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Abstract
With the fast-evolving video and display technologies, there

is an interest in better understanding user preferences for video
quality and the factors that impact these preferences. This study
focuses on the subjective video quality assessment (VQA) of TV
displays, considering a range of factors that influence viewer ex-
perience. We conducted two psychophysical experiments to inves-
tigate the latent factors affecting human-perceived video quality.
Our results offer insights into how different factors contribute to
video quality perception. This research guides researchers and
developers aiming to improve display and environmental settings
to give end-users an optimal viewing experience.

Introduction
With the advancement in video and display technologies, the

demand for high-quality video has increased markedly over re-
cent years. In this context, assessing the video quality to ensure
the optimal user viewing experience has become crucial. Video
quality assessment (VQA) involves analyzing various factors that
affect the overall human-perceived visual quality of video con-
tent, such as image resolution, content genre, viewer characteris-
tics (e.g., age), and many others. Park et al. studied how peo-
ple perceive image quality differently depending on the type of
content. Through the experiments, they concluded that content
genre-based image quality adjustment (e.g., increased saturation
for sports scenes) is necessary [1]. Kufa et al. investigated the
perceptual quality of video content presented in Full HD and Ul-
tra HD resolutions at different viewing distances. This research
highlighted the importance of considering diverse viewing condi-
tions when performing VQA [2]. Wetzel et al. stated that different
environmental factors could affect the legibility of the large screen
display. Factors such as ambient lighting, viewing distance, and
viewing angle significantly impacted the visual legibility on the
screen [3]. Chubarau et al. also stated the importance of evaluat-
ing image quality under different viewing conditions and display
systems [4]. Regarding this, Baek et al. studied how ambient
lighting conditions impact viewers’ visual perception of display
devices. They found that the subjects preferred matching the TV
display’s color temperature with the surroundings [5]. Gofaizen
et al. emphasized the importance of sharpness in perceived image
quality on display devices. They explored image processing ap-
proaches to correctly control the sharpness level of images shown
on TV [6]. Moorthy et al. assessed the video quality in mobile
devices. They prepared the content with different levels of qual-
ity (e.g., via distortion) considering real-life situations (e.g., slow
network) and collected the human opinions scores of its percep-
tual quality [7]. Winkler discussed the connections between the
human visual system and video quality and highlighted the chal-
lenges in developing vision models for perceptual video quality

assessment [8]. Additional studies discussed other factors, includ-
ing spatiotemporal attribute [9], dynamic range (SDR and HDR)
[10], and demography [11].

VQA involves the use of subjective and objective methods.
Objective methods use mathematical or statistical tools to ana-
lyze the technical aspects of the image or video content itself, and
it is highly efficient and easy to deploy. Over the years, more ad-
vanced objective methods have been developed, including spatial
domain methods such as deep similarity index (DeepSim), based
on a deep neural network [12]. Zhai and Min provided a thorough
review of the objective VQA methods [13]. However, these meth-
ods are generally pixel-by-pixel based, not considering the actual
user-perceived visual quality that environmental factors can influ-
ence. Conversely, subjective methods rely on human observers to
perceive and evaluate the quality of video content based on their
personal preferences and opinions. Pinson and Wolf summarized
different subjective evaluation methods while providing valuable
insights into the strengths and limitations of different methodolo-
gies [14]. Both objective and subjective methods can help evalu-
ate video quality. However, the subjective VQA method is more
suitable for measuring observers’ image quality preferences while
considering user-specific and situational factors.

In this study, we aim to empirically uncover and understand
TV users’ video quality preferences and impacting factors, and
consequently, we adopt the subjective VQA method. With the
factors chosen based on the literature and our experience, we de-
signed and conducted two psychophysical experiments with hu-
man observers (N = 37). The rest of this paper introduces the
experimental setup, analysis methodologies, and the results.

Factors
As discussed, subjective VQA can be influenced by many

factors, including but not limited to, viewer characteristics such
as age, culture [15], and experience. Factors like the observer’s
degree of chromatic adaptation as well as the correlated color
temperatures (CCT) and level of the surrounding illumination can
also play a significant role.

