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Abstract 
While conventional video fingerprinting methods act in the 

uncompressed domain (pixels and/or directly derived 

representations from pixels), the present paper establishes the proof 

of concepts for compressed domain video fingerprinting. Thus, 

visual content is processed at the level of compressed stream syntax 

elements (luma/chroma coefficients, and intra prediction modes) by 

a homemade NN-based solution backboned by conventional CNN 

models (ResNet and MobileNet). The experimental validations are 

obtained out of processing a state of the art and a homemade HEVC 

compressed video databases, and bring forth Accuracy, Precision 

and Recall values larger than 0.9. 

1. Introduction
Video content is ubiquitous, with more than 42,000 petabytes 

of data being exchanged worldwide monthly [1], and with 

continuous renewed applications or emerging usages benefiting 

from it.  

Specifically, under the marketing framework, while the video 

advertising is still dominated by the paid content (content created by 

an advertiser who pays an announcer for the distribution), organic 

video is slowly but steadily advancing. Organic video content 

generally refers either to some user-generated content with implicit 

advertising value, or to some advertising content, spontaneously and 

freely distributed by a user on social networks [2]. In practice, such 

a content is subsequently shared by other users, on the same or on 

different social networks, thus creating a virtual distribution chain 

that is studied by marketing experts. 

When transposed to the video processing framework, organic 

video distribution can be modelled by near duplicated1 operations 

applied to a reference video content at each of its redistribution 

stages. Thus, the tracking of organic video can be ensured by video 

fingerprinting (also referred to as content-based copy detection, or 

near duplicate detection) that regroups research efforts devoted to 

retrieving duplicated and/or replicated versions of a given video 

sequence (query) in a reference video dataset [3, 4, 5]. 

Video fingerprints are compact digital representations 

extracted from the video itself. They are meant to uniquely identify 

video sequences even when their contents undergo a set of 

transformations. Two main properties apply to fingerprinting 

methods. Firstly, the unicity (or uniqueness) property assumes that 

semantically different contents result in different fingerprints (in the 

sense of a preestablished similarity measure and of its related 

threshold). Secondly, the robustness property relates to the 

possibility of identifying as similar sequences that are near-

1 Near-duplicated content is here understood as “identical or approximately 

identical videos close to the exact duplicate of each other, but different in 

file formats, encoding parameters, photometric variations (color, lighting 

duplicated. These two main properties are generally evaluated under 

a binary decision framework (that is, the query is retrieved or not 

from a database), by computing the probabilities of false alarm (Pfa) 

and missed detection (Pmd), or some derived entities like Accuracy, 

Precision and Recall. 

Video fingerprinting is considered as a classification task 

where the same video and its altered version belongs to one and only 

one class. Video fingerprinting applicative field is related, yet 

complementary to video indexing that searches for different video 

content sharing some semantic similarities [6]: thus, video indexing 

is not supposed to feature the unicity property that is inner to video 

fingerprinting. With a two-decade history, video fingerprinting is 

now a mature research field, with approaches targeting a joint 

functional optimization of the fingerprinting extraction and 

retrieving procedures. To this end, various methodological 

frameworks, from information theory to machine learning 

(including deep learning) are explored [4, 5]. Despite their 

conceptual and applicative varieties, they most operate at the pixel 

level, after the stream decoding. This state-of-the art situation is 

different for video indexing, where previous attempts exploiting the 

compressed-domain information can be encountered [7, 8, 9]. 

The present study investigates the possibility of achieving 

compressed domain video fingerprinting, without exploiting any 

pixel-level information. To this end, we present an experimental 

study structured on two directions: (1) the selection of the 

compressed stream syntax elements representing the fingerprint, and 

(2) the design of the neural network structure achieving the

fingerprinting retrieval task. The experiments correspond to HEVC 

video streams and are obtained out of processing two databases,

namely UVG [10] and VID, a real-life organic video database

organized in our study. The quantitative results show that Accuracy,

Precision, and Recall values larger than 0.9 can be obtained, thus

establishing the proof of concepts for compressed domain video

fingerprinting. The final discussions open the door towards a deeper

understanding of how neural networks (NN) work in compressed

domain.

