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Abstract

Assessing distances between images and image datasets is
a fundamental task in vision-based research. It is a challeng-
ing open problem in the literature and despite the criticism it re-
ceives, the most ubiquitous method remains the Fréchet Inception
Distance. The Inception network is trained on a specific labeled
dataset, ImageNet, which has caused the core of its criticism in
the most recent research. Improvements were shown by moving
to self-supervision learning over ImageNet, leaving the training
data domain as an open question. We make that last leap and pro-
vide the first analysis on domain-specific feature training and its
effects on feature distance, on the widely-researched facial image
domain. We provide our findings and insights on this domain spe-
cialization for Fréchet distance and image neighborhoods, sup-
ported by extensive experiments and in-depth user studies.

Introduction and Related Work

Measuring distances between datasets is a valuable yet chal-
lenging task, in particular for complex signals such as images. It
is crucial for understanding data distributions and domain gaps for
transfer learning and generalization. It is also important for devel-
oping generative networks that recently gained in popularity [1]
and that are prone to hallucination [2].

The most ubiquitous approach to measuring dataset distance
is the widely used Fréchet inception distance (FID) [3]. It com-
putes the Fréchet statistical distance [4] between the datasets’ im-
age features, extracted by an ImageNet-trained [5] Inception net-
work [6]. A plethora of similar solutions emerged in the litera-
ture, notably extensions to conditional inputs [7] and adversarial
robustness [8]. Binkowski et al. [9] propose Kernel Inception Dis-
tance (KID), a modified distance on the same feature space. It has
certain theoretical advantages but in practice correlates closely
with FID. Centered Kernel Alignment (CKA) [10] is another FID
alternative, but both the paper’s results and user survey show it
performs in a similar way as FID. sFID [11] simply mimics FID
on intermediate feature maps to improve spatial information that
is more fine-grained. StyleGAN-XL [12] even computes rFID
(random-FID) on the features of a randomly initialized network
as an additional metric, with the idea originating from Naeem et
al. [13], where the objective is to be more general by being task-
agnostic. rFID results, however, tend to have an erratic behav-
ior in practice with extremely large values. Zhang et al. [14]
have shown that training is crucial as random networks achieve
significantly worse performance, and that random networks focus
more on low-level information [15], further supporting the use of
trained features for Fréchet distance.

More specialized methods have been proposed that are dif-

IS&T International Sxmposium on Electronic Imaging 2025
Image Processing: Algorithms and Systems XXIII

ferent from FID. Kynkéidnniemi et al. [16] investigated precision
and recall between feature spaces as complementary metrics to
FID. The pair can illustrate certain trade-offs but do not give a
single score that can be used as an optimization target. We note
that the experimental evaluation on faces only uses the standard
ImageNet FID [16]. Precision and recall definitions are refined to
density and coverage in [13], to better adapt to image manifolds
that need to be estimated through only a limited number of sam-
ple points. Another approach to visualize feature space drift is
based on SVCCA [17], however, it cannot readily scale to large
datasets. Lastly and most similar to FID, Ramtoula et al. [18]
create a histogram per neuron that contains the activation values
of that neuron across network layers. The histogram of an image
can be compared to the average histogram of a dataset to obtain a
similarity metric. While this approach has the advantage of appli-
cability to a single image, high-level information in cross-neuron
dependencies as well as location information are lost.

FID thus remains the most practical and ubiquitous metric in
recent literature [19, 15], despite its numerous shortcomings. The
most simple to resolve are that it can be affected by resizing when
anti-aliasing is omitted [19] and that its estimator has statistical
bias that is model dependent [20]. FID relies on an ImageNet-
trained Inception network that can be more sensitive to texture
than to shape [21]. This bias is due to aggressive random cropping
in data augmentation and can be reduced by using more natural
augmentations like image distortions [22]. However, the under-
lying ImageNet training causes inherent limitations [23], such as
a bias towards only the most salient object in a multi-object im-
age [24], because ImageNet is meant for single object learning.
Most recently, [25] criticizes the strong relation between Incep-
tion features and ImageNet classes, particularly as ImageNet does
not contain human or human face classes while FID is most com-
monly used in studying generative models for face synthesis.