Experimental Methodology
The goal of the experiments is to determine how users per-

ceive picture quality on TV displays and what latent factors af-
fect this human visual perception. Toward this end, we designed
two experiments to evaluate the impact of varied combinations
of select factors on specific video quality, implemented by a TV
display’s picture setting configurations and an image processing
algorithm. In the first experiment, we asked subjects’ prefer-
ences regarding specific picture settings we developed based on
TV usage log data [16, 17]. These settings differ from the fac-
tory default, mainly on brightness, contrast, and sharpness lev-
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els. The second experiment focused on the video’s vividness (or
colorfulness). Here, we used three different levels of vividness
determined by a proprietary perceptual color enhancement algo-
rithm [18] and collected subjects’ preferred vividness levels ac-
cordingly. Both of these experiments involved the same partici-
pants, TV displays, lighting environment, and similar content.

Participants
Individuals with normal color vision were recruited as par-

ticipants in the experiments. Each participant provided informed
consent after being briefed on the study procedures. RIT’s Human
Subjects Research Office has approved this experiment (approval
FWA #00000731).

Stimuli and Lighting Condition
The experiment comprised six distinct visual stimuli, as de-

picted in Figure 1. We selected the content to represent various
video categories, including bright and dark settings, diverse skin
tones, and animated and real-life scenes.

(a) Animation (b) Game video

(c) Dark movie scene (d) Nature scene

(e) Soccer scene (f) Bright movie scene

Figure 1: Visual Stimuli (Content)

The experiments were conducted in the Munsell Color Sci-
ence Laboratory Dynamic Visual Adaptation Lab, which features
a ceiling-mounted, five-channel tunable LED system. Various de-
sired lighting conditions can be achieved by adjusting the weights
for these channels. This study employed four distinct lighting
conditions: (1) Dark Warm, (2) Bright Warm, (3) Dark Cool, and
(4) Bright Cool (see Table 1). We confirmed ambient lighting con-
ditions by measuring lights via an MK350N spectroradiometer.

Experiment I: Procedure
We divided the experiment into four blocks, each represent-

ing one of the specific lighting condition explained above. A one-
minute adaptation period between the blocks was given to the ob-
servers, allowing them to adapt to the ambient light changes ade-

Table 1: Select Factors

CCT (2) Illuminance (2) Stimuli (6) TV Settings (5)
2700K (Warm) 15L (Dark) Animation Dark Standard Mode∗

5500K (Cool) 350L (Bright) Game Bright Movie Mode∗

Movie (Dark) Low Vividness∗∗

Nature Medium Vividness∗∗

Sports High Vividness∗∗

Movie (Bright)
Note: ∗ and ∗∗ were used for Experiment I and II, respectively.

quately.
Two identical 65-inch Samsung TVs (Model: QN85C) are

installed side-by-side and used as the displays. We instructed ob-
servers to sit nine feet from the center of two TV displays (see
Figure 2). The viewing angles for both TVs are identical. A
15-minute warm-up period is allowed for the TVs and the LED
ceiling lights.

Figure 2: Experimental Setup

We prepared 8-second-long 4K SDR video clips per selected
content genre (see Figure 1). The original video format was Ap-
ple’s QuickTime (MOV), and we encoded it using HEVC for easy
content playback on TVs. As discussed before, we prepared spe-
cific picture settings (also known as Picture Mode) derived from
analyzing TV usage log data [16, 17]. Here, we focused on two
popular Picture Modes, Standard and Movie. Our data analysis
indicated that some users prefer to customize the default Standard
and Movie Picture Mode. To explain, some Standard Mode users
tend to lower the TV display’s brightness level by 22%, compared
to the default (namely, Dark Standard Mode). Different prefer-
ences exist for Movie Mode, like increasing the brightness set-
ting by 37% more than the default (namely, Bright Movie Mode).
Thus, we presented the observers with images having two differ-
ent picture settings (i.e., default vs. user-preferred) under each
Standard and Movie Picture Mode and asked their preferences.

We adopted the double stimulus continuous quality scale
(DSCQS) method regarding the evaluation methodology. The ref-
erence stimulus (default Picture Mode on the left TV) was as-
signed a score of 50, and observers rated the video quality of the
control stimulus (user-preferred Picture Mode on the right TV)
on a scale as low as 0 but without upper limits compared to the
reference. Observers responded to the same content twice (two
repetitions), and we fully randomized the order of the video con-
tent to prevent memory effects.

Considering four ambient lighting conditions, two Picture
Mode categories (Standard and Movie), five visual stimuli, and
two repetitions, each observer performed 80 video quality assess-
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ments. This yields approximately 25 minutes of experiment time
per subject. We used a MATLAB program to control the experi-
mental procedures and a Bluetooth keypad as the input device for
observers to submit their responses.

