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Abstract 

With the emergence of 200 mega pixel QxQ Bayer pattern 

image sensors, the remosaic technology that rearranges color filter 

arrays (CFAs) into Bayer patterns has become increasingly 

important. However, the limitations of the remosaic algorithm in the 

sensor often result in artifacts that degrade the details and textures 

of the images. In this paper, we propose a deep learning-based 

artifact correction method to enhance image quality within a mobile 

environment while minimizing shutter lag. We generated a dataset 

for training by utilizing a high-performance remosaic algorithm and 

trained a lightweight U-Net based network. The proposed network 

effectively removes these artifacts, thereby improving the overall 

image quality. Additionally, it only takes about 15 ms to process a 

4000x3000 image on a Galaxy S22 Ultra, making it suitable for 

real-time applications. 

Introduction 
In recent years, smartphones have increasingly adopted high-

resolution image sensors that offer crop zooms, known as in-sensor 

zooms or lossless zooms. By utilizing only 12.5MP located in the 

center of the 200MP full pixel array, it is possible to achieve the 

same level of zooming effect as x4. Although it offers high-quality 

zoom performance without telephoto lenses, it is prone to artifacts 

such as false colors and unnatural texts as shown in Figure 1. 

  

 

Figure 1. Example of QxQ sensor remosaic artifacts: (left) false color, (right) 
unnatural text 

When cropping a 12.5MP image from a 200MP sensor with a 

QxQ Bayer pattern, the output does not follow a Bayer pattern. Since 

most image signal processors are designed to process Bayer-

patterned images, the sensor must apply an in-sensor remosaicing 

algorithm to convert the QxQ Bayer pattern into a Bayer pattern. 

This step is essential to ensure compatibility with standard image 

processing pipelines. Additionally, the sensor’s Bayer pattern output 

should achieve 30 frames per second to meet real-time processing 

requirements. To accomplish this, the remosaicing algorithm must 

be highly efficient and designed for low-power operation to 

optimize battery life and thermal performance. However, these 

performance constraints can lead to interpolation errors in certain 

areas, especially where there are sharp color transitions or unclear 

directional patterns. As a result, artifacts may appear in the image, 

affecting overall visual quality. 

To enhance image quality, an alternative approach is to disable 

the in-sensor hardware remosaicing and utilize software-based 

remosaicing instead. As illustrated in Figure 2, this method employs 

the sensor’s built-in remosaic algorithm for real-time processing in 

preview mode, where maintaining a high frame rate is essential. 

However, during image capture, a software remosaicing algorithm 

is applied to achieve superior image quality. This approach 

eliminates the need to maintain 30fps, thereby enabling the 

implementation of a high-performance software remosaicing 

algorithm. Such an algorithm allows for more precise interpolation, 

improved color accuracy, and enhanced overall image quality. 

 

 

Figure 2. Changes in image buffer (zero-shutter-lag buffer) usage depending 
on hardware remosaicing on/off: (top) default scenario, (bottom) scenario with 
software remosaicing 

 A significant limitation of this method is that it cannot utilize 

the zero-shutter-lag (ZSL) buffer [1] with in the image processing 

pipeline. The ZSL buffer stores frames captured immediately prior 

to the user pressing the shutter button, compensating for the delay 

between the capture moment and the actual image acquisition. This 

is particularly critical in crop zoom scenarios, where capturing fast-

moving subjects requires minimizing shutter lag between the desired 

and actual capture moments. When employing software-based 

remosaicing, frames stored in the ZSL buffer remain in Bayer 

format and cannot be directly utilized for software remosaicing. 

Consequently, only frames stored after the shutter button is pressed 

can be processed, potentially introducing a delay and affecting real-

time responsiveness in dynamic imaging scenarios.  

This paper proposed a method that combines existing 

approaches to achieve higher image quality than hardware remosaic 

while avoiding shutter lag as shown in Figure 3. In preview mode, 

the system utilizes hardware remosaic to ensure real-time processing. 

However, during image capture, instead of performing a full 

software-based remosaic, a U-Net based lightweight network is 

employed to effectively remove only the artifacts. This approach 

allows for improved image quality while minimizing computational 

overhead. While the image quality may not match that of a software-

https://doi.org/10.2352/EI.2025.37.10.IPAS-235
© 2025, Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2025
Image Processing: Algorithms and Systems XXIII 235-1



 

 

based remosaic, it eliminates shutter lag and achieves significantly 

better image quality than hardware remosaic alone. 