The goal of Morozov et al. [26] is to explore replacing su-
pervised ImageNet feature extractors with self-supervised ones.
The results show certain improvements in FID. The investigation
supports the use of self-supervision and concludes with the open
question of using self-supervised features that are domain spe-
cific, which was left to future research [26].

Our goal is to analyze how specializing the feature space
impacts feature distances. We collect a novel facial dataset for
our self-supervised learning to guarantee the independence from
public datasets, and high image quality. We conduct extensive
experiments and three user studies with 342 responses from 26
participants.
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Method /vs./ Test | Blond Gender

Inception + Head | 93.54 | 85.58 96.44 84.92
Inception + MLP | 92.83 | 83.90 | 96.25 84.22

Gender

DINO (I) + Head | 90.63 | 83.08 | 94.33 86.40
DINO (I) + MLP | 91.37 | 8325 | 94.96 | 85.71

DINO (F) + Head | 93.85 | 8254 | 9256 85.86
DINO (F) + MLP | 93.92 | 83.06 | 93.02 | 86.00

Table 1.
trained on CelebA-HQ features and the corresponding classes. CelebA-HQ
features are extracted by: Inception (trained on ImageNet), DINO trained on
ImageNet (1) and on Faces (F). We test on 3 CelebA-HQ classes and a Faces
class (gender) that we collected to have a fully separate test set.

Classification accuracy (%) of Head networks [27] and MLPs

Methodology

Feature-learning independent dataset

To train our feature extractor, it is important to rely on a
completely external dataset. The reason is that common facial
image datasets are often used in training image generators, and
any distance metric should be disentangled from them. We thus
collect an in-house facial image dataset to train our feature extrac-
tor through self-supervision. We create a 30,000 image training
set, in accordance with the size of CelebA-HQ [28], which we call
Faces. The images are all center-cropped, with no occlusions, and
manually curated to ensure quality. By training a feature extractor
on our held-out dataset, we lay the basis for an independent met-
ric built over those features. This enables benchmarking on the
commonly used public datasets, and on public image generators
trained on them. To promote better fairness, our dataset is bal-
anced across six ethnicities (latino hispanic, asian, middle eastern,
black, indian, and white) [29]. We further leave out an additional
21,000 images that we label for gender and use as a test set in a
separate experiment to evaluate the extracted features.

Self-supervised feature learning

Self-supervised learning can improve feature extraction per-
formance [26]. Another advantage is to reduce biases and er-
rors coming from the choice and assignment of labels for su-
pervised learning [25]. We exploit the simple yet effective state-
of-the-art DINO [27] method for self-supervised learning on our
dataset. DINO builds on knowledge distillation between teacher
and student networks, and fundamental self-supervised learning
data augmentation strategies, notably extending on SwAV [30].
For all of our experiments, we configure the feature embedding
to have 2048 dimensions, aligning with the Inception [6] archi-
tecture for direct comparisons. We train for 100 epochs on one
24GB NVIDIA RTX 3090 GPU with a batch size of 16, and all
other settings follow DINO’s approach.

Fréchet distance over feature spaces

The Fréchet [4] distance F' between two Gaussian distribu-
tions A4 (u1,X1) and A (Up,Xp) is given by

1
F(u,Z1, 12, %0) = ||t — o] 3+ Tr(Z) + X2 — 2(£15,)2),

where T'r(-) is the matrix trace. This formulation is then adapted
to measure the distance between two datasets Z; and %,. This
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is achieved by exploiting the Inception [6] network’s feature ex-
tractor trained on ImageNet in a supervised manner, and called
FID [3]. The feature extractor takes an image as input and gener-
ates its embedding in a feature space. Generally, for any feature
extractor f(-) we can define the Fréchet distance between datasets
as F (u{ﬁl ,Zf% , ,uf%,):f%), where ‘u_jﬁ;i and Z{gi are the mean and
covariance of the best-fit Gaussian over the feature distribution of
dataset i, obtained by the feature extractor f(-). In our experi-
ments, we study the effects of f(-) on the distance metric, with
a focus on domain-specific specialized features. We denote the
Fréchet distance computed over our DINO Faces feature space by
FDD.

