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Abstract 

In complementary metal oxide semiconductor image sensor 

(CIS) industry, advances of techniques have been introduced and it 

led to unexpected artifacts in the photograph. The color dots, known 

as false color, also appear in images from CIS employing the 

modified color filter arrays and the remosaicing image signal 

processors (ISPs). Therefore, the objective metric for image quality 

assessments (IQAs) have become important to minimize artifacts for 

CIS manufacturers. In our study, we suggest a novel no-reference 

IQA metric to quantify the false color occurring in practical IQA 

scenarios. We propose a pseudo-reference to overcome the absence 

of reference image, inferring an ideal sensor output. As we detected 

the distorted pixels by specifying outlier colors with a statistical 

method, the pseudo-reference was generated while correcting 

outlier pixels with the appropriate colors according to an 

unsupervised clustering model. With the derived pseudo-reference, 

our method suggests a metric score based on the color difference 

from an input, as it reflects the results of our subjective false color 

visibility analysis. 

Introduction  
With the rapid spread of mobile devices, users have demanded 

improved experiences on the mobile camera with performance 

enhancement and compactness. Following this trend, the 

complementary metal oxide semiconductor (CMOS) image sensor 

(CIS) industry has adopted several technical advances in both 

hardware and software to overcome physical constraints. 

As part of the ongoing technical trials, color filter array (CFA) 

structures have been modified. A CMOS image sensor captures 

color information using a mosaic pattern of color-filtered pixels, 

known as CFA pattern (Fig. 1). Nowadays, the modified patterns of 

CFAs have been adopted to the novel CIS to improve sensitivity in 

low light conditions. Unlike the conventional Bayer pattern which 

consists of 2 green pixels, 1 red pixel and 1 blue pixel (Fig. 1a), non-

Bayer pattern CFAs (Fig. 1b) have employed the pixel patterns split 

in more identical pixels to act as a single large pixel through binning 

in low light conditions. 

 

 
Figure 1. Color filter array patterns: (a) Bayer pattern, and (b) non-Bayer 
pattern. 

The remosaicing ISP is a specific image signal processor (ISP) 

algorithm adopted together with the non-Bayer CFA to provide high 

resolution especially for high luminance environments. It 

interpolates the color data to rearrange it into the Bayer pattern in 

high luminance conditions. However, due to the intact limitation of 

3-Ch outputs, the acquired raw information is insufficient in spatial 

domain to reproduce actual colors, and it led to unexpected artifacts 

(e.g., false color, zipper artifact, and etc.) which the CIS 

manufacturers are always concerned with. Thus, it has been a 

challenge to minimize the artifacts when optimizing remosaicing 

ISP parameters. Moreover, several objective image quality 

assessments (IQAs) for evaluating the outputs has been conducted 

actively. 

False color is one of the color artifacts generated in 

remosaicing ISP outputs. It appears as an unexpected color dot when 

remosaicing ISPs failed to recover original colors from CFA-

patterned signals. These dots are typically observed in high-

frequency, and high-contrast areas such as edges of lush leaves, and 

sparkling water surface (Fig. 2). In order to measure them, various 

objective metrics have been used: full-reference methods suggested 

for general artifacts, comparing sensor outputs against an 

undistorted reference image [1, 2], and a no-reference method 

applicable only for a black-and-white chart  [3]. In fact, those 

methods do not adequately address most practical situations of false 

color artifact on which the subjective assessments have been only 

conducted. 

In our study, we propose a false color metric based on no-

reference method available for natural scene images. During the 

method, we generated a pseudo-reference which would be acted as 

an actual reference when comparing it with an input image. The key 

idea for generating a pseudo-reference is to correct outlier colors of 

the input into proper colors. To achieve this, we designed the outlier 

color detection method composed of the luminance clustering by the 

k-means clustering algorithm  [4] and a color distribution estimating 

method using the Gaussian mixture model [5] for conducting outlier 

extraction. The detected outlier pixels were, and then, repainted into 

the appropriate ideal colors adopting color quantization method with 

the k-means clustering algorithm according to [6] in a pseudo-

reference generation. Finally, we calculated the false color score 

using the color difference from CIEDE2000 formula  [7]. 

