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Abstract
Image denoising is a crucial task in image processing, aim-

ing to enhance image quality by effectively eliminating noise
while preserving essential structural and textural details. In this
paper, we introduce a novel denoising algorithm that integrates
residual Swin transformer blocks (RSTB) with the concept of the
classical non-local means (NLM) filtering. The proposed solution
is aimed at striking a balance between performance and compu-
tation complexity and is structured into three main components:
(1) Feature extraction utilizing a multi-scale approach to cap-
ture diverse image features using RSTB, (2) Multi-scale feature
matching inspired by NLM that computes pixel similarity through
learned embeddings enabling accurate noise reduction even in
high-noise scenarios, and (3) Residual detail enhancement us-
ing the swin transformer block that recovers high-frequency de-
tails lost during denoising. Our extensive experiments demon-
strate that the proposed model with 743k parameters achieves
the best or competitive performance amongst the state-of-the-art
models with comparable number of parameters. This makes the
proposed solution a preferred option for applications prioritizing
detail preservation with limited compute resources. Furthermore,
the proposed solution is flexible enough to adapt to other image
restoration problems like deblurring and super-resolution.

Introduction
Image denoising is an essential step in many image process-

ing and computer vision applications, as noise can significantly
degrade the quality of visual data and affect the performance of
downstream tasks such as segmentation, recognition, and classifi-
cation [1, 2]. The goal of denoising is to remove unwanted noise
from an image while preserving important structures and details.
Traditionally, various filtering methods such as Gaussian, median,
and non-local means (NLM) filters have been widely used for im-
age denoising [1]. With the rise of deep learning, various con-
volutional neural networks (CNNs) [3, 4] and Transformer-based
architectures [6, 8, 9] have outperformed the classical methods
both in terms of noise removal and detail preservation.

In this paper, we propose a novel feature-matching-based
denoising algorithm that combines the strengths of CNNs and
transformers. Inspired by the NLM [1] filtering approach, our
model leverages the concept of similarity-based feature match-
ing. Unlike traditional NLM that operates on raw pixel inten-
sities, our model utilizes learned feature embeddings from Swin
Transformer blocks [9] which significantly improve noise reduc-
tion capabilities by capturing both local and global contexts effec-
tively. This combination of NLM with multi-scale transformer-
based feature extraction sets our work apart from prior multi-
scale methods that typically rely on purely convolutional architec-
tures, thus providing greater robustness to diverse noise patterns

and better preservation of structural details. As demonstrated by
our experiments, the proposed approach finds a balance between
computational complexity and denoising performance achieving
the best results among models with comparable parameters. The
proposed solution performs particularly well in scenarios with a
lot of high frequency content and repetitive structures. The main
contributions of the proposed solution are:

• We introduce a multi-scale feature extraction framework
based on the use of residual Swin transformer blocks
(RSTB) [9] which can capture diverse local and global fea-
tures across the input image.

• We propose a multi-scale feature matching block (MS-
FMB) based on the classical NLM filtering [1] that improves
the accuracy of pixel similarity estimation by utilizing fea-
ture vectors and enables robust denoising performance even
at higher noise levels.

• We present a residual detail enhancement module based on
Swin transformer blocks that helps recover lost fine details,
resulting in enhanced image quality for scenarios with high
frequency content.

• Our extensive experiments on benchmark datasets show that
the proposed method achieves better or competitive perfor-
mance in terms of the peak signal-to-noise ratio (PSNR) in
comparison to other state-of-the-art (SOTA) models of com-
parable size. Furthermore, the proposed solution qualita-
tively performs better in scenarios with repetitive structures.

In the rest of the paper, we first provide an overview of prior work
on denoising followed by a detailed description of the proposed
model architecture and methodology. We then present detailed
quantitative and qualitative experimental results highlighting var-
ious aspects of the proposed solution.

Related Work
Image denoising has been extensively studied over the past

few decades, leading to a broad range of approaches, from classi-
cal filtering techniques to modern deep learning-based methods.
Traditional denoising algorithms, such as Gaussian smoothing,
median filtering, and bilateral filtering, were initially employed
to remove noise by averaging pixel intensities while preserving
edges [11, 12]. Although effective for low noise levels, these
methods often fail to preserve finer image details, especially under
high noise conditions.