Experimental Evaluation

Datasets

In addition to CelebAHQ and FFHQ (sizes 30,000 and
70,000, respectively), we curate a separate face dataset of 30,000
samples, as explained earlier in the paper. We generate 10,000
samples using a PGGAN trained on CelebAHQ, and 10,000 sam-
ples using a StyleGAN2 trained on FFHQ two times: without
truncation and with a truncation value of 0.7. For StyleGAN2
we fix the random seed, thus samples in both datasets match each
other in terms of the attributes of synthetic people. Lastly, we uti-
lize two datasets that do not contain images of human faces. We
use all 5’558 cat images from AFHQv2-Cats, which has a prepro-
cessing similar to the face datasets. We also use the 8’042 images
from the test set of Stanford Cars. It is the only dataset where the
images do not have equal width and height of 1024 pixels, so we
resize all images to squares as preprocessing.

Are our self-learned features sufficient?

We evaluate whether our self-supervised features extract
sufficient information relevant to faces. We train MLPs and Head
networks on top of ImageNet-trained Inception features (used by
FID), DINO (1) features from the ImageNet-trained DINO, and
DINO (F) features from the Faces-trained DINO. The MLPs and
Heads are trained on the CelebA-HQ training set annotations to
predict different binary classes (Blond, Young, Gender) based on
input features. We show the results in Table 1 on the CelebA-HQ
test set and on an additional test set for gender from a fully inde-
pendent source (see discussion above on datasets). We note that
accuracies are significantly high, indicating that the networks ex-
tract sufficient features to enable classification. The results with
the self-supervised DINO are on-par with Inception results, even
surpassing them when testing on the independent curated test set,
rather than the test set of CelebA-HQ. We emphasize, however,
that the results highlight that the features are sufficient but not
that they are necessary, in other words, some could nonetheless
be irrelevant.

Benchmarking Fréchet distance results
We run benchmarking experiments for Fréchet distance
computed over features from Inception (trained on ImageNet with
supervision), SWAV (trained on ImageNet with self supervision),
and DINO (trained on Faces with self supervision) networks. The
distances are computed for 19 image sets (Fig. 1) with respect to
CelebA-HQ images, for 5k samples.
With DINO specialized to the facial domain with standard-
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M FID: (Inception on ImageNet) 46.88
121 mmm SwAV on ImageNet 2115
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Scaled Fréchet distance
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56.38

CelebAHQ CelebAHQ CelebAHQ CelebAHQ CelebAHQ Puzzle8
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Puzzle32 Random SaltPepper
Erase Noise

Figure 1.

Stanford
Cars

Vertical Horizontal
Flip Flip

Swirl StyleGAN2 StyleGAN2 PGGAN

(truncated)

AFHQv2
(Cats)

FFHQ

Rescaled Fréchet distances computed on Inception features (trained on ImageNet), SwWAV features (trained on ImageNet), and DINO features

(trained on Faces). Each distance is between the x-axis sets and CelebA-HQ data (5k samples). For better readability, we rescale all values with a ratio fixed

per method and determined on an independent dataset.