Experiment II: Procedure
All the experimental settings (e.g., viewing distance) are the

same as the first experiment, except that we focused on the vivid-
ness of video content displayed on TV and utilized an additional
stimulus (a bright movie scene; see Figure 1f). Both TVs are con-
figured with identical picture settings (Standard Mode) but differ
in their vividness level. The reference TV employs a baseline
(default) vividness, while the comparison TV is set to (1) low, (2)
medium, and (3) high levels of vividness for separate trials.

This experiment consists of four blocks of different lighting
conditions, three distinct vividness levels on TV displays, and six
stimuli with two repetitions. This section is divided into eight seg-
ments, encompassing 120 trials. The duration of this experiment
is approximately 40 minutes per subject. The MATLAB program
controls the entire experimental procedure as it did for the first
experiment.

After completing both experiments, we surveyed observer
characteristics such as age, gender, and television viewing habits
and briefly interviewed each subject about their video quality
preferences.

Results and Discussion
A total of 37 observers participated. There are 2,960 obser-

vations for Experiment I and 5,328 observations for Experiment
II.

Analysis of Factors
Experiment I

An ANOVA test was applied to the data. The results are
shown in Figure 3. Drawing conclusions from the Pvalue, the
significant factors include TV’s picture settings (Display Set-
ting), luminous intensity (Intensity), and the type of visual stim-
uli (Genre). The interactions between Display Setting & Intensity
and Display Setting & Genre are significant in Experiment I.

Figure 3: ANOVA (Experiment I)

The observer was asked to compare the default picture set-
tings to user-preferred ones under two presets (i.e., Standard and
Movie Picture Mode). Here, we aimed to understand how study
subjects perceived the user-preferred Picture Mode compared to
the default. To determine the overall preferences of observers
towards the given Picture Mode, we analyzed the collected data
as follows. Data from Experiment I was segmented by Picture

Mode: Standard and Movie. A response under 50 indicates a pref-
erence for the reference (default) Picture Mode. A response equal
to 50 indicates no preference between the two Picture Modes. A
response exceeding 50 signifies a preference for the user-preferred
Picture Mode (e.g., Bright Movie). We then performed two t-tests
separately for each Standard and Movie Mode data. The null hy-
pothesis was that the user-preferred Picture Mode is equivalent to
or worse than the default. The t-test results indicated we could
not reject the null hypothesis at the significance level of .05 for
Standard Mode but could do so for Movie Mode data. We there-
fore concluded that observers preferred the default picture settings
under Standard Mode but preferred the user-preferred settings (in-
creased brightness) for Movie Mode.

The Experiment I data was further divided by ambient light-
ing conditions and content. There are four lighting conditions:
(1) Dark Warm, (2) Bright Warm, (3) Dark Cool, and (4) Bright
Cool, and five different visual stimuli: (1) Animation, (2) Game,
(3) Movie (Dark), (4) Nature, and (5) Sports. In both Standard
and Movie Mode, the observers’ responses for each video content
under specific lighting conditions are presented in Figure 4. Re-
garding Movie Picture Mode, mean responses consistently exceed
50 regardless of ambient lighting and content (see Figure 4b).
This suggests that observers generally prefer the user-preferred
(bright) Movie Mode. In contrast, most of the means fall below
50 for the Standard Mode, indicating a preference for the default
setting. However, in the case of warm and low-intensity light-
ing conditions, observers tend to favor the user-preferred setting
(darker than the default Standard) except for Animation content.

We performed multiple comparison tests on the entire Exper-
iment I data to better understand the inter-relationships between
ambient lighting and content genre. Table 2 demonstrates the re-
sults of the multiple comparison t-tests across different lighting
conditions with varying content pairs. Since each lighting condi-
tion consists of ten comparison content groups, we performed the
Bonferroni correction (αcorrected = 0.05

10 = 0.005).