A significant breakthrough in denoising came with the in-
troduction of NLM filtering, which computes the similarity be-
tween patches in an image and averages them based on this simi-
larity [1, 2]. The success of NLM lies in its ability to exploit the
self-similarity in natural images, though it tends to be computa-
tionally expensive and struggles with complex textures. Follow-
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ing NLM, Block-Matching and 3D Filtering (BM3D) [18] and
Weighted Nuclear Norm Minimization (WNNM) [19] advanced
denoising by utilizing patch-based collaborative filtering in a 3D
transform domain, providing improved results, especially in tex-
tured regions. These methods laid the foundation for subsequent
multi-scale and patch-based feature extraction techniques.

With the advent of deep learning, CNNs have been widely
adopted for image restoration tasks, including denoising. One
of the earliest CNN-based denoising models demonstrated that
CNNs could outperform traditional filters by learning data-driven
features [13]. This was significantly improved by the introduction
of DnCNN [3], a deep residual learning-based model that facili-
tated the learning process by focusing on residual noise. The suc-
cess of DnCNN led to more advanced models like MemNet [14]
and FFDNet [15], which further optimized multi-layer CNNs to
handle varying noise levels. The encoder-decoder-based U-Net
architecture [5], originally developed for biomedical segmenta-
tion, has also been effectively adapted for image denoising due
to its ability to capture both local and global features through its
symmetrical structure. Extensions of this concept, RED-Net [16]
and the Residual Dense Network [17], utilized similar encoder-
decoder designs with residual connections. These architectures
leverage skip connections to preserve fine-grained details, effec-
tively enhancing denoising performance.

The idea of leveraging self-similarity, as utilized in NLM
and BM3D, was later incorporated into deep learning frame-
works. Techniques like the non-local recurrent network [22] and
non-local blocks [23] applied non-local relationships directly in
the feature space, improving robustness under high noise levels.
Moreover, multi-scale processing became a prominent direction,
with early methods like BM3D and WNNM inspiring deep learn-
ing models that utilize multi-scale feature extraction. Variational
Denoising Network [20] and Real Image Denoising Network [21]
incorporated these ideas into their deep architectures, improving
their ability to capture both fine and coarse features, thus achiev-
ing better denoising results.

More recently, transformers and attention mechanisms, orig-
inally developed for natural language processing tasks [8], have
been successfully adapted for image denoising. Vision Trans-
formers demonstrated that attention-based models could rival
CNNs for tasks such as image classification [6]. Building on this
foundation, SwinIR [9], a transformer-based architecture that ef-
fectively captures both local and global contextual information
through hierarchical attention mechanisms demonstrated SOTA
denoising performance. DeamNet [7] employed deep feature ex-
traction along with attention mechanisms to focus on more rel-
evant areas of an image for noise removal. Although effective,
these models often require considerable computational resources
making their deployment difficult in resource constrained appli-
cations.

Our work builds upon these advancements by proposing a
hybrid approach that integrates multi-scale feature matching and
residual detail enhancement with a transformer-based architec-
ture.

Proposed Network Model
In this section, we present a detailed description of the pro-

posed model illustrated in Fig. 1 followed by the training details.
As depicted in Fig. 1, the proposed model architecture consists

of three main components: 1) Feature Extraction, 2) Multi-scale
Feature Matching, and 3) Residual Detail Enhancement. Each of
these components is described in detail below.

Feature Extraction Block
In the first part of the model, we perform shallow feature ex-

traction independently for each input image channel using RSTBs
[9] to learn feature embeddings at multiple scales. Swin trans-
formers utilize hierarchical feature extraction and local window-
based attention, making them efficient in capturing both local
and global features, effectively distinguishing signal from noise.
With x,y denoting the pixel positions and c the image channels,
the noisy grayscale/color image f (x,y,c) is given as input to the
RSTB layers.

The RSTB performs convolutions at multiple scales, allow-
ing the model to learn feature vectors that encode both structural
and textural details in the image. The Swin Transformer lay-
ers (STL) leverage an attention mechanism that further enhances
the ability to differentiate between meaningful features and noise.
The output of the feature extraction block, a multi-channel fea-
ture map M(x,y,z), representing the different learned features ex-
tracted from the noisy image corresponding to each pixel along
the z dimension is given by

M(x,y,z) =U( f (x,y)). (1)

Multi-scale Feature Matching Block
In the second part of the proposed model, we utilize the

learned feature vectors M(x,y,z) to determine the similarity be-
tween pixels directly in the spatial domain. Specifically, for each
pixel i in the noisy image, we calculate its similarity with other
pixels j within a local neighborhood window of size w×w. This
approach is inspired by the classical NLM filtering method [1],
which performs pixel-wise matching using raw pixel values. The
proposed method, however, uses the learned feature vectors for
matching, which significantly improves the accuracy of pixel sim-
ilarity estimation and robustness to noise.