Image source distribution u o FID | FDD
CelebA-HQ (class: male) 2.00 | 1.09 | 0.87 1.06
CelebA-HQ (class: female) | 2.52 | 1.15 | 0.34 0.40
CelebA-HQ (class: young) | 2.43 | 1.20 | 0.12 0.06
CelebA-HQ (class: old) 228 | 1.16 | 043 | 0.63
StyleGAN?2 (untruncated) 1.92 | 1.00 | 1.09 0.94
StyleGAN2 (0.7 truncated) | 2.16 | 1.10 | 1.20 1.23
~ r-correlation tosurvey 1 | 1.00 [ - | -0.83 | -0.79
p-correlation to survey i 1.00 - -0.77 | -0.71

Table 2. User study rating how well images from different distributions cor-
respond to random CelebA-HQ sets (1-5 score), the corresponding rescaled
Fréchet distances (FID, FDD), and Pearson and Spearman correlation.

ized faces, the distance is large when images are flipped vertically,
while Inception and SwWAV distances remain surprisingly small
(smaller than the distance relative to FFHQ [31], which also con-
tains faces). For random erasing of small patches, the distance
is the smallest for DINO, which can extract high-level facial fea-
tures rather than only fine-granularity generalized ones, due to
its specialization to faces. Meanwhile, Inception distance caused
by random erasing is even larger than the Inception distance be-
tween Cars and CelebA-HQ. Lastly, we note the large distance for
DINO on car images, which are completely out of domain. This
is not the case with cats, where facial features remain correlated
to human facial features and are aligned in the same way in pre-
processing. For the remaining setups, the distances obtained by
the different approaches remain, on average, closely tied.

We also observe similar trends in Fig. 2 when tracking the
training of the SemanticStyleGAN [32] with Fréchet distance on
Inception and DINO. We only note that FDD is larger and drops
faster than FID, as it is more sensitive to the low-quality faces
initially synthesized. We conduct a user study (with 10 images per
class) to obtain ratings on how well an image corresponds to the
CelebA-HQ distribution represented by randomly sampled sets of
9 images at a time (Table 2). While the variation in scores over
classes such as male and female is interesting, we mostly note that
FID and FDD (relative to CelebA-HQ) strongly correlated with
the participants’ answers (lower distance correlates with higher
correspondence).

Investigating photorealism correlation
We expand with an analysis of the connection between
FID/FDD relative to CelebA-HQ and the photorealism of image
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Figure 2. Fréchet distances computed on ImageNet-trained Inception fea-
tures and on Faces-trained DINO features, between synthetically generated
images and CelebA-HQ images.

distributions. We conduct a second user study to obtain opinion
scores on photorealism based on 10 images per category. The
results of FID and FDD (Table 3) are closely related on the dif-
ferent sets. For FFHQ and truncated StyleGAN2 [1] images, the
distances match well with opinion scores, however, they diverge
for untruncated StyleGAN2 and PGGAN [33], indicating that par-
ticipant opinions are strongly affected by visual artifacts while the
distance metrics focus more on content distributions. This is even
more observable with PGGAN FDD; as PGGAN is trained on
CelebA-HQ, its synthetic-image distribution matches better with
it and leads to a low FDD despite lower visual quality. This further
supports the claim that the specialized FDD focuses on high-level
abstract information.

Deeper dive into feature space neighborhoods
Finally, we narrow down to an image-level analysis of the
feature spaces. We exploit local neighborhoods to analyze the
feature-space landscapes. We select reference images and find
their respective nearest neighbors in each of the two spaces. Sam-
ple results are shown in Fig. 3. We conduct a third user study
where participants are asked to select which feature space induces
neighbor images that are more similar to the reference (Table 4).
The Inception space is by a large margin better for Stanford Cars
images, as expected. For cats or random CelebA-HQ images, the
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(d) Reference

(e) Nearest neighbors in the Inception space (FID)

(f) Nearest neighbors in the DINO space (FDD)

Figure 3. Samples from our user study on feature space neighborhoods. For each reference image, we show its nearest neighbors in Inception and DINO
feature spaces. Inception is biased towards objects (hat and microphone), while DINO can be perturbed by occluding objects (bottom). Therefore, Inception

neighbors are not similar to the person, but simply wear similar hats.