2. State-of-the-art

2.1 Uncompressed domain video fingerprinting 
The uncompressed video fingerprinting methods process the 

pixel-based representation of the video sequences. They emerged 

some 20 years ago [4, 5], and cover the large majority state-of-the-

art approaches. From the methodological point of view, they can be 

structured into conventional methods and deep learning-based 

methods. 

changes), editing operations (caption, logo and border insertion), different 

lengths, and certain modifications (frames add/remove).” [11] 
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The conventional methods are composed of fingerprint 

extraction and fingerprint retrieving. On the one hand, the 

fingerprint extraction encompasses video pre-processing (frame 

resizing, frame dropping, key-frame detection, color modifications), 

local feature extraction, global feature extraction, local/global 

feature description, temporal information retrieval, and the means 

for accelerating the search in the dataset. Just for illustration, local 

feature extraction can be based on HOG (Histogram of Oriented 

Gradients), ORB (Oriented FAST and rotated BRIEF), SIFT (Scale 

Invariant Feature Transform), SURF (Speeded-Up Robust 

Features), while global information may relate to BoVW (Bag of 

Visual Words) or color histograms. Examples of temporal 

information include histogram correlation, optical flow or TIRI 

(Temporal Informative Representative Image). On the other hand, 

the detection procedure starts by ensuring some time-alignment 

operations (time origin synchronization, jitter cancelation), 

followed by information matching according to some similarity 

measures (Hamming, Euclidian norms, correlation coefficients, 

maximum a posteriori probability, etc.).  

The deep learning-based methods leverage on the neural 

networks for implicitly learning the visual salient features of the 

content and for subsequently classify the queries in the 

corresponding classes. To this end, a large variety of models are 

considered, individually or combined. Just for illustration, spatial 

information can be addressed by AlexNet, VGG, ResNet, while 

temporal information by LSTM derived structure (Siamese LSTM, 

BiLSTM). 

2.2 Towards compressed domain video 
fingerprinting 

As video content is currently recorded, stored, and transmitted 

in compressed formats, performing video fingerprinting at the 

compressed stream level is expected to avoid a tremendous number 

of decoding operations.  

To the best of our knowledge, the earliest study in this respect 

is a conventional method that computes the fingerprinting based on 

information computed both from the decompressed (pixel) domain 

and from MPEG-2 stream is presented in [12]. Specifically, the 

fingerprint is a combination of the frame color histograms, ORB 

descriptors and motion vector normalized histogram. The retrieving 

procedure is individually performed at the level of the three 

components (based on their individual appropriate matching 

criteria) and the overall decision is achieved through fusing 

decisions made on multiple features by a weighted additive voting 

model. 

In [13], a method exploiting a vulnerability in the MPEG-

DASH standard which causes distinct packet bursts related to 

content, even with encrypted streams is presented. This method 

represents the bursts of information delivered to the end user as the 

fingerprint. A specific CNN model is then used for the matching 

step. Inspired by these results, the study in [14] further investigates 

the capabilities of the data collected by a Middleman present in the 

network, by extracting the information from the Wi-Fi traffic. 

Other examples are mentioned in [4, 5]. 

Note that the interest in identifying video streams currently 

exceeds the strict field of video fingerprinting, as for instance 

identifying the streams delivered on specific video platforms [15]. 

2.3 Summary 
While not meant to be either exhaustive or detailed, the state-

of-the-art study bring to light several guiding directions for our 

work. Firstly, although compressed domain fingerprinting is 

promising, it remains unexplored. Secondly, NN based methods are 

intensively used, with fingerprinting being by default modelled as a 

classification problem.  

Yet, doubts about the practical relevance of such general 

conclusions can arise. On the one hand, the association of deep 

learning and compressed domain processing seems a conceptual 

contradiction: while the deep learning paradigm exploits data 

redundancy in order to achieve its applicative task, video encoders 

are designed to get rid of redundancy in order to reduce the size of 

the sequence. On the other hand, fingerprinting is a specific case of 

classification problem: while conventional classifiers are trained to 

achieve ultimate generalization, fingerprinting methods are 

expected to provide fine grain generalization, allowing for the near-

duplicated copies to be correctly retrieved, and discriminating the 

semantically related, yet distinct visual content. 

3. Method presentation
When specifying the compressed domain video fingerprinting 

method, two main difficulties are encountered: the selection of 
compressed stream syntax elements representing the fingerprint, and 
the specification of the NN based model a priori likely to achieve the 
retrieval task. 