With m(z)i denoting the learned feature embedding of the
center pixel under consideration i and m(z) j representing the em-
bedding of a neighboring pixel j within the window, the pixel
similarity metric between pixels i and j is computed based on the
Euclidean distance between their feature embeddings given by

Di, j = ||m(z)i −m(z) j||2. (2)

After calculating the Euclidean distances between the center and
neighboring pixels using their feature vectors, a normalized in-
verse exponential scaling is applied to convert the calculated dis-
tances into normalized weights as

wi, j =
exp(−Di, j)

∑ j exp(−Di, j)
. (3)

These weights are then used to compute the updated value of the
center pixel using a weighted average of all the pixels in the w×
w window around the center pixel. This process is repeated for
multiple window sizes w = [5,7,9,25] as shown in Fig. 1. The
various steps of the MS-FMB are summarized in Algorithm 1.
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Figure 1: Proposed image denoising model architecture. The model consists of a channel-wise feature extractor using RSTBs, followed
by a MS-FMB with multiple window sizes. A deeper RSTB is used to refine the output and recover fine details. Subfigures (a) and (b)
show the STL and the RSTB respectively.

Algorithm 1 Multi-scale Feature Matching Block

Require: Noisy image f (x,y), RSTB feature extractor U
Ensure: Estimated true image u(x,y)

1: Learn feature embeddings using RSTB feature extractor:
M(x,y,z) =U( f (x,y))

2: for each pixel i in the feature map do
3: for each pixel j in the neighborhood window of size w×w

centered at i do
4: Compute the mean squared distance between feature

vectors: Di, j = ||m(z)i −m(z) j||2

5: Compute the weight for pixel j: wi, j =
exp(−Di, j)

∑ j exp(−Di, j)

6: end for
7: Compute the weighted average of pixel values using

weights wi, j: u(i) = ∑ j wi, j f ( j)
8: end for
9: return Denoised image u(x,y)

Residual Detail Enhancement Block
In the final part of the model, a deeper RSTB is employed

to further refine the output, capturing finer details of the image.
This residual enhancement step leverages the hierarchical atten-
tion mechanism of Swin Transformers to enhance the feature rep-
resentation, ensuring that essential image details are preserved
while noise is effectively removed in the previous step (weighted
averaging at multiple window sizes). This combination of residual
connections and deep feature extraction aids in the overall robust-
ness and quality of the denoised image by adding back the high
frequency details in the denoised image.

Training Details
We use the Adam back-propagation algorithm to train the

entire model. It is important to note that although the trainable
weights are only in the RSTB part of the model, back-propagation
is done for the entire architecture. This is done by treating the en-
tire model as a computational graph to calculate derivatives for
the gradient descent algorithm. This enables the model to learn
noise-specific embeddings that help provide the most informa-
tion for pixel matching, specifically in the later part of the model.
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Dataset σ BM3D DnCNN FFDNet SwinIR Ours
Urban100 15 32.35 32.64 32.40 33.70 32.62

25 29.70 29.95 29.90 31.30 29.96
50 25.95 26.26 26.50 27.98 26.32

BSD68 15 31.07 31.73 31.63 31.97 31.63
25 28.57 29.23 29.18 29.50 29.19
50 25.60 26.23 26.29 26.58 26.14

Table 1: PSNR comparison for grayscale image denoising across various datasets and noise levels.
Dataset σ BM3D DnCNN FFDNet SwinIR Ours
Urban100 15 33.93 32.98 33.83 35.13 34.75

25 31.36 30.81 31.40 32.90 31.51
50 27.93 27.59 28.05 29.82 28.21

CBSD68 15 33.52 33.90 33.87 34.42 33.75
25 30.71 31.24 31.21 31.78 31.07
50 27.38 27.95 27.96 28.56 27.88

McMaster 15 34.06 33.45 34.66 35.61 34.67
25 31.66 31.52 32.35 33.20 32.33
50 28.51 28.62 29.18 30.21 29.18

Table 2: PSNR comparison for color image denoising across various datasets and noise levels.

The learning rate and betas used for training were 10−3 and
(0.9,0.999) respectively. We used the DIV2K [27] and Flickr [28]
dataset for training the model with mean-squared error (MSE) as
the objective function loss metric.

Experimental Results and Discussion
In this section, we compare the performance of our pro-

posed model against several state-of-the-art denoising algorithms:
BM3D [18], DnCNN [3], FFDNet [15], and SwinIR [9]. We use
PSNR as our evaluation metric. Additionally, we compare the
computational efficiency of the models in terms of the parameter
count. Our results demonstrate that the proposed model achieves
a competitive balance between denoising performance and model
size, which is particularly important when deploying in resource-
constrained environments.