Image source distribution u c FID | FDD

FFHQ dataset samples 412 | 1.10 | 0.99 | 1.02
StyleGAN?2 (0.7 truncated) | 4.03 | 1.13 | 1.20 | 1.23
StyleGAN?2 (untruncated) 3.19 | 1.44 | 1.09 | 0.94
PGGAN* dataset samples 193 | 1.11 | 0.83 | 0.09

Table 3. User study rating the photorealism of images from various sources
(1-5 score), and the corresponding rescaled Fréchet distances relative to
CelebA-HQ. *PGGAN is trained on CelebA-HQ), while the other models are
trained on FFHQ.

Inception space is more in accordance with human perception.
However, when asking which neighbor set contains people who
are more similar to the reference person, the DINO space corre-
lates closer to the user choices for images with accessories. We
note, however, that these aggregated results hide part of the anal-
ysis. Depicted in Fig. 3, we observe that, indeed, Inception is
excessively biased towards focusing on objects rather than faces.
But for DINO, the lack of such bias did not guarantee the desired
face similarity results, as seen in the bottom row. The specializa-
tion of DINO features on faces makes them untrained for other
objects, which risk becoming similar to an adversarial attack.

Conclusion and Key Take-aways

We analyze an open question on feature-space distance, par-
ticularly, the effects on Fréchet distance, and neighborhoods, of
specializing the feature extractor to the facial domain. Our exper-
iments and user studies support the following findings.

(1) Specialists become better at abstraction. Our exper-
iments highlight that our specialized feature extractor can learn
abstract concepts pertaining to faces. The generalist focuses more
on fine-granularity features that can be exploited across tasks,
making it more sensitive to spatially localized loss of information
and less sensitive to global changes like an upside-down face, as
shown in Fig. 1.

(2) Feature distance does not equate to photorealism.
Fréchet distance measures statistics over dataset image features.
This is affected both by photorealism and degradations, but also
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Subset Inception | DINO | ©

E | CelebA-HQ (accessories) 59 41 20

% | CelebA-HQ (random) 72 28 | 14

& [ AFHQv2-Cats [34] ~ ~ | 69 | 31 |29

£ | Stanford Cars [35] 92 8§ | 4
" Al | CelebA-HQ (accessories) | 42 | 58 | 24

Table 4. User study selecting which of Inception or DINO nearest neighbors
are most similar to the reference. Numbers reported are mean vote percent-
ages. The first 4 rows are based on image similarity, "P” refers to person
similarity.

by the general content distribution across the dataset. When com-
puting the Fréchet distance relative to a base dataset, it is impor-
tant to use a high-quality one and to ensure that the base dataset
contains a fair representation of desirable content. We emphasize
that the vanilla distance is a holistic image-based distance rather
than a face or identity distance.

(3) Noticing can be easier than not noticing. While we can
train specialists for features relevant to a specialized domain, this
does not guarantee their ability to dismiss all irrelevant informa-
tion. Facing novel content in their input can act as adversarial
attacks perturbing the specialized network (Fig. 3).

(4) The risk of smaller specialized datasets. Modern net-
works are large and this can lead to rich representations emerg-
ing even in randomly initialized ones. As the lottery ticket hy-
pothesis [36] hints, multiple paths lead to the final representation,
enough for coincidental features to appear. Training improves
this representation making it more practical. Particularly, train-
ing over a massive dataset such as ImageNet constrains the be-
havior of the feature extractor across its many paths. This ad-
vantage can be lost when training a large specialist network on
smaller domain-specific datasets, possibly leading to the weak-
ness described in (3).

Our findings fill a gap in the literature, highlighting the trade-
offs between general and specialized feature extractors. One av-
enue for future research is hybrid training, preserving well con-
strained extractors with low-granularity features and robustness,
while learning abstract specialized features.
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