Table 2: Multiple t-tests on Content/Lighting (Experiment I)

Content\Lighting Dark Warm Bright Warm Dark Cool Bright Cool
Animation vs. Game 0.0097 0.0039 0.2665 0.0721
Animation vs. Movie 0.0057 0.9898 0.7966 0.4061
Animation vs. Nature 0.0045 0.3747 0.5387 0.3190
Animation vs. Sports 0.0336 0.0518 0.2821 0.2499

Game vs. Movie 0.9784 0.0089 0.1558 0.0045
Game vs. Nature 0.8116 0.0668 0.6810 0.3127
Game vs. Sports 0.7313 0.5710 0.9949 0.4755
Movie vs. Nature 0.7771 0.4175 0.3811 0.0364
Movie vs. Sports 0.7336 0.0716 0.1698 0.0306
Nature vs. Sports 0.5665 0.2852 0.6924 0.8021

Note: We used dark scenes under Movie genre for Experiment I.
Note: Significant p-values instances are emphasized.

As can be seen, we confirmed several circumstances that led
users to prefer customized picture settings other than the default.
Specifically, our study subjects are more likely to prefer the dark
version of Standard Mode when watching Nature content com-
pared to Animation content under the room lighting condition,
which was dark and warm (see Animation vs. Nature and Dark
Warm in Table 2; p < .005). The Nature content was sunset
scenes with warm colors, so we suspect this makes subjects per-
ceive darkness, favoring a darker image tone. The opposite goes
for the Movie Mode. The subjects tend to prefer the bright Movie
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(a) Mean responses for user-preferred Dark Standard Mode

(b) Mean responses for user-preferred Bright Movie Mode

Figure 4: Overall Preferences of TV’s Picture Settings

Mode when watching cinematic content over game content un-
der the bright and bluish room lighting (see Game vs. Movie and
Bright Cool in Table 2; p < .005). This finding sounds reasonable
based on the literature: people prefer brighter images on a display
device (e.g., TV) in a bright environment and vice versa [16, 17].

The same analysis was applied between four different light-
ing conditions. The results are listed in Table 3. There are statis-
tically significant differences between Dark and Warm and Bright
Warm, Dark Warm and Bright Cool, and Bright Warm and Dark
Cool (p < .0083, Bonferroni-corrected for six comparisons). The
results indicate that the room illuminance level has a more sub-
stantial effect than the CCT.

Experiment II
An ANOVA test was applied to the data collected for Exper-

iment II. The test results indicated the Genre was the significant
factor (see Figure 5). The interaction of Display Setting & CCT
was significant, too. This experiment’s display (picture) settings
did not drastically change the video in terms of color appearance.
Instead, it shows different levels of vividness (low, medium, high)
according to the experiment protocols. During the experiment,

Table 3: Multiple t-tests on Lighting (Experiment I)

Lighting Condition Pairs pvalue
Dark Warm vs. Bright Warm 0.00
Dark Warm vs. Dark Cool 0.3577
Dark Warm vs. Bright Cool 0.0058
Bright Warm vs. Dark Cool 0.0011
Bright Warm vs. Bright Cool 0.1923
Dark Cool vs. Bright Cool 0.0582

Note: Significant p-values instances are emphasized.

the observers could barely identify the difference between base-
line and control displays. This might be one of the reasons why
we obtained different results about impacting factors compared to
Experiment I, which showed quite noticeable differences in pic-
ture quality between the two TVs.

The observers’ responses grouped by the Genre factor are
shown in Figure 5b. Animation (Genre 1) and Game (Genre 2)
content are significantly different from other content; they are
both animated scenes, which may make them stand out. It also in-
dicates that Movie (Dark; Genre 3), Sports (Genre 5), and Movie
(Bright; Genre 6) content are similar to each other and distinct
from others. The commonality between these videos is that they
all include human skin tones.

(a) ANOVA results

(b) Responses per content genre

Figure 5: ANOVA (Experiment II)

We also performed a two-sample t-test to investigate differ-
ences in viewer preferences towards Movie (Dark) and Movie
(Bright) content under a bright TV viewing environment. A null
hypothesis was that there exist no differences in user preferences
towards dark and bright scenes if they are in the same movie genre
(see Figures 1c and 1f). The test rejected the null hypothesis at
the 5% significance level. Therefore, we state that people per-
ceive picture quality differently, even in the same content, and the
current genre categorization may not effectively capture people’s
actual perception and preferences.
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Appearance Based Analysis
The study subjects’ feedback was collected to get ideas of

how they evaluated the videos. According to the feedback, the
descriptors commonly used were brightness, chroma, naturalness,
skin tone, and grass color. These words suggested that some ob-
servers judged by overall scene color attributes, and others were
more focused on object colors, such as human skin tone and grass
colors. To get more insight into the correlation between pref-
erences and these factors, we carried out two color appearance-
based analyses. The color attributes and the representative colors
of the objects in the videos were analyzed.

