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Abstract 

In photography, the dynamic range (DR) is a distinguishable 
brightness range and is determined by the analog-to-digital 
converter (ADC) and signal-to-noise (SNR) performance of the 
sensor. Recently, many various HDR strategies have been 
introduced to obtain high DR beyond these hardware limitations. 
However, since camera manufacturers set these HDR algorithms to 
operate differently by considering the situation, it is necessary to 
evaluate the quality of images taken in various situations for 
objective evaluation. In order to quantitatively measure the DR, we 
should know both the actual luminous intensity and the SNR of the 
picture. However, it is difficult to measure the two information in 
general-scene photos without charts. To overcome these problems, 
in this study, we propose a method to measure the DR of a natural-
scene photograph by reconstructing radiance map and specifying 
the pixel value at which the SNR reaches 12dB. Using the pre-
calculated radiation and SNR information, we measured DR of 
photos without using a chart, and demonstrated that HDR images 
have higher DR than standard DR (SDR) images. 

Introduction  
In photography, dynamic range (DR) is defined as a ratio 

between the lowest and highest brightness where the signals are 
distinguishable. One of the primary factors that determines the DR 
of a camera sensor is an analog-to-digital converter (ADC). 
Nowadays, 10-bit ADCs are most commonly used in mainstream 
mobile cameras, and theoretically, those can have about 60-dB DR. 
Another factor that limits the DR is noise. Noise as strong as a signal 
makes it difficult to distinguish the signals, resulting in a reduction 
of DR. To overcome these hardware limitations, many camera 
manufacturers try to adopt various high DR (HDR) reconstruction 
strategies that synthesize multiple images with modulated shutter 
speed or gain. To measure the DR, it is required to find the 
minimum/maximum brightness, which is distinguished in a picture. 
Conventionally, the actual brightness is measured via illuminant DR 
chart. Through the known luminance ratios of the DR chart, we can 
acquire a function representing the relationship between the actual 
radiance and the recorded pixel value, which is called as a camera 
response function (CRF). Referring to the definition of DR as the 
maximum/minimum brightness ratio in which signals are 
distinguished, DR is determined as a radiance section in which the 
CRF slope and the SNR are maintained above a certain level. 
Normally, the criteria of the CRF slope is defined as 7.5% of its 
maximum slope and that of the SNR is defined as 0, 6, 12, or 20dB  
[1]. 

However, there is a limitation in the DR measurement of 
today’s mobile phones. In order to optimize the quality of the 
merged HDR images, camera manufacturers perform quite complex 
HDR algorithms while considering the internal and external 
conditions of the camera in combination. Thus, depending on the 
situation, the DR performance could not be constant, and it may be 

limited by unexpected side effects. In addition, the DR performance 
of sensors is usually measured in a laboratory environment with 
well-controlled light conditions, whereas practical environments 
have various light conditions. Because of the difference, the 
specification of the DR measured in a laboratory could be differ 
from the real user experience. For this reason, there have been 
demands to measure the DR in various situations to evaluate it in a 
multifaceted and objective manner. However, it has been a 
challenging problem to measure image quality, such as SNR, 
without relying on reference charts. 

To solve this problem, in this study, we propose a method to 
measure the DR and SNR of a natural-scene (NS) photo. To 
overcome the lack of radiance reference, we reconstructed a pseudo 
radiance reference map by adopting Devec's HDR recovery method 
[2]. Further, we improved the robustness of its CRF estimation 
method by correcting a defect caused by scale mismatch in the 
optimization equation. For specifying the pixel value satisfying the 
SNR-based criteria of DR measurement, we developed a method 
which can measure SNR according to pixel values. This proposed 
method can assess the noise even in images with few flat areas, such 
as a NS image, by locally calculating the averages (AVG) and the 
standard deviations (STD) via an adaptive anisotropic kernel. 
Through the radiation and SNR according to pixel levels, we could 
quantify the DR of NS images by determining the distinguishable 
brightness where the contrast and SNR were maintained above a 
certain level. Then, we verified the methods we developed through 
simulation and actual tests and confirmed the consistency with 
qualitative evaluation. 

