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Abstract 
The capability for a camera to produce a color-accurate high 

dynamic range image is based upon its capture of luminance within 

a scene as well as the targets chosen to create the color 

transformation matrix. The wide-ranging luminance within a scene 

is an important part of cultural heritage documentation to 

appropriately capture an object’s appearance. In addition, color 

accuracy is critical to documenting cultural heritage appropriately. 

This research compares prosumer and mobile phone cameras for 

cultural heritage documentation using single exposure and high 

dynamic range images. It focuses on the evaluation of color 

characterization process, color reproduction quality, and 

generation of the scene. This was done by using two types of 

prosumer cameras and two types of mobile phone cameras, at 800 

lux with a wide range of color targets with various surface textures, 

matte, semigloss, and glossy. It was found that for creating color 

calibration matrices, a single exposure outperformed the one 

created from fusion of multiple exposure images. Additionally, 

including an extended achromatic scale along with the traditional 

Macbeth colors as part of the training data for the color calibration 

matrix may increase color accuracy for different cameras and the 

samples in the scene.   

Introduction 
High dynamic range imaging (HDR) is a field which has 

made large advancements and is now extending application to 

cultural heritage. This type of imaging mimics human vision in 

perception of extremes of very bright and very dark regions of a 

scene at once [1]. Previously in the history of analog and earlier 

digital camera technology, the very bright regions or the very dark 

regions or neither of a scene could be captured properly. Possibly 

time consuming or added steps in post processing would need to be 

performed in order to show both of these extremes in the final 

image. However as digital cameras progressed, HDR imaging was 

developed and also became a setting where the camera would take 

a series of photos at various exposures and perform the necessary 

computations to output a scene which showed the detail at both the 

light and dark extremes. There are different ways in which to 

combine the series of images in order to create a final HDR image. 

These different ways of processing can produce different effects 

depending on what the optimal goal is for the HDR image. 

Regarding all of this though is the importance of understanding the 

possible range of luminance from that camera which are needed to 

produce an HDR image. The RAW format is a digital negative 

where there is no compression of data such as in other formats. 

The sensors in different types of cameras will be able to capture a 

different amount of luminance from each of these scenes and the 

quantized digital representation is stored in the RAW image file.  

Adding to camera technology are mobile phone cameras, 

which historically only produced compressed file formats of their 

images until the early 2010s [2]. This has limited the amount of 

research which could be performed on them as compressed file 

formats as well as proprietary computational photography 

obscured understanding of them. As mobile phone camera 

technology has progressed, demand for a manual setting increased 

and there are now either native or third-party apps which allow for 

custom settings and with these digital negative formats of their 

image files known as Digital Negative Image (DNG). This 

development of mobile phone cameras allows them to be 

compared in some aspects to prosumer cameras.  

Currently for HDR imaging research, there is no international 

standard by which to judge HDR image capture. In lieu of this lack 

of standardization, cameras may still be assessed relative to one 

another by understanding their response to a set of representative 

targets and comparing the results to the ground truth measurements 

from a spectroradiometer. 

This research investigates luminance ranges that prosumer 

cameras and mobile phone cameras capture for application to 

cultural heritage and the types of reflectance targets chosen to 

create the color calibration transformation matrix for color 

accuracy [3][4][5]. It is known that high dynamic range imaging 

differs from traditional imaging, by merging various exposures and 

increasing the range of luminance captured from a scene. The 

luminance values of a scene may extend beyond the lightest and 

the darkest patches found in the traditional Macbeth achromatic 

scale which is traditionally used in cultural heritage 

documentation. This challenge has been found in cultural heritage 

documentation where the details within dark regions may be lost 

using traditional imaging, and where color accuracy is of high 

importance [6]. Additionally, mobile phones have begun to be 

included in other industries and there is increased interest for them 

to be accepted as tools for documentation in cultural heritage. 

Because of the complexity of HDR imaging and the goal of 

accurate documentation, it is necessary to understand the 

capabilities of mobile phone cameras and evaluate techniques for 

HDR documentation. This research compares prosumer and mobile 

phone cameras within a reflectance scene at various exposures and 

compares the color transformations derived from a single exposure 

image and a multi-exposure fusion image (MEF) [7] as well as 

expanding the training set for the color calibration matrix and 

assessing it on other color targets.  