Color Attributes Analysis
Display Characterization Models

This project examines TV displays with eight distinct set-
tings along an ambient environment variation containing four
unique lighting conditions. This results in a total of 32 combina-
tions for the analysis of TV settings and ambient conditions. For
the display characterization, the PR655 spectroradiometer was
used to measure the radiance of different color ramps, afterward
converting these measurements into absolute XYZ values. Conse-
quently, 32 distinct gamma-offset-gain (GOG) models were cre-
ated for different conditions. The transformation sequence can be
mathematically formulated as follows:

RGB −→ SPD −→ XY Z (1)

Each display model corresponds to a specific combination
of display setting and ambient light, ensuring the capture of the
display’s color rendering capabilities under varied environmental
lighting. These models aid in conducting the color attributes and
appearance analysis.

Image Appearance Attributes
In the experiment, five videos were used for analysis (see

Figure 1). Keyframes from these videos were extracted and saved
as RGB png files. The RGB values were then converted to XYZ
values using the GOG models. The XYZ values obtained are ab-
solute and were the basis for further transformations or normal-
ization.

To standardize the data, a chromatic adaptation model was
used to convert these XYZ values under a XY ZD65 white point.
Given that the experimental setup involved two TVs side-by-side
with ambient lighting, three distinct white points were present:
one for each TV and one for the ambient light. The white point
for adaptation was chosen based on the brightest one for each
combination. The chromatic adaptation is as follows:

XY ZD65 = M−1
16 ×Mad p ×M16 ×XY Zim (2)

where M16 is from CIECAM16, Mad p = diag(D65./wXY Zscene);
represents the adaptation matrix to convert scene white point to
D65.

Image Appearance Analysis
The image appearance parameters were assessed using an

image appearance model in IPT space, which includes lightness
(I), chroma (C), and hue (h). The contrast sensitivity function
(CSF) was utilized to filter the images. Three filters were applied

to the luminance and two chromatic channels. The filters are cal-
culated as follows:

cs flum = a× f c × e−b∗ f (3)

cs fchroma = a1 × e−b1∗ f c1
+a2 × e−b2∗ f c2 (4)

The filters are operated in IPT color space. Fourier transfor-
mations are used. cs flum is applied to I channel, and two cs fchroma
are applied to P and T channels. The parameters’ value can be
found in [19]. And f is defined in terms of cycles per degree of
visual angle (cpd), which is

f =
ppi

190
π

× tan−1( 1
dis )

(5)

where ppi is pixels per inch of the display, dis is the distance
between observer and display.

During the keyframe analysis, two TVs were assessed: one
as a reference and the other as the test display. Differences in ap-
pearance attributes were quantified, including lightness difference
(∆I) and chroma difference (∆C).

Results
Figures 6 and 7 present the results obtained from Experiment

I. Each data point represents a specific video content assessed un-
der a particular lighting condition (see Table 5 in Appendix). In
these plots, the y-axis represents the mean preference response of
the observer, while the x-axis indicates the ∆ values for various
appearance attributes. The data points in these plots tend to be
clustered into two distinct groups: Standard and Movie Picture
Mode. Notably, in the Movie Mode, subjects generally show a
preference for the test configuration (i.e., Movie Mode with in-
creased brightness), whereas in the Standard Mode, the default
one tends to be favored.

Figure 6: Mean IPTdC and Mean Response (R2 =0.86)

The regression analysis is applied to determine how light-
ness and chroma influence preference. The regression models and
their confidence bounds are plotted in Figures 6 and 7. The mod-
els have a reasonable performance with R2 values of 0.86 and
0.71, respectively. Importantly, the coefficients for both models
are positive, implying a linear relationship between lightness and
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Figure 7: Mean IPTdI and Mean Response (R2 =0.71)

chroma and preference so that as the lightness and chroma in-
crease, preference appears to increase correspondingly.