Quantitative Results
Table 1 and Table 2 show the PSNR values across differ-

ent datasets (CBSD68 [24], Urban100 [26], McMaster [25]) and
noise levels (15, 25 and 50) for grayscale and color image de-
noising respectively. It can be observed that SwinIR achieves
the best performance (highlighted in black) amongst all the al-
gorithms being compared. This is expected given the drastic dif-
ference (≈15x) in size between SwinIR and the rest of the algo-
rithms being compared. This performance difference is increased
at lower noise levels. Going a step further, the second and third
best performing algorithms are highlighted in blue and red respec-
tively in Table 1 and Table 2. It can be seen that the proposed
solution achieves the best performance after SwinIR in majority
of the cases. Furthermore, the performance difference is minimal
for the cases where one of the other algorithms outperforms the
proposed solution.

Qualitative Results
In addition to the quantitative results, we also provide qual-

itative comparisons in Figure 2. It can be observed that the pro-
posed model preserves fine details and edges better than DnCNN
and FFDNet, particularly in high-frequency regions. For the

grayscale results, the proposed solution actually preserves details
even better than SwinIR as highlighted by the zoomed in por-
tion. For the colored results, SwinIR produces slightly better vi-
sual quality though the difference is subtle, making the proposed
model an attractive solution for use in practical applications with
limited resources.

Performance and Efficiency Trade-off

While SwinIR outperforms all other models in terms of
PSNR and visual quality, it has significantly more parameters
(11.5M). In contrast, our model provides competitive denoising
performance at a fraction of the parameter count (743K). This bal-
ance between performance and computational efficiency makes
our model more suitable for scenarios where memory and pro-
cessing power are limited. DnCNN (558K) and FFDNet (490K)
have slightly fewer parameters, however, as demonstrated by the
quantitative and qualitative results, the proposed solution per-
forms better in terms of PSNR and also better preserves fine de-
tails making it suitable for real-world applications that require
both high performance and low computational cost.

Robustness and Flexibility

Our model’s architectural innovations, such as multi-scale
feature matching and residual Swin Transformer blocks, offer sig-
nificant benefits. The multi-scale feature matching mechanism
allows our model to capture both coarse and fine details, essen-
tial for handling real-world noise distributions that are often non-
uniform. Additionally, the Swin Transformer blocks enable our
model to preserve high-frequency details, such as edges and tex-
tures, even under heavy noise. The hierarchical architecture of the
Swin Transformer blocks adds further flexibility of our model,
making it adaptable to a wide range of image restoration tasks,
such as super-resolution, inpainting, and deblurring. This flexi-
bility is an advantage over CNN based models like DnCNN and
FFDNet, which do not generalize as effectively to these tasks.
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Figure 2: Qualitative comparison of denoised (a) grayscale and (b) color images across different algorithms at noise level σ=50. For the
grayscale images, it can be observed that our model preserves fine details within the zoomed portion even better than SwinIR with 15x
fewer parameters. For the colored images, SwinIR visually looks somewhat better than the proposed solution.
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Future Work
Our ongoing work in this direction will leverage the flexi-

bility of the multi-scale feature matching and transformer-based
architecture of the proposed model to extend it to other image
processing tasks, such as super-resolution, inpainting, and deblur-
ring. Another important aspect of the denoising problem is to
consider realistic noise modeling and noise adaptation techniques
to improve the model’s robustness to real-world noise. We also
plan to explore optimization strategies, such as model pruning
and quantization, to further reduce the computational footprint
for real-time applications. Lastly, incorporating self-supervised
learning methods will enable the model to generalize better with
less reliance on labeled data, enhancing its practical applicability
across diverse tasks.

Conclusion
In this paper, we proposed a novel image denoising model in-

spired by NLM that integrates multi-scale feature matching with
residual Swin transformer blocks, offering a balance between per-
formance and computational efficiency. Our model performs bet-
ter than other SOTA denoising models with comparable number
of parameters particularly in settings with a high degree of texture
or repetitive structures. While the performance of the proposed
solution is inferior to significantly larger networks like SwinIR
and DeamNet in terms of PSNR, it seems to better preserve high
frequency structure in the denoised images as demonstrated in our
qualitative results. Additionally, our architecture shows poten-
tial for extension to other image restoration tasks such as super-
resolution, inpainting, and deblurring. Future work will focus on
optimizing the model for real-world noise, improving its adapt-
ability, and its application to diverse image processing tasks.
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