3.1 HEVC fingerprint specification 
HEVC (a.k.a. H.265) standard [16] is a conventional video 

encoding scheme, consisting of five basic operations: (1) 

Partitioning of frames in GoP (Group of Pictures, composed of an I 

frame and possibly of a variable number of P and B frames) and of 

the pixels of frames in blocks; (2) Predicting the similarities among 

the blocks in a frame and among successive frames in a GoP; (3) 

Transforming the prediction errors; (4) Quantizing the coefficients 

thus obtained, and (5) Entropy Coding the result. The decoding 

process (Fig. 1) reverses the order of the operations. 

Figure 1. HEVC decoding process and fingerprint extraction 

The fingerprint is defined by answering three questions, as 
follows. 

Question 1: Where should the fingerprinting be extracted 

from? This question relates to the trade-off between the decoding 

operation complexity and the level of redundancy still existing in 

the compressed stream. From this point of view, we decide to extract 

the fingerprint after the Inverse quantization and before the Inverse 

transformation (the latter being the most complex decoding 

operation). This choice is also supported by previous results in 

compressed-domain video watermarking [17]. 

Question 2: What type of information from the GoP? To answer 

this question, the specificities of the organic video fingerprinting is 

considered. First, the usage of inter frame information is avoided, as 

it would not be able to distinguish between semantical related yet 

distinct video contents. Secondly, as various reencoding operations 

are likely to be encountered at each new posting, we shall extract the 

fingerprint from the I frames. 

Question 3: What type of information from an I frame? As no 

a priori answer can be provided to this question, luma/chroma 
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coefficients, alongside with their intra prediction modes are 

considered. As no information related to the fingerprinting size is 

available either, three alternative configurations are considered, 

namely 32x32, 64x64, and 128x128. The selection of those elements 

is made according to the order of absolute values of the luma 

coefficients [16]. 

3.2 Fingerprinting NN model 
In our study, we consider a structure composed a backbone and 

three additional layers, as illustrated in Fig. 2. 

Candidate models for the backbone components are the widest 

used convolutional NN (CNN), namely the ResNet family [19] 

(ResNet18, ResNet50, ResNet101) and MobileNetV3small [20]. As 

usual in classification applications, a dense classification layer is 

positioned at the output (denoted by O3 in Fig. 2), to map the 

previously obtained features to the final output classes. This 

backbone should be completed by additional layers meant to solve 

the two previous identified issues. 

Figure 2. Fingerprinting NN model: 1 input and 2 output layers (in green) are 
considered around the backbone and the final Classifier layer (in blue). 

On the one hand, prior to the backbone, an input preprocessing 

layer, denoted by I1, is added. I1 is dense and is expected to serve 

for the weighting of the heterogeneous information included in the 

fingerprint (Y, Cr, Cb, and their corresponding intra-prediction 

modes) to be learned. Note that in uncompressed domain 

fingerprinting, such a layer is not required, as the backbone is 

already designed for weighting the R, G, and B components of a 

pixel.  

On the other hand, two postprocessing layers (denoted by O1 

and O2 in Fig. 2) are included in the model. O1 and O2 are both 

dense, with dropout rates of 25% and 50%, respectively. These two 

layers are added for two complementary reasons. First, as the 

backbone is fed with a combination of compressed stream syntax 

elements, its task is more complex to be learned than the 

conventional (pixel) classification task for which it was designed. 

Secondly, the generalization trade-off between correctly retrieving 

near-duplicated contents and avoiding semantically related different 

contents becomes more complex, thus imposing two different 

dropout rates. 

4. Experimental Results

4.1 Database specification 
Uncompressed domain video fingerprinting solutions benefit 

from already available databases. Specifically, conventional 

methods can be benchmarked on challenge databases (e.g. 

TRECVID) while deep-learning solutions on general purposes 

computer vision datasets, e.g. YLI-MED [21] or Youtube-8M [22]. 

However, such databases cannot be considered in our study, as they 

are either already encoded with legacy encoders (like MPEG-2 or 

MPEG-4 AVC) or presented as tensors and do not allow to obtain 

back a video. Consequently, our experimental study starts by 

organizing the reference content to be processed, and to this end, we 

shall consider two complementary databases.  