The analysis based on the image appearance model shows
a clear trend. The conclusion drawn from this analysis is that
observers tend to prefer images that are brighter and more chro-
matic. This preference pattern is consistent across the different
display settings in Experiment 1. To explain, a given video under
four unique lighting conditions follows a similar order. As an ex-
ample, data points 3, 13, 8, and 18, which are the Movie (Dark)
content under four lighting conditions. Their order is followed
by Dark Warm, Dark Cool, Bright Warm, and Bright Cool condi-
tions. The results are aligned with the Bonferroni test in terms of
lighting conditions, in which observers prefer the dimmer ambient
lights.

Representative Color Analysis
In this section, image segmentation is used as a method to

analyze visual appearances of the test content. Initially, each im-
age is transformed into the CIELAB color space. Following this,
a K-means clustering algorithm is applied to segment the images
in CIELAB space, setting K to four. This segmentation aims to
isolate four principal colors in each image. Figures 8 through 14
(Figures 11 to 14 are listed in the Appendix) show the segmented
colors and their corresponding areas within each image. The pre-
sentation sequence starts with the original image, followed by the
four representative colors, which are computed by averaging the
colors within their respective areas. The subsequent four images
display the individual areas associated with each of these repre-
sentative colors.

Figure 8 shows four segmented areas representing the grass,
skin tones, and two uniforms. They are aligned with the objects’
colors that the observers used for evaluating their preferences.

For this study, a total of 32 display models were generated,
each corresponding to a unique combination of TV’s picture set-
ting and ambient lighting condition. These display models con-
vert the representative colors from RGB to XYZ. Subsequently,
CIECAM16 is applied to convert these XYZ values to the D65
white point. The white luminance is the absolute white in cd/m2,
and adapting luminance is set to 20% white luminance and the av-
erage condition with full adaptation. The average condition was
used because the luminance of the white in the scene was always

Figure 8: Color Segmentation Results (Sports Content)

above 200 cd/m2. The color attributes were then calculated, and
the differences in the attributes were determined. The analysis
then focuses on correlating these appearance attributes with the
viewers’ preference responses for each unique experimental con-
dition.

The attributes of the represented colors were calculated using
CIECAM16 and used for analysis. Since each video features dis-
tinct representative colors, the data are categorized and analyzed
according to the individual videos. Figure 9 depicts how the pref-
erence rating changes according to the lightness and chroma of
four representative colors in Sports content (soccer scene). The
index numbers remain consistent with those used in the image
appearance attribute analysis (see Table 5). To enhance clarity
and facilitate interpretation, the color of each dot is matched with
the actual color of the represented area within the video. As we
confirmed in the appearance-based analysis, for a given represen-
tative color, the more chromatic and brighter, the more observers
preferred the video.

Common Representative Colors
There are several similar representative colors among the

content used in our experiments. Specifically, Animation, Movie
(Dark), and Sports content all have green as one of the repre-
sentative colors (see Figures 1a, 1c, 1e, respectively). The hue
angles for these greens were calculated in the CIECAM16. The
hue angle ranges between 113◦ and 131◦. The hue differences
are within 20◦, as shown in Figure 10. The green hues in differ-
ent items, an animated green tree, grass in the soccer field, and
a green block, and their color attributes difference are not too far
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(a) Lightness plot of Sports content

(b) Chroma plot of Sports content

Figure 9: Mean Preference per Lightness and Chroma of Repre-
sentative Colors

away from each other (see Table 4), but the preferences of these
videos are very different. An interesting aspect to consider is the
context in which the green color appears. In Movie (Dark) and
Sports content, green is a part of real-life objects, while in Ani-
mation content, it is part of animated scene. Even though similar
shades of green were presented to the observers, their preferences
significantly varied between real-life and animated footage. Sim-
ilarly, Animation, Game, and Nature content all contain blue sky
(see Figures 1a, 1b, 1d), but Animation and Game content are
both animated, and Nature content is a real scene. As a result, the
preference for Nature content is significantly different than for
Animation and Game content. Even when blue is ranked as the
second prominent representative color for Game and Nature con-
tent, their preferences are significantly different from each other.

Based on all the comparisons above, we state that the
substantial differences in content lie in whether the scene was
animated or captured in real life. Therefore, the naturalness of
the videos and observers’ memory color of specific objects (e.g.,
grass) affect people’s video quality preferences.

Table 4: Differences in Attributes of Green Representative Color

Video ∆Lightness ∆Chroma ∆Saturation ∆hue

Animation 5.20 1.94 0.43 -2.82
Movie (Dark) 1 5.55 3.92 0.37 -0.38
Movie (Dark) 2 2.15 2.87 0.64 -0.24

Sports 3.02 0.08 -0.73 -2.42
Note: The calculation is based on the CIECAM16.

