT 
137.924 

pixel 
857.716 

pixel 
369.217 

pixel 
237.804 

pixel 
1571.382 

pixel 

Human 
Joints 

6.481 pixel 7.293 pixel 9.614 pixel 11.743 pixel 12.576 pixel 

Human 
Mesh 
(Ours) 

5.346 pixel 4.721 pixel 4.096 pixel 4.796 pixel 4.843 pixel 

  
Table 2: For walking man: Rotation and Translation (R, T) Errors 
(Camera 729 is the Reference) 
  

Methods 
≈ 118° 

Cam 729-
730 

≈ 180° 
Cam 729-

735 

≈ 210° 
Cam 729-

740 

≈ 268° 
Cam 729-

739 

≈ 288° 
Cam 729-

734 

SIFT 
12.635°, 
0.863 m 

24.454°, 
3.833 m 

37.792°, 
5.587 m 

29.463°, 
6.329 m 

30.625°, 
6.748 m 

Human 
Joints 

11.285°, 
0.586 m 

13.693°, 
0.647 m 

19.715°, 
1.124 m 

20.415°, 
1.308 m 

18.965°, 
1.672 m 

Human 
Mesh 
(Ours) 

1.236°, 
0.027 m 

2.696°, 
0.118 m 

1.426°, 
0.076 m 

0.834°, 
0.048 m 

0.592°, 
0.039 m 

  
Table 3: For walking lady: 2D Reprojection Error (Camera 729 is 
the Reference) 
  

Methods 
≈ 58° 

Cam 729-
730 

≈ 88° 
Cam 729-

735 

≈ 150° 
Cam 729-

740 

≈ 268° 
Cam 729-

739 

≈ 330° 
Cam 729- 

734 

SIFT 
217.523 

pixel 
948.673 

pixel 
389.734 

pixel 
347.907 

pixel 
1372.253 

pixel 

Human 
Joints 

7.671 pixel Fail 9.156 pixel 13.328 pixel 10.597 pixel 

Human 
Mesh 
(Ours) 

6.845 pixel 5.384 pixel 5.607 pixel 5.875 pixel 6.087 pixel 

  
Table 4: For walking lady: Rotation and Translation (R, T) Errors 
(Camera 729 is the Reference) 
  

Methods 
≈ 58° 

Cam 729-
730 

≈ 88° 
Cam 729-

735 

≈ 150° 
Cam 729-

740 

≈ 268° 
Cam 729-

739 

≈ 330° 
Cam 729-

734 

SIFT 
9.753°, 
0.873 m 

19.884°, 
3.255 m 

33.328°, 
5.318 m 

27.541°, 
6.131 m 

29.203°, 
7.179 m 

Human 
Joints 

8.317°, 
0.665 m 

Fail 
19.617°, 
1.276 m 

21.279°, 
1.782 m 

23.375°, 
3.134 m 

Human 
Mesh 
(Ours) 

1.227°, 
0.023 m 

1.792°, 
0.061 m 

1.894°, 
0.094 m 

0.786°, 
0.053 m 

0.831°, 
0.056 m 

 

These results can be expected because the appearance-based 

SIFT method has difficulties finding matching key points when the 

baseline and the angle of the camera pair become larger. Both the 

deep learning-based human joints and human mesh methods utilize 

human semantic information, but typical estimated human skeleton 

only contains tens of joints while typical estimated human meshes 

contain thousands of vertices. Therefore, the latter provides many 

more chances for correct correspondence matches and usually 

Cam 739

(≈ 268°)

Cam 734

(≈ 288°)

Cam 729

(0°)

Cam 740

(≈ 210°)

Cam 735

(≈ 180°)

Cam 730

(≈ 118°)

Test Case A

Man

Cam 739

(≈ 268°)

Cam 734

(≈ 330°)

Cam 729

(0°)

Cam 740

(≈ 150°)

Cam 735

(≈ 88°)

Cam 730

(≈ 58°)

Test Case B

Lady

Front 180° Camera

Rear 180° Camera

Front 180° Camera

Rear 180° Camera

2.5m

1.5m

2.5m

1.5m
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results in higher accuracy than the former does. Note that the human 

joints method (using MediaPipe [2]) failed to detect human skeleton 

of the walking lady in the image patch from Cam 735 rear. 

5. Conclusion 
The proposed automatic calibration method for multiple 

fisheye cameras supports reliable 3D reconstruction for human pose 

and shape estimation and human body tracking in a setting with 

wide baseline among cameras. Without using any calibration 

patterns, the proposed method uses pretrained models to detect 

humans in equirectangular or spherical images and to recover 3D-

native human body meshes for more reliable correspondence 

matching while focusing on their 2D projections onto the 

corresponding perspective images to avoid the depth ambiguity 

issues during automation calibration. The proposed method applies 

spherical objection detection and perspective mapping to support 

wide-angle or fisheye cameras (e.g., spherical or hemispherical) 

with wider FoVs for covering a region with less cameras but 

suffering from lens distortion. The proposed method is also much 

less susceptible to partially visible human bodies due to self or 

mutual occlusion and out-of-view truncation, compared with 

methods using SIFT and human joints as key points. 

6. Future Works 
The proposed method can also be enhanced by integrating with 

re-identification (re-ID) network [13] to support multi-person auto 

calibration and joint optimization [11] for system-level camera 

calibration. For multi-camera systems in larger or more complicated 

environments, not all cameras have highly overlapping FoVs among 

them. For a larger number of cameras in a multi-camera system, 

camera pairs can first be locally calibrated within different 

connected sub-systems. The application specific knowledge about 

the multi-camera configuration can be obtained through user input 

or automatic detection to reduce the number of camera pairs where 

cross-view correspondence matching should be performed. A set of 

correct correspondences between all cameras can be extracted for a 

global calibration of the entire system if there are common cameras 

shared by these sub-systems. The fully calibrated multi-camera 

systems are expected to substantially improve 3D reconstruction 

accuracy degraded by depth ambiguity, which causes multiple 3D 

body poses to result in the same 2D projection. 
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Figure 4.  A walking man detected by the selected group of six adjacent fisheye cameras from the FTV360 dataset during the [indoor-walk] video sequence. 
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Figure 5.  Walking man correspondence matching comparison on undistorted image patches for SIFT (column 1), human joints (column 2), and human mesh 
(column 3) methods with camera pairs 729-730, 729-735, 729-740, 729-739, and 729-734.  
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Figure 6.  A walking lady detected by the selected group of six adjacent fisheye cameras from the FTV360 dataset during the [indoor-walk] video sequence. 
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Figure 7.  Walking lady correspondence matching comparison on undistorted image patches for SIFT (column 1), human joints (column 2), and human mesh (column 
3) methods with camera pairs 729-730, 729-735, 729-740, 729-739, and 729-734. 
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