Methods 

Modified CRF 
In order to find distinguishable brightness, the CRF must be 

obtained first. Although DR chart is conventionally used for this, we 
used the HDR radiation map (HDR-RM) introduced in the Devec’s 
paper [2] as our pseudo radiation reference to measure DR in NS 
images without the chart. The first step to recover the HDR-RM is 
to estimate CRF by using multiple standard DR (SDR) images with 
various exposure times (multi-EIT SDR images). According to 
Devec, et al., the log-scaled inverse CRF, 𝑔 , can be derived as 
follows: 

𝑧 = 𝑓൫𝐸∆𝑇൯, (1) 

𝑙𝑜𝑔ଵ 𝑓ିଵ൫𝑧൯ = 𝑙𝑜𝑔ଵ 𝐸 + 𝑙𝑜𝑔ଵ∆𝑇 , (2) 

𝑔൫𝑧 ൯ = 𝑙𝑜𝑔ଵ 𝐸 + 𝑙𝑜𝑔ଵ ∆𝑇, (3) 

where 𝑧  is the i-th pixel value at j-th shutter speed, 𝐸  is the 
irradiance at the i-th pixel, ∆𝑇 is j-th shutter speed, and 𝑓 is the CRF. 
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From the above equations, the inverse CRF can be estimated by 
optimizing the following equation: 

argmin
(௭),ா

∑ ∑ ൣ𝑤൫𝑧,൯൫𝑔൫𝑧,൯ − 𝑙𝑜𝑔ଵ 𝐸 − 𝑙𝑜𝑔ଵ ∆𝑇൯൧
ଶ

 +

𝜆 ∑ ቂ𝑤(𝑧)
ௗమ(௭)

ௗ௭మ ቃ
ଶ

௭ ൨, (4) 

where 𝑤(𝑧) is a triangular weighting function that is maximized at 
the half of the maximum pixel level, 𝜆 is a regularization coefficient 
(0.1 used in this paper). In the equation (4), the regularization term, 
including the Laplacian of 𝑔, is added to make the curve smooth, 
but the 𝑔(𝑧) is the exposure of logarithmic scale whereas 𝑧 is the 
pixel value of linear scale. This disparity makes the CRF estimation 
unstable. To solve this problem, we modified the equation so that 
both scales can be unified. From the equations (1-3),  

𝑧 + 1 = 𝑓൫𝐸∆𝑇൯ + 1, (5) 

𝑙𝑜𝑔ଶ൫𝑧 + 1൯ = 𝑙𝑜𝑔ଶ൫𝑓൫𝐸∆𝑇൯ + 1൯  

                           = 𝑓መ൫𝐸∆𝑇൯, (6) 

𝑙𝑜𝑔ଵ 𝑓መିଵ൫𝑙𝑜𝑔ଶ൫𝑧 + 1൯൯ = 𝑙𝑜𝑔ଵ 𝐸 + 𝑙𝑜𝑔ଵ ∆𝑇, (7) 

𝑔ො൫𝑙𝑜𝑔ଶ൫𝑧 + 1൯൯ = 𝑙𝑜𝑔ଵ 𝐸 + 𝑙𝑜𝑔ଵ ∆𝑇 . (8) 

Accordingly, the loss function in equation (4) was modified as 

argmin
ො൫మ൫௭,ೕାଵ൯൯,ா

ቈ∑ ∑ ൣ𝑤൫𝑧,൯൫𝑔ො൫𝑙𝑜𝑔ଶ൫𝑧, + 1൯൯ − 𝑙𝑜𝑔ଵ 𝐸 −

𝑙𝑜𝑔ଵ ∆𝑇൯൧
ଶ

+ 𝜆 ∑ 𝑤൫𝑧൯
ௗమො൫మ൫௭,ೕାଵ൯൯

ௗ మ൫௭,ೕାଵ൯
మ ൨

ଶ

మ൫௭,ೕାଵ൯ . (9) 

Note that the modified inverse CRF function, 𝑔ො, receives the log-
scaled pixel value. Thus, the regularization term could converge to 
zero when the pixel value linearly increases with exposure. 