Figure 10: Preference per Hue
Note: Green represents the color of Animation, Movie (Dark), and Soccer
content under the same display setting and lighting condition. The x-axis
is the hue of different shades of green on the test display.

General Discussion
This project was designed to evaluate the influence of var-

ious factors on people’s video quality preferences. Our findings
suggested that TV display settings (Picture Mode), the intensity
of ambient light, and the video content have significant effects on
TV viewers’ preferences.

In our experiment design, the illumination level of ambient
light compared to that of the TV was generally lower (15–350
Lux). This could potentially diminish the influence of correlated
color temperature (CCT) on the study subjects’ responses.

We conducted appearance- and color-based image analyses
per each experimental condition to get a deeper insight into video
quality preference determinants. The analysis results indicate that
chroma, lightness, and memory colors are essential in understand-
ing people’s preferences. In general, people prefer brighter and
more chromatic images. Moreover, memory colors, such as grass
and skin tones, significantly influence their perception and prefer-
ences of the visual quality of displayed content.

For display characterization, the gamma-offset-gain (GOG)
model was applied, which is based on the principles of additiv-
ity and scalability. Under the same display setting, the assump-
tion is valid. Additionally, the display uniformity was assessed
by measuring a set of colors, specifically red, green, blue, and a
randomly chosen color, lime. For each color, we conducted five
measurements: one at the center and four at the corners of the
display. The calculated ∆E2000 values for these measurements
were 1.27, 0.84, 0.56, and 0.89, respectively, with an average of
0.89. The uniformity of the display is within the satisfactory level.
The GOG model conducted around the center area of the display
could represent the whole display. Overall, the minor variations
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observed were unlikely to influence our results significantly.
The effectiveness of using genre to categorize video types

needs to be examined. For instance, our results indicate a dis-
cernible difference in viewer preferences between animated and
real-life scenes. This suggests that the content within these scenes
is significantly independent from the genre itself. Another exam-
ple is the presence of skin tones, which emerged as a critical fea-
ture in video content regardless of their genre. Observers’ mem-
ory of the grass and the sunset, which in this case are from differ-
ent genres, is the key to the preference – how the naturalness of
these colors aligns with the viewer’s memory.

Conclusion
We uncovered factors impacting human-perceived video

quality and investigated the reasons why. We found that the in-
tensity of the room illumination, the video content, and the dis-
play settings significantly impact TV viewer’s picture quality per-
ception and preferences. Our results also indicated that the con-
ventional content genre categorization does not sufficiently cap-
ture the specific visual quality TV viewers may desire. People
perceive images/videos differently based on the characteristics of
each scene, even in the same content. Furthermore, we found
that people generally prefer brighter and more chromatic videos
in general. The naturalness of the objects’ colors and memory col-
ors, such as skin tones and grass, significantly impact their pref-
erences.
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Appendix
Table 5: Video Index Table (Experiment I)

Content\Lighting Dark Warm Bright Warm Dark Cool Bright Cool
Animation 1,21 6,26 11,31 16,36

Game 2,22 7,27 12,32 17,37
Movie (Dark) 3,23 8,28 13,33 18,38

Nature 4,24 9,29 14,34 19,39
Sports 5,25 10,30 15,35 20,40

Note: 1–20 were shown under Standard Picture Mode.
Note: 21-40 were shown under Movie Picture Mode.

Table 6: Video Index Table (Experiment II)
Content\Lighting Dark Warm Bright Warm Dark Cool Bright Cool

Animation 41,61,81 46,66,86 51,71,91 56,76,96
Game 42,62,82 47,67,87 52,72,92 57,77,97

Movie (Dark) 43,63,83 48,68,88 53,73,93 58,78,98
Nature 44,64,84 49,69,89 54,74,94 59,79,99
Sports 45,65,85 50,70,90 55,75,95 60,80,100

Note: 41–60 were shown under Vividness 1.
Note: 61–80 were shown under Vividness 2.
Note: 81–100 were shown under Vividness 3.

Figure 11: Color Segmentation Results (Animation Content)
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Figure 12: Color Segmentation Results (Game Content)

Figure 13: Color Segmentation Results (Movie (Dark) Content)

Figure 14: Color Segmentation Results (Nature Content)
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