Additionally, we investigated false color visibility through an 

analysis of mean opinion score (MOS) and verified that our 

proposed score correlates with the qualitative assessment. 
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Figure 2. False color artifacts occurred in high-frequency, high-contrast areas 
of natural images. 

No-reference False Color Metric 
Our metric consists of three steps: false color detection; pseudo 

reference image generation; and score calculation (Fig. 3). 

 

 
Figure 3. The flowchart of no-reference false color metric. 

1. False Color Detection 
To identify the false color artifacts, we detected outlier colors 

in an input and labeled outlier pixels as false color pixels (Fig. 4). 

Before detecting outlier colors, we divided pixels into two groups 

by luminance due to the properties of an input scenarios. Assuming 

that the input (Fig. 4a) consists of a background area illuminated 

brightly and a N-color object (N commonly 1 or 2), two areas exhibit 

significantly different ChromaHSV(𝑅, 𝐺, 𝐵) = 𝑉(𝑅, 𝐺, 𝐵) ×
𝑆(𝑅, 𝐺, 𝐵)  densities in the Hue-Chroma-Value (HCV) space, 

because the maximum Chroma depends on the lightness [8]. Thus, 

we categorized pixels into the backgrounds and the object by 

luminance beforehand to effectively analyze colors. However, as an 

luminance range is not a constant for all inputs, we used k-means 

clustering algorithm, one of unsupervised clustering methods [4]. 

After converting the RGB image into grayscale using an equation 

𝑌’ =  0.2125 𝑅 +  0.7154 𝐺 +  0.0721 𝐵  recommended by 

Poynton [9], the k-means clustering model grouped pixels into the 2 

luminance groups (Fig. 4bc). 

Next, we estimated color distributions while clustering pixels 

according to the colors. To characterize the color distributions, we 

trained a Gaussian mixture model (GMM)  [5] from 2-D color 

vectors, 𝑿 , expressed in Hue-Chroma polar coordinates domain. 

Because of the linear relationship between the Chroma and the RGB 

combination, as described by Romani, et al. [8], we used the 

Chroma rather than Saturation of the HSV color space. As we 

mentioned, we used the GMM which is a probabilistic model 

represented by a finite number of mixed Gaussian distributions 

according to Deng et al. [5]. When a GMM is fitted as the function 

𝑓GMM, the model clusters data 𝑿 into a finite number 𝑁 groups and 

estimates 𝑁 Gaussian parameters, consisting of mean, covariance, 

and posterior (𝝁, 𝜮, 𝝅), expressed as follows: 

𝑓GMM: (𝑿,  𝑁) → (𝑿1, 𝝁1,  𝜮1,  𝝅1), … , (𝑿𝑁, 𝝁𝑁, 𝜮𝑁, 𝝅𝑁). (1) 

In our method, we estimated the distributions separately through the 

model.  

For 𝑿𝑏𝑔:  

𝑓𝐺𝑀𝑀(𝑿𝑏𝑔,  1) = {(𝑿𝑏𝑔, 𝝁𝑏𝑔, 𝜮𝑏𝑔)}, (2) 

where 𝝁𝑏𝑔 denotes a background mean color, 𝜮𝑏𝑔 is a covariance.  

For 𝑿𝑜𝑏𝑗: 

𝑓GMM(𝑿𝑜𝑏𝑗 ,  𝑁 ) = {(𝑿1, 𝝁1, 𝜮1,  𝝅1), … , (𝑿𝑁, 𝝁𝑁, 𝜮𝑁, 𝝅𝑁)}, (3) 

where 𝝁𝑘   denotes a mean color of object color 𝑿𝑘  and 𝜮𝑘denote 

covariance and 𝝅k is a posterior for 𝑘 = 1, … , 𝑁. 