Methodology 
In this work, color reproduction capabilities of different 

camera technologies have been evaluated. Color reproduction on 

different reflective materials were assessed; matte, semi glossy, 

and glossy. It was important to have a variety of material surfaces 

in the scene in order to replicate likely scenes for art. The prepared 

scene, with a detailed diagram of the included targets, is shown in 

Figure 3. The captured color values of the reflective targets are 

compared with the spectroradiometer measurements. In order to 

convert the camera RGB space values to the device independent 
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XYZ space, several characterization approaches have also been 

evaluated. The characterization was performed using different 

combinations of subsample color targets from the single exposure 

and MEF images of the scene. A summary of the evaluated 

approaches is provided in Table 2. The employed experimental 

scene, measurement setup, color characterization approaches, as 

well as color difference comparison processes are presented as 

follows.  

 

Scene Acquisition 

 

Lighting 
In order to assess the dynamic range of the two cameras, the 

targets were imaged in black painted room illuminated by 

LEDMotive Spectra Tune lights. The geometry of the lights and 

the camera were 45:0 as per the CIE recommended geometry 

[6].  The light sources were set at 100% intensity and have 800 lux 

illuminance and 5452K CCT, as measured with the MK350N 

Premium Spectroradiometer, see Table 1. The spectral power 

distribution was measured by a CS2000 spectroradiometer on a 

perfect reflecting diffuser within the scene, see Figure 1.  

Table 1. Lux and CCT of Lights 

Light Level Percentage of Intensity 100% 

Lux 800 

CCT 5452 

 

Cameras 
The prosumer cameras used were a Canon EOS 5D Mark II 

(C1) and a Sony ILCE-7RM3 (C2). The mobile phones used were 

a Huawei LYA-L29 (C3) and an iPhone 12 Pro (C4). Each camera 

was placed above the targets such that the targets filled the screen. 

Both prosumer cameras were operated remotely through a 

computer using proprietary software. C3 and C4 cameras were 

captured directly by adjusting the settings on the phones' screens 

with a finger.  

The C3 images were captured using the native camera app 

and its corresponding settings, which includes a DNG file and 

manual exposure settings. The C4 images were captured using a 

third-party app downloaded from the Apple Applications Store, 

RAW+. This is due to the fact that the current native app does not 

allow for manual adjustment of the exposure settings, though it 

does take a DNG file. For both cameras the standard lens was used. 

 
Figure 1. Spectral power distribution of lighting condition  

 

Each camera took 32 images in RAW mode of the targets 

with a maximum exposure time of 1s and minimum of 1/4000s at 

1/2s step size. This range of exposure times was chosen due to the 

limitations of the C3 and C4 cameras. Though each of the 

prosumer cameras can perform more exposures, to compare the 

capabilities of each camera to each other, it was needed to capture 

images within a shared exposure range. The C1 camera image size 

is 3752x5634 and 14-bit. The C2 camera image size is 5320x7986 

and 14-bit. The C3 camera image size is 5472x7296, according to 

investigation the data appeared 12-bit. The C4 camera image size 

is 3024x4032 and 12-bit. The responses of the green channels of 

each of the cameras for the Munsell Glossy N6.5 patch are shown 

in Figure 2. The plot shows the limited dynamic range capabilities 

of the smartphone cameras compared to that of the prosumer 

cameras. The sensor responses of C3 and C4 are shown to be 

saturated at 1/5s of exposure, while the C1 and C2 show more 

potential with no saturation, even for longer than 1s exposure time.  

 

Targets 
The experimental scene is made up of targets, constituted a 

range of value, hue, and surface textures of matte, semigloss, and 

glossy. It included the Xrite ColorChecker SG (CCSG), Xrite 

ColorChecker Passport (PP), Next Generation Target (NGT), 

Munsell Linear Gray Scale (MLGS), Munsell Glossy achromatic 

samples (Achromatic or AC) every whole and half value from 

N0.5 to N9.5, a perfect reflecting diffuser, and five additional 

black samples of a spectrophotometer black trap, Musou black, 

Acktar spectral black, Acktar metal velvet, and telescope flock.  A 

map of the targets as to how they were laid out for imaging is 

shown in Figure 3. 

 

Image Processing 
For each camera image, the raw files were converted into 

uncompressed 16-bit tiffs using RawDigger without scaling. The 

RGB values of a region of interest (ROI) on each patch were 

extracted and averaged. The colored mask of the identified ROIs is 

shown in Figure 5. 
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Figure 2. Green channel responses of each camera over all exposures for the 
Glossy Munsell N6.5. 

 

For the single exposure, the RGB values were converted to 0-

1 range by using the max pixel value. For the MEF images, the 

RGB values were converted to 0-1 range by using the max value 

from the diffuse white and any higher values were clipped to 1. 

This was performed such that pixel values higher than the diffuse 

white are considered as highlights in standard encoding format of 

an HDR images, and the analysis of highlights falls outside the 

scope of this paper. The measured XYZ values were normalized 

such that Y of the diffuse white was equal to 1 [8].  