  

 

Figure 3. The proposed image processing pipeline during image capture 

Method 

Dataset Construction 
To train a model for artifact removal, it is essential to have 

paired datasets consisting of Bayer images processed with hardware 

remosaicing and clean Bayer images without artifacts. Instead of 

directly capturing a dataset using a QxQ Bayer sensor, we leveraged 

the publicly available RIASE dataset [2], which consists of high-

quality images captured with a DSLR. However, since the RAISE 

dataset follows a conventional Bayer pattern, it must be converted 

into a QxQ Bayer patter to align with our target sensor 

characteristics. 

To achieve this transformation, we first applied a demosaicing 

algorithm to the original Bayer images in the RAISE dataset 

generating RGB images. Subsequently, we performed QxQ Bayer 

sampling on these RGB images to reconstruct them into the QxQ 

bayer pattern. Once dataset was converted into this format, we 

applied both hardware-based remosaicing and software-based 

remosaicing to corresponding dataset pairs as shown in Figure 4. 

This dataset enables the model to learn the mapping between 

hardware-remosaiced Bayer images which contain artifacts, and 

their clean Bayer counterparts.  

Training Software Remosaic 
 For the generation of GT, we trained a software remosaicing 

model based on a U-Net [3]. Similar to the process illustrated in 

Figure 4, we first applied a demosaicing algorithm to the RAISE 

dataset and then performed QxQ pattern sampling to generate the 

QxQ Bayer input dataset. The original Bayer images from the 

RAISE dataset were used as the corresponding GT. Since the 

purpose of software remosaicing for GT generation is to produce 

high-quality Bayer images with minimal artifacts, we did not 

employ a lightweight model optimized for efficiency. Instead, we 

prioritized reconstruction accuracy to ensure that the generated GT 

closely matched the original Bayer images, thereby providing high-

fidelity supervision for training the artifact removal model.  

Initially, we considered using the Bayer images from the 

RAISE dataset as ground truth (GT) directly without applying 

software remosaicing. However, the QxQ pattern sampling process 

introduces significant data loss, leading to a noticeable degradation 

in image quality when remosaicing is applied to the QxQ Bayer data. 

As a result, the Bayer images generated through this process exhibit 

lower quality compared to the original Bayer images in the RAISE 

dataset. 

Given these limitations, using the original RAISE dataset as 

GT would require the model not only to remove artifacts but also to 

reconstruct the information lost during the QxQ sampling process. 

This significantly increases the complexity of the task, as the model 

would need to perform both artifact removal and data restoration. 

Such an approach demands a more complex and computationally 

expensive model, which is unsuitable for resource-constrained 

environments. Since our primary objective is to develop a 

lightweight model optimized for efficient execution on mobile 

devices, we concluded that this approach would be impractical. 

 

 

Figure 4. The process of creating a training dataset 

Deep Learning Model 
 The proposed model adopts a lightweight structure utilizing 

residual blocks for efficient feature extraction and artifact removal. 

Similar to U-Net, which reduces the spatial dimension to extract 

hierarchical features, our model employs convolutional layers for 

down-sampling. After the initial down-sampling stage, the features 

are processed through multiple residual blocks, followed by 

transposed convolution layers to restore the original resolution. 

Since most regions of the image are free from artifacts, the 

input and output should remain identical in these areas. To enforce 

this property, we employed a residual learning approach by adding 

the input directly to the network output as seen in Figure 5.a. This 

allows the model to focus primarily on learning the residuals, 

ensuring that artifact-free regions are preserved while selectively 

correcting regions affected by artifacts. 

To maintain a lightweight design suitable for real-time 

applications, we fixed the number of feature channels in all 

convolutional layers to 32. Additionally, to enhance the 

performance of the model, we integrated ideas from ResUNet [4], 

incorporating residual blocks that utilize multiple convolutional 

layers with different kernel sizes, ReLU activation functions, and 

identity mapping. This architectural choice enables the model to 

effectively capture both local and global features while maintaining 

computational efficiency as illustrated in Figure 5.b. Our model was 

trained using L1 loss, which is widely used for image-to-image 

regression tasks. Also, the model is trained using the ADAM 

optimizer with β1 = 0.9, β2 = 0.99, and a learning rate of 10−4. The 

training images were cropped to 768 x 768 with a batch size of 16. 