CRF of a Test Image 
To acquire the CRF of a test image, we need the following steps: 

1) generate a reference radiance map; 2) extract sample pairs from 
both the radiance map and the test image; and 3) define the CRF 
through regression (Figure 1). For the reference radiance map, we 
followed the same method in the Devec’s research, recovering the 
HDR-RM by blending the multi-EIT SDR images converted to 
radiation values through the obtained inverse CRF as follows: 

𝑙𝑜𝑔ଵ 𝐸 =
∑ ൣ௪൫௭ೕ൯൫ො൫మ൫௭,ೕାଵ൯൯ିభబ ∆்ೕ൧൯ುషభ

ೕసబ

∑ ௪൫௭ೕ൯ುషభ
ೕసబ

. (10) 

In the sampling process, we extracted radiance-pixel level 
samples pairs considering the distribution of the radiance, so that the 
regression can be conducted stably as follows:  

𝑆ோௗ = ൛𝑟௫,௬|(𝑥, 𝑦) ∈ 𝑆ൟ, (11) 

𝑆௫ ௩ = ൛𝑖௫,௬|(𝑥, 𝑦) ∈ 𝑆ൟ, (12) 

where 𝑆 = ൛(𝑥, 𝑦)|𝜙 < 𝑚 ∙ 𝜒௫,௬, 𝜙~𝑈[0,1]ൟ  denotes radiance-
uniform random sampling map as, 𝑚  is the desired number of 

samples to extract, 𝜒௫,௬ =
ೃቀቔ

౨౮,౯

∆ౘ
ቕቁ

∑ ೃቀቔ
౨౮,౯

∆ౘ
ቕቁ౮,౯

, is the probability density 

map for the radiance uniformity, ℎோ(𝑛)  is the histogram of the 
radiance map with the interval of ∆𝑏, and ൫𝑟୶,୷, 𝑖௫,௬൯ are the values 
of the HDR-radiance map and the test image at (x,y). 

Then, we obtained the CRF of a test image, 
𝑓ௗ: 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 → 𝑃𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒 , by conducting locally 
weighted scatterplot smoothing (LOWESS) method. 

 
Figure 1. Process to recover HDR-RM and to acquire the CRF of a test image. 
The dashed lines in CRF of the test image represent the determined min/max 
DR cutoff, which is described later. 

Determination of CRF Slope 
Due to variations in image signal processing (ISP) strategies, 

such as tone mapping, among phone manufacturers, the CRF may 
operate irregularly at times. So, we proposed a method of measuring 
the slope that is robust to the scale of uncertain pixel levels and 
unpredictable its fluctuations. For the scale robustness, we 
calculated correlations between the log-scaled pixel level and the 
radiance and between the linear-scaled and the radiance. Then, 
determined one with high correlation as the real scale (Figure 2ab). 
Based on the selected scale, we fitted a curve, 𝑓௧௧ௗ , as below to 
the radiance-pixel level samples, and used 7.5% of the slope of the 
curve, 0.075𝑎, as the slope-based DR cutoff criteria (Figure 2c): 

𝑓௧௧ௗ = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑎𝑥 + 𝑏, 𝑍௫), 𝑍). (13) 

 
Figure 2. (a-b) An example of CRF with linear- or log-scaled pixel level, (c) an 
example with sharp rise and its fitted curve. 
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Local Average & Standard Deviation Maps 
For SNR measurement, we calculated the average (AVG) and 

sample standard deviation (STD) locally with an anisotropic kernel 
in a direction consistent with that of the edge which can be 
represented as: 

𝜇௫,௬,ఏೌ
= 𝐼௫,௬ ∗ 𝑘൫𝜃௧൯, (14) 

𝜎௫,௬,ఏೌ
= 𝜎௫,௬൫𝜃௧൯, (15) 

where 

𝑘(𝜃) =
ଵ

ଶగඥ|ఀ|
𝑒ି.ହ൫ఀషభ൯, (16) 

𝛴 = 𝑅𝑆𝑆𝑅ିଵ,  𝑅 = ቂ
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

ቃ ,  𝑆 = 
𝜆ଵ 0
0 𝜆ଶ

൨, (17) 