The UVG database [10] is available in raw format. In the 

present study, it is encoded by the VideoLAN implementation of 

HEVC [23]. UVG is composed of 16 natural 3840x2160 video 

sequences, with variable lengths ranging from 2.5 to 12 sec. The 

encoding process provides an average of 3.2 I frame per video (min. 

2, max. 12). A total of 4983 frames is generated from this dataset. 

Note that UVG is designed as a generic end-to-end video encoding 

benchmarking database, with no direct relevance for the organic 

video applications. The organic video content is represented in our 

study by home-made database, referred to as VID and composed of 

164 video excerpts, 1920x1080, from advertising content provided 

by an industrial company. This content was edited so as to not 

include duplicated/reused content in different sequences. VID 

sequences durations range from 5 to 180 sec. and they contain an 

average of 6.5 I frame per video (min. 1, max. 41). A total of 117769 

frames are included in this dataset.  

These two reference databases are subsequently subjected to a 

set of 10 different near-duplicated transformations, as follows. 

Firstly, 5 luminance/colorimetry modifications are applied: 

brightness, contrast, Gamma, hue, and saturation modifications. For 

each individual type of modification, 10 different relative 

increasing/decreasing parameters of maximum 33% are considered. 

Secondly, 3 types of video editing operations are performed, namely 

insert logo (image size equals to 200x500 pixels, randomly placed 

in the frame), insert subtitle, and central zoom (by 10 values between 

10% and 30%). Finally, two video encoding modifications are 

considered, namely CRF (Constant Rate Factor) and QP 

(Quantizing Parameter) changes. The former was applied 10 times, 

with parameters ranging between 20 and 40, while the latter by 10 

values ranging from 8 to 35. 

4.2 Experimental setup 
The experiments are performed on in-premises servers, with 

Xeon E5-1650 v3 @ 3.50GHz, 4 threads CPU, 32 GB of RAM and 

GeForce 1080Ti GPU. 

The NN models are implemented in Python 3.9 using the 

TensorFlow v2.10.0 framework. For the backbone, we use 

ResNet50, ResNet101 and MobileNetV3small proposed by Keras 

while ResNet18 implementation is available in [24]. 

The complete set of experiments is composed of 120 

configurations: 2 databases (UVG, VID), 4 backbones (ResNet18, 

50 and 101, MobileNetV3small), 3 fingerprinting sizes (32x32, 

64x64, and 128x128) and 5 NN configurations.  

Models have been trained for 100 epochs, with a 64 batch size. 

The initial learning rate is set to 0.1 and kept unchanged during the 

first 10 epochs; then, an exponential relative decay of 0.15 each 

three epochs is considered. The training dataset is composed of 80% 

of the dataset. For each content in the training dataset, a Monte Carlo 

simulated version of the near duplicated modification is also 

considered.  

The validation is achieved by considering 20% of the database 

(without any Monte Carlo simulation). Additionally, for MobileNet, 

if the results are not stable, 50 more epochs are considered. 

5 configurations are considered during: Baseline (backbone 

and O3), End-to-End (I1, backbone, O1, O2, O3) and three 

intermediate models obtained by combining a subset of the elements 

presented in Fig. 2. 
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4.3 Result illustrations 
A selection of quantitative results is illustrated in Figs. 3 and 4, 

as well as in Tabs. 1 and 2. 

Fig. 3 and 4 consider the End-to-End model, the case of 

128x128 fingerprinting size, and focus on ResNet18 and MobileNet. 

They show the training loss and the validation Accuracy for the 

UVG and VID databases, respectively. The visual analysis of the 

results presented in Figs. 3 and 4 show that although the same 

convergence value tends to be reached, this process is faster and 

smoother for ResNet18. The same behavior is encountered for all 

the investigated configurations. 

Figure 3. End-to-End, 128x128, UVG: training loss and validation Accuracy: 
MobileNet (solid green) and ResNet18 (dotted blue) 

Figure 4. End-to-End, 128x128, VID: training loss and validation Accuracy: 
MobileNet (solid green) and ResNet18 (dotted blue) 

Tab. 1 also focusses on ResNet18 and MobileNet, and 

investigates the Accuracy (Acc), Precision (Prec) and Recall (Rec), 

by presenting the corresponding values multiplied by 100. The 

columns are grouped in three areas, according to the three 

fingerprinting sizes discussed in the first part Method presentation 

section. The rows are organized at three recursive levels: firstly, 

according to the two databases (UVG and VID), then to the 

backbone NN component (ResNet18 or MobileNet), and finally 

according to the 5 model configurations discussed in the second part 

of the Method presentation section.  