Each camera's RGB values were converted to XYZ by using a 

color calibration matrix, a 3x3 transformation matrix. Four 

different ways of camera characterization approaches, with a 

designated name in parenthesis, are investigated; 1) using the 

single exposure Macbeth colors from the Xrite ColorChecker SG 

(Traditional), 2) using the single exposure Macbeth colors from the 

Xrite ColorChecker SG plus the Achromatic samples (Modified 

#1), 3) using the Macbeth colors from the Xrite ColorChecker SG 

created from MEF (Modified #2), and 4) using the Macbeth colors 

from the Xrite ColorChecker SG plus the Achromatic samples 

created from MEF (Modified #3).  A summary of the color 

calibration matrices’ variables is found in Table 2. An illustration 

of the chosen patches is shown in Figure 5.  

These targets and their ranges were chosen to represent a 

standard which is available to many cultural heritage imaging 

studios as well as to obtain samples which may provide darker 

values and higher which might be found in reflectance items of 

high dynamic range images. Additionally, we also chose to include 

targets which provided more intermediary achromatic steps than 

what is traditionally presented in commonly used color targets. The 

measured luminance values of all the achromatic patches are 

shown in Figure 4.  

 

 

 

 

 
Figure 3. Schematic of targets and layout on the table. Targets highlighted in 
blue are glossy, highlighted in green are matte, and highlighted in magenta 
are semigloss. Not all the patches for Avian Rochester Next Generation 

Target and the Xrite Digital ColorChecker SG were used in this research, Only 
the patches highlighted in red were used. 
 

 
Figure 4. Measured luminance values of all achromatic samples. Top: all 
black-labeled samples. Middle: white-labeled samples. Bottom: all gray-

labeled samples. They are color coded the same as the ROIs shown in Figure 
5, with the added black samples, not found in commercial targets, in black. 
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Color Calibration and Comparison 
For Traditional and Modified #1, the highest exposure image 

without overexposed pixels was chosen for each of the cameras: 

C1 - 1/4s; C2 - 1/3s; C3 - 1/40s; C4 - 1/40s. To generate the MEF 

image, Banterle et. al. 's implementation of Debevec's linear fusion 

method was utilized [9-10]. After subtracting the dark signal from 

each image at the same exposure, the process for deriving these 

matrices is found in through Equation 1, where n is the number of 

patches in the training set.  The averaged RGB values of each 

target patch was converted to XYZ tristimulus values (XYZestim) 

using the resulted CCM and converted into CIELab values for 

further optimization. 

𝐶𝐶𝑀 = (𝐶𝑇𝐶)−1𝐶𝑇𝐷        (1) 

Where, D and C represent the measured XYZ and camera 

RGB response values of the calibration target patches.   

                  
 

 

Figure 5. Example of the regions of interest (ROI) chosen on each of the targets. 
The ROIs are highlighted in red, blue, green, yellow, magenta, and cyan. 
 
Table 2. Color Characterization Matrices 

Name Image Training Data 

Traditional Single 
Exposure 

Xrite ColorChecker SG 
Macbeth Colors (Red mask 
in Fig 5.) 

Modified 
#1 

Single 
Exposure 

Xrite ColorChecker SG 
Macbeth Colors + 
Achromatic samples (Cyan 
and Yellow masks) 

Modified 
#2 

Multiple 
Exposure 
Fusion 

Xrite ColorChecker SG 
Macbeth Colors  

Modified 
#3 

Multiple 
Exposure 
Fusion 

Xrite ColorChecker SG 
Macbeth Colors + 
Achromatic samples 

The measured tristimulus values (XYZmeas) of the patches 

were collected with the CS2000 spectroradiometer, using the CIE 

1931 standard observer. The CCM matrix is then optimized using 

a least mean squares minimization of the DE2000 between the 

estimated XYZestim and the measured XYZmeas of up to 8000 

iterations. 

Results 
The predictions of each of the CCMs for all cameras was 

compared to the measured values of all target groups. The mean of 

all target groups for each camera under each CCM is found in 

figure 6. This shows how accurately the various CCMs were 

throughout each of the target groups. The Traditional and the 

Modified #1 were found to be the more accurate of the four CCMs. 

The mobile phones seemed to have benefited the most from the 

addition of the expanded achromatic range added to the training 

data as can be seen by their changing mean ∆E00 (Modified #1 and 

#3) for creating a CCM. This may be due to the limitations on their 

sensors and by supplying more training data for the CCM, it allows 

them to increase performance.  