𝜃௧ = 𝑎𝑟𝑔𝑚𝑖𝑛
ఏ

𝜎௫,௬(𝜃), (18) 

𝜎௫,௬(𝜃) = ටቀ𝐼௫,௬ − 𝐼௫,௬ ∗ 𝑘(𝜃)ቁ
ଶ

∗
ఒభఒమ

ఒభఒమିଵ
𝑘(𝜃).  (19) 

𝐼௫,௬ is the original image, 𝑘(𝜃) is a multivariate 2D Gaussian kernel 
rotated by 𝜃 and the sum of each element is 1, and (𝜆ଵ, 𝜆ଶ) are the 
eigenvalues of the covariance matrix of the 𝑘(𝜃) (7 and 1 were used 
respectively, in this study). Note that, in the equation (19), is a mean 
subtraction and contrast normalization  (MSCN) equation [3] in 
which only the kernel is replaced from a normal Gaussian to the 

multivariated 2D Gaussian, and 
ఒభఒమ

ఒభఒమିଵ
 is a factor to correct the error 

caused by sample standard deviation assuming that the area of the 
kernel is equal to 𝜆ଵ𝜆ଶ. 

 
Figure 3. (a) multivariate 2D Gaussian kernels with various directions, (b) 
proposed kernel according to the eigenvalues and the direction of the 
covariance matrix.  

SNR Function of a Test Image 
To acquire the function of SNR according to the pixel level, we 

extracted the 20,000 AVG & STD value pairs considering both the 
AVG uniformity and the flatness as belows: 

𝑆ீ = ቄ𝜇௫,௬,ఏೌ
|(𝑥, 𝑦) ∈ 𝑆ቅ, (20) 

𝑆ௌ் = ቄ𝜎௫,௬,ఏೌ
|(𝑥, 𝑦) ∈ 𝑆ቅ, (21) 

where 

 𝑆 = ൜(𝑥, 𝑦)|𝜙 < 𝑛 ∙
టೣ,ఘೣ,

∑൫టೣ,ఘೣ,൯
, 𝜙~𝑈[0,1]ൠ, (22) 

ψ௫,௬ is a probability density map for AVG uniformity which can be 
acquired in the same way of that of the radiance uniformity, 𝜌௫,௬ is 
a probability density map for flatness. Inspired by Frangi filter [4], 
we calculated the 𝜌௫,௬ as follows: 

𝜌௫,௬ = 𝑒
ିቌ

ටഊభ,ೣ,
మ శഊమ,ೣ,

మ

మഓరబ%
ቍ

మ

 (23) 

where ൫λଵ,௫,௬, λଶ,௫,௬൯ are the eigenvalues of Hessian matrix of the 
test image, and τସ%  is the threshold that satisfies 

P ቆටλଵ,୶,୷
ଶ + λଶ,୶,୷

ଶ < τସ%ቇ = 40%. Note that 𝜌௫,௬ has high weight 

on the bottom 40% with low eigenvalues, which means that the 
value is likely to be extracted if its position is flat regardless of 
horizontal or tilted. Then we conducted the LOWESS regression on 
the AVG & STD sample pairs to obtain the STD function, 
𝑓ௌ்: AVG → STD. Although the STD samples are the sample STD, 
the expected STD of the STD function converges to population STD 
due to the averaging effect in this regression process. Sequentially, 

we could simply get the SNR function as 𝑓ௌேோ = 20 log
ீ

ೄವ(ீ)
. 