 For the experimental environment, we deployed our model on 

a Samsung Galaxy S22 Ultra, which is equipped with a Qualcomm 

Snapdragon 8 Gen 1 processor. The system was configured to 

process Bayer images efficiently on the device. To achieve fast 

inference speed, we utilized the Snapdragon Neural Processing 

Engine (SNPE) SDK [5], specifically leveraging its Quantization 

Toolkit for post-training quantization. The Quantization Toolkit 

supports 8-bit and 16-bit fixed-point precision post-training 

quantization and enables inference acceleration using dedicated 

DSP hardware instead of the CPU. For optimal performance, the 

proposed model was quantized with 16-bit activation precision and 

8-bit weight precision. All image quality evaluations were 

conducted using the quantized model to ensure that the reported 

performance reflects real-world deployment conditions. 
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Figure 5. (a) Block diagram of the proposed model architecture, (b) Residual 
block in the proposed model 

Result 

Quantitative evaluation 

Table 1. Image quality results of baseline, proposed model, and 
GT images 

Metric Baseline Proposed 
SWRMSC 

(GT) 

Siemens Star 
MTF10 

3568 3535 3458 

Siemens Star 
MTF25 

2939 2945 2937 

Siemens Star 
MTF50 

2157 2120 2177 

Dead Leaves HC 
MTF10 

2694 2773 3000 

Dead Leaves LC 
MTF 10 

2240 2322 2737 

Slanted Edge 60 16.55 16.31 17.7 

Slanted Edge 80 22.65 22.67 23.73 

Visual Noise 96.45 95.96 92.67 

SNR 40.55 40.5 38.61 

 

For the evaluation of image quality, we utilized the TE42 [6] 

test chart from Image Engineering, which is widely used for 

assessing camera and imaging system performance. The dataset was 

captured using a 200 MP sensor under a controlled lighting 

environment of 1000 lux with a D65 halogen light source. The TE42 

chart was positioned to occupy half (1/2) of the sensor's field of view 

to ensure a detailed assessment of image quality characteristics. 

The TE42 test chart enables comprehensive evaluation of 

multiple image quality aspects, including resolution, texture 

reproduction, dynamic range, and color accuracy. [7-10] Since 

remosaicing artifacts predominantly appear in high-frequency 

regions, we hypothesized that artifact correction could potentially 

lead to a reduction in overall image sharpness. To validate this, we 

focused our analysis on MTF measurements, which provide an 

objective metric for evaluating resolution and sharpness. The 

detailed results are presented in Table 1. 

When comparing the Siemens Star MTF results of the proposed 

model with the baseline, we observed that the performance remains 

almost identical. However, in the Dead Leaves MTF measurement, 

our model achieves an approximately 3% improvement, indicating 

enhanced representation of random texture patterns. Since the flat 

regions remain unchanged, the SNR values are also almost same. 

Qualitative evaluation 
We found that conventional quantitative evaluation metrics 

alone were insufficient for accurately assessing the level of artifacts. 

Therefore, in addition to quantitative analysis, we conducted a 

qualitative evaluation to further examine the visual impact of our 

model's artifact removal performance. As shown in Figure 6, the 

proposed model demonstrates notable improvements in false color 

suppression and text readability, leading to a morwe visually 

accurate reconstruction. However, it appears that the model does not 

fully recover the fine details lost due to limitations of hardware 

remosaicing, suggesting that some high-frequency information 

remains irretrievable after the remosaicing process. 

 

 

Figure 6. Qualitative comparison 
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Conclusion 
High-resolution sensors, such as 200 MP sensors, enable crop 

zoom functionality. However, artifacts often arise due to the 

limitations of hardware processing. While software remosaicing can 

improve image quality, it introduces shutter lag since the camera 

buffer cannot be used for this scenario. To address this issue, we 

propose a method that effectively removes artifacts while 

minimizing shutter lag. We also propose a novel model architecture 

optimized for mobile environments and constructed a suitable 

dataset to facilitate this task. This approach preserves the resolution 

of the original image while selectively eliminating artifacts, 

ensuring high image quality without compromising sharpness. 

Furthermore, all experiments were conducted with a mobile 

environment. We verified that the proposed model runs efficiently 

on the Samsung Galaxy S22 Ultra, achieving a latency of 15 ms, 

making it suitable for real-time operation on mobile devices. 
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