The ∆E00 for each of the Achromatic targets at the single 

exposure and the MEF are presented in Figure 7. This shows the 

performance of CCM generated from single exposure and MEF 

image targets. The mobile phones showed higher color differences 

for whiter patches compared to the prosumer cameras. The 

prosumer cameras remain more consistent than the mobile phone 

cameras in both the single exposure and the MEF images across all 

CCMs. The mobile phone cameras for the MEF images also varied 

more in the lower value achromatic patches N1.0-4.0. This effect is 

also shown in Figure 8 in the Glossy Black plot, where the both C3 

and C4 icons are further from the measured value than the C1 and 

C2.  Similarly, the CCMs from MEF generally performed worse. 

Such higher color differences in the white patches may have 

something to do with the over-exposure and clipping related 

issues.    

 

Figure 6. Mean ∆E00 across all targets for each camera with each CCM. 
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Figure 7. Mean ∆E00 of the Achromatic samples for Modified #1 and 
 Modified #3 CCMs  

 

Since the C4 was being operated by a third-party app, it may be 

that the controls of the camera are not to the same consistency and 

degree of accuracy as the native apps or controls on the other 

cameras. This could be a contributing factor as to why the results 

of C4 are not as consistent as the other cameras. Other third-party 

apps had been tested such as Manual Cam, MCCamera, Camera+, 

Manual, Pro Camera, and ProCamera among others. However, it 

was found that their interfaces were either difficult to work with 

for repeated use or did not provide the desired features such as a 

wide range of exposure values.  

Figures 8 and 9 show the CIELab values of the cameras for all 

CCMs. In the black plots, the MEF images of the mobile phone 

cameras (Modified #2 and #3) showed that they were consistently 

at higher L values than the single exposure (Traditional and 

Modified #1) as well as the prosumer cameras at both MEF and 

single exposure. The MEF of all white and N5 were consistently 

varying in the red-green (a) or the yellow-blue (b) more than the L 

values. The diffuse white based normalization and the clipping 

steps of processing may have contributed to the higher dark levels 

and the color shift of the MEF based mobile phone results. To fully 

understand all the factors contributing to the lower performances 

of the mobile phone cameras as well as the MEF results, further 

analysis is required. 

 

Figure 8. CIELab comparison of the black (right column) and white (left 

column) patches at various textures, measured versus the cameras at all 
CCMs. 

 
Figure 9. CIELab comparison of the N5 at various textures, measured versus 
the cameras at all CCMs. 

Discussion 
In general, our analysis showed the color reproduction 

limitations of mobile phone cameras compared to that of the 

prosumer cameras under extended ranges of sample types. Given 

the inherent differences in their sensor dynamic range capabilities, 

such performance is understandable. Both prosumer cameras also 

performed within the Federal Agencies Digital Guidelines 

Initiative Technical Guidelines for Digitizing Cultural Heritage 

Materials (FADGI) for their mean ∆E00 differences in both the 

single and MEF images cases [11]. 
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It was interesting to note that the MEF caused all cameras to 

have lower color accuracy. A possible explanation as to why the 

MEF images had overall lower color accuracy (Figures 6 and 7) 

than the single exposure fusion images may be due to various 

factors, one of which may be a white point misalignment. During 

our analysis, we have observed areas with higher intensity values 

than the diffuse white. Therefore, the utilization of the diffuse 

white as a normalization factor might have caused over-exposures 

and hence more color differences for the MEF based predictions. 

The Debevec-Malik MEF method should also be investigated 

further and enhanced for better color accuracy. It is also known 

that multi-exposure techniques have historically focused on 

outdoor scenes or a combination of both indoor and outdoor in the 

same scene and other aspects of imaging such as edges and noise, 

rather than stricter color accuracy which is traditionally found in 

art reproduction imaging [11 - 12].  However, within a complex 

scene such as a painting, the lower color accuracy may be within 

color difference tolerances and the inclusion of MEF may allow 

better luminance representation of the scene, particularly for darker 

areas as shown in earlier research works [6]. 

The sample of the telescope flock had consistently higher 

color differences than the others black samples and this may be 

due to it reflecting the longer wavelengths near the IR, which was 

found out later on after data acquisition and analysis.   

Conclusion 
This research assessed the color transformation accuracy of 

different cameras based on various targets, comparing the 

traditional method with target patches of extended dynamic range 

and with MEF imaging. The prosumer cameras generally were 

more accurate than the mobile phones and the addition of a wider 

range of luminance values in achromatic targets enhanced the color 

accuracy. For creating a color calibration matrix, a traditional 

single image (one with highest exposure without overexposure) 

based characterization performed better than the one created from 

an MEF image.  

This research is part of a larger ongoing project which seeks 

to expand on the findings here. Currently, the project includes 

flatfielding, imaging of matte and glossy art, and exploring various 

MEF methods, and psychophysical experiments of comparison of 

the MEF versus the single exposure images of the art as compared 

to the original. 
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