Through the CRF and SNR functions, we found both slope- and 
SNR-based DR cutoffs. The maximum DR cutoff was acuiqred as 
follows: 

𝐶௫ = 𝑚𝑎𝑥{𝑟|0.075𝑎 < 𝛻𝑓ௗ(𝑟)}. (24) 

where 𝑟 is the log-scaled radiance and 𝑎 is the CRF slope in the 
equation (13). Meanwhile, the minimum DR cutoff was determined 
based on both criteria as follows: 

𝐶 = 𝑚𝑎𝑥 ቆ
𝑚𝑖𝑛{𝑟|0.075𝑎 < 𝛻𝑓ௗ(𝑟)} ,

 𝑚𝑖𝑛 ቄ𝑟|12𝑑𝑏 ≤  𝑓ௌேோ ቀ𝑓ௗ
ିଵ (𝑟)ቁቅ

ቇ (25) 

Finally, we calculated the DR as follows: 

𝐷𝑅 = 𝐶௫ − 𝐶. (26) 

Results 

Simulation test 
We compared the CRFs of 10-bit uncompressed image data 

estimated by the conventional and proposed CRF estimation 
methods with the same input data and regularization term (Figure 4). 
In the result, we confirmed that the CRF inferred by the existing 
method was not properly optimized, whereas that inferred by the 
proposed method showed significantly improved optimization 
stability. 

 
Figure 4. Comparison of CRFs estimated by (a) conventional and (b) 
proposed methods. CRF, camera response function. 
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In order to verify the slope-based DR measurement, we 
simulated multi-EIT 10-bit images to recover the HDR-RM and 
generated test images with various bit depths by using an open-
source HDR image data [5]. Theoretically, DR increases by 6 dB as 
the bit depth increases by 1 bit. In the results, the DRs were 
measured to be 60, 71, 81, and 94 dB in the 10-/12-/14-/16-bit 
images, respectively, which is close to the theoretical expectation. 

 
Figure 5. Simulated image with various bit depth and the DR measured by our 
proposed slope-based DR measurement method. 

We also simulated grid- and star-patterned images with 
Gaussian noise to evaluate our proposed SNR measurement method. 
We measured the SNRs of the images and compared  them with the 
reference SNR, 𝑓ௌேோ,ோ(𝑥) = 20 log

௫

ఙ
, where 𝑥 is the pixel level 

and 𝜎  is the added Gaussian noise. In both grid-/star-patterned 
images, we observed that the measured SNR values were well 
matched with the reference above 10 dB, even though the star-
patterned image lacks a horizontal and flat area. However, the SNRs 
were found to be larger than the reference values below 10 dB. 

 

 
Figure 6. Simulation images and pixel level-to-SNR graphs of (a) grid pattern 
and (b) star pattern. 

To check if our proposed method can properly represent the 
DR reduction effect due to SNR deterioration, we measured the 
SNR and DR of images with various noises added to a 16-bit 

simulation image. As the noise was increased by 4 times, we 
confirmed that the pixel level to reach 12-dB SNR was also 
increased by 3.5 and 4.1 times. Accordingly, the minimum DR 
cutoff increased, lowering DR by 10, 12 dB. 

 
Figure 7. Simulated 16-bit images with various noise level, measured pixel 
level to reach 12-dB SNR, and measured DR considering SNR. 

Actual test 
We also compared SDR and HDR images qualitatively and 

quantitatively (Figure 8). The SDR and HDR images were captured 
by a mobile phone with HDR-off and HDR-on mode, respectively. 
In the SDR image, it was difficult to identify some regions due to 
the saturated signal in the bright area. On the other hand, the HDR 
image showed better contrast than the SDR image in the 
corresponding regions. Apart from brighter regions, the HDR image 
exhibited better quality in dark areas, allowing us to identify more 
objects than in the SDR image. In the SNR measurement result, 
SDR and HDR images achieved 12-dB SNR at the pixel values of 
13.7 and 6.08, respectively. In the DR measurement result, HDR 
image showed significantly wider DR than SDR image by 33 dB. 

 
Figure 8. SNR and DR comparison of SDR and HDR images. 
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Discussion 
In the SNR measurement process, we proposed a sampling 

method so that lots of samples could be extracted in flat areas 
regardless of whether it is tilted or not. This works in harmony with 
the orientation optimization effect of the adaptive anisotropic kernel, 
so that the directions of the tile and the kernel are set to be 
perpendicular to each other. These properties effectively can 
minimize errors of the SNR calculations. Therefore, this strategy 
helps to calculate SNR in NS images without charts. 