The values reported in Tab. 1 represent the proof of concept for 

achieving video fingerprinting by using only data extracted from the 

compressed domain. 

When ResNet18 is included in the backbone, Acc values for 

the UVG database are higher than 0.9, irrespective to the NN 

configuration. Two exceptions are encountered, namely 64x64 

fingerprints and B, I1 configuration (that is, when removing the O1 

and O2 layers), and for 128x128 fingerprints and B, I1, O2 

configuration (that is, when removing the O1 layer). It can also be 

noticed that the Prec and Rec values are well balanced, with average 

relative differences lower than 3%. When considering the VID 

database, the same general trend is followed, yet the configurations 

resulting in Acc values lower than 0.9 are different. In its turn, when 

included in the backbone, MobileNet results in Acc values larger 

than 0.8 for the UVG database while featuring some values as low 

as 0.567 in the case of VID database.  

Tab. 1 also provides information about the usefulness of the I1, 

O1 and O2 layers added over the Baseline model. When considering 

the ResNet18 as backbone component and the UVG database, the 

baseline model is always outperformed by a configuration including 

at least one additional layer. This is not the case for the VID database 

where the baseline is the better solutions for 32x32 and 128x128 

fingerprints, while being outperformed by the configuration 

including O1 and O2 in the case of 64x64 fingerprint. Also notice 

that the End-to-End configuration is never the better choice. When 

considering MobileNet as backbone, the conclusions change: the 

End-to-End is the best solution, with a singular exception: the 64x64 

fingerprint and the UVG dataset, when it is outperformed by 0.5% 

by the B, I1, O2 configuration. 

When comparing UVG and VID datasets, we would have 

expected better results on UVG, as it is a priori simpler, covering 

only 16 reference sequences. This result is confirmed for the End-

to-End configuration but not for all the other four investigated 

configurations. 

As a final remark related to the values in Tab. 1, we would have 

expected to notice a significant impact of the size of the fingerprint 

in the Acc: intuitively, the larger the size of the fingerprint the better 

the Acc. However, the results show that such a tendency is not 

always confirmed. Using a bigger size might drop the performance 

by using non relevant information (mainly composed of zeros and 

ones). Tab. 2 complements the detailed information provided in Tab. 

1 with a global information about the cases in which different 

components are considered in backbone, namely ResNet50 and 

ResNet101. Tab. 2 presents the Acc, Prec and Rec values multiplied 

by 100, corresponding to the End-to-End case. The results show that 

the global trend brought forth by the values in Tab. 1 is kept for the 

new backbone components. However, Tab; 2 also shows that the 

claim of ResNet architecture being robust against degradation [19] 

seems false in the compressed domain, as ResNet50 and ResNet101 

are always outperform either by ResNet18 or by MobileNet. The 

impact of the fingerprinting size in the Acc value is now confirmed 

for the ResNet18 and MobileNet, while being contradicted by 

ResNet50 and ResNet101. 

5. Conclusion
The present study establishes the proof of concepts for HEVC-

compressed domain video fingerprinting, with illustrations on two 

complementary databases, namely one reference database for end-

to-end video encoding, and one homemade organic video database. 

This statement is based on applicative relevant fingerprinting 

performances: Acc values larger than 0.9, with well-balanced 

(relative differences lower than 0.03) underlying Prec and Rec. 

The results correspond to fingerprints represented by I frame 

syntax elements (Y, Cr, Cb coefficients and their underlying 

prediction modes) and to NN-based models obtained by 

complementing widely used CNN models with pre- and 

postprocessing layers.  

Beyond the targeted proof of concepts, the results reported in 

this paper open the door towards further investigations on how 

neural networks work in compressed domain. Hence, new 

transformation will be considered in the future such (i.e. additional 
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codec) Note that several a priori expectations have not been 

confirmed by our study and future work will be done on explaining 

why larger fingerprinting sizes or deeper ResNet structures do not 

necessary result in improved results. A different research direction 

relates to the explanation of the relationship between the content 

semantic and the NN in the backbone: note that a finer comparison 

of the impact of the complementary layers (I1, O1 and O2) in the 

results show different trends for UVG and VID and, at the same 

time, for ResNet18 and MobileNet.  
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