In the simulation test for SNR with grid-/star-patterned image, 
the measured SNR were mismatched with the reference. However, 
this is due to the unsigned image data clipping the negative signals 
to zero, overestimating the SNR values as follows: 

 
𝜇

𝜎
= 𝑆𝑁𝑅ேௗ < 𝑆𝑁𝑅ௗ =

𝜇 + 𝜀

𝜎 − 𝜖
 

where (𝜇, 𝜎)  are the original average and standard deviation, 
respectively, and (𝜀, 𝜖) are increase and decrease by the clipping 
effect. Statistically, only 0.003% signals are clipped when 𝜇 = 4𝜎, 
which is 12 dB. That is why we set the 12-dB SNR as the DR criteria. 
In the experimental results, it can be seen that there is little error 
above about 10 dB. 

In our study, we employed a kernel with a fixed aspect ratio of 
7:1, simplifying the kernel's area as the product of its eigenvalues. 
However, the optimal kernel characteristics may vary based on the 
size of the images or the features of the objects under consideration. 
Thus, our further study includes the exploration of adaptive kernel 
aspect ratios, considering the diverse nature of images and objects, 
Additionally, a comprehensive theoretical investigation into 
determining optimal kernel area for various scenes should be also 
conducted. Our another further study is to correct the motion error 
in the CRF estimation as well as HDR-RM generation. Instead of 
utilizing conventional charts, we adopted the HDR-RM derived 
from multi-EIT SDR images as the reference for radiance 
measurement. However, capturing the data in the presence of 
dynamic object in NS image is practically constrained due to the 
motion. Consequently, we aim to minimize the motion errors by 
employing techniques such as optical flow [6] during the data 
acquisition process. 

Conclusion 
In this study, we enhanced the optimization accuracy by 

modifying the existing radiation estimation method. Additionally, 
we developed a method capable of estimating SNR even in images 
with few flat areas, employing adaptive anisotropic kernels. Finally, 
we integrated these two methods to measure DR in photographs, 
even in scenarios without charts, demonstrating substantial 

numerical differences between SDR and HDR photos. Therefore, 
the proposed method is anticipated to offer objective indicators in 
diverse environments by eliminating environmental restrictions on 
the measurement of camera SNR and DR performance 

References 
[1] Imatest, "Dynamic Range," Imatest, [Online]. Available: 

https://www.imatest.com/solutions/dynamic-range/. [Accessed 30 1 
2024]. 

[2] P. E. a. J. M. Debevec, "Recovering high dynamic range radiance 
maps from photographs," in Seminal Graphics Papers: Pushing the 
Boundaries, 1997.  

[3] A. A. K. M. a. A. C. B. Mittal, "No-reference image quality 
assessment in the spatial domain," in IEEE Transactions on image 
processing 21.12, 2012.  

[4] A. F. N. W. J. V. K. L. &. V. M. A. Frangi, "Multiscale vessel 
enhancement filtering," in Medical Image Computing and Computer-
Assisted Intervention—MICCAI’98: First International Conference 
Cambridge, MA, USA, October 11–13, 1998.  

[5] G. Ward, "High Dynamic Range Image Examples," Anyhere 
Software, [Online]. Available: 
http://www.anyhere.com/gward/hdrenc/pages/originals.html. 
[Accessed 1 2 2024]. 

[6] H. A. B. a. J. W. Zimmer, “Freehand HDR imaging of moving scenes 
with simultaneous resolution enhancement,” %1 Computer Graphics 
Forum. Vol. 30. No. 2. Oxford, UK: Blackwell Publishing Ltd, 2011.  

 

Author Biography 
Seungwan Jeon was born in Republic of Korea in 1989. He received the 
B.S. degree in biomedical engineering from Yonsei University in 2014, and 
the Ph.D. degree in creative IT engineering from POSTECH in 2020. His 
Ph.D. research focused on photoacoustic/ultrasound imaging techniques 
using image/signal processing, beamforming, and deep learning. Since 
2020, he is with Samsung Electronics, Republic of Korea, as a Staff 
engineer. His current research interests include camera sensor, computer 
vision, and image quality assessment. 

 

IS&T International Symposium on Electronic Imaging 2024
Image Quality and System Performance XXI 274--5