To detect outliers of each distributions, we employed the 

outlier detection method that utilizes the Mahalanobis distance as 

the distance formula for two points in the multivariate distributions, 

as proposed by Gallego et al. [10]. The Mahalanobis distance 

between each color point 𝒙𝐢 and 𝝁 is written as follows:  

𝑑(𝒙𝒊, 𝝁𝑘) = √(𝒙𝐢 − 𝝁𝑘)𝑻𝜮𝒌
−𝟏(𝒙𝐢 − 𝝁𝑘). (4) 

Furthermore, according to Gallego et al., when defining the 

probability, 𝑃, that a color is present in a region within a specific 

Mahalanobis distance, 𝑑, the 𝑑 corresponding to 𝑃 can be derived 

as follows [10]:  

𝑑(𝑃) = √−2 log(1 − 𝑃).   (5) 

With the equation (5), we defined cutoff distances for the inliers 

with 𝑃  set to  0.5 and 0.95, for the background and the object 

respectively as follows: 

𝑑𝑐𝑢𝑡𝑜𝑓𝑓,𝑏𝑔 = 𝑑𝑏𝑔(0.5),  (6) 

𝑑𝑐𝑢𝑜𝑓𝑓,𝑘 = 𝑑𝑘(0.95)  𝑓𝑜𝑟 𝑘 = 1, … , 𝑁, (7) 

where 𝑑𝑐𝑢𝑡𝑜𝑓𝑓,𝑏𝑔 is the background distance cutoff and 𝑑𝑐𝑢𝑜𝑓𝑓,𝑘 is 

the object distance cutoff for all 𝑘 = 1, … , 𝑁. Note that, we set the 

background color cutoff more strictly than object colors to generate 

the pseudo-reference stably in the next step. After that, we detected 

inlier pixels , 𝐺𝑏𝑔 , whose colors are within the 𝑑𝑐𝑢𝑡𝑜𝑓𝑓,𝑏𝑔  among 

𝑿𝑏𝑔  and inlier pixels, 𝐺𝑘 , whose colors are within the 𝑑𝑐𝑢𝑡𝑜𝑓𝑓,𝑏𝑔 

among 𝑿𝑘 for all 𝑘 = 1, … , 𝑁. Then, we designated the false color 

pixels as the complement of the union of all inliers as follows:  

𝐺𝑐 = (𝐺𝑏𝑔 ∪ 𝐺1 ∪ … ∪ 𝐺𝑁)
𝑐
.  (8) 
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Figure 4. In false color detection, input (a) is divided into background regions 
(b) and N-Color object regions (c) by luminance, and inliers of each group are 
detected as (d). The false color pixels (e) are designated as the complement 
of (d). 

2. Pseudo-reference Generation 
In order to measure artifacts without an actual reference, we 

introduced a pseudo-reference (Fig. 5b) generated from the input 

image (Fig. 5a). In this method, we employed the color quantization 

method with k-means clustering algorithm suggested by Celebi [6]. 

In Celebi’s method, colors in the image are quantized through the 

process of palette design and pixel mapping. Modifying the inputs 

of each process, we quantized the inlier colors in 𝐺 and corrected 

𝐺𝑐  to the quantized inlier colors to generate the pseudo-reference. 

First, we fitted a k-means clustering model (k=32) with inlier 

colors in 𝐺  to quantize them into 32 representative colors. When 

fitting the model, we calculated the distance with the Euclidean 

distance in the CIELAB [7] space and grouped colors into 32 

clusters empirically. After this process, we obtained the mean colors 

𝑘1, 𝑘2, … , 𝑘32 from each cluster and these mean colors formed the 

inlier color palette. This palette was then mapped to each pixel in 

𝐺𝑐  through model prediction. With the inlier-trained model, we 

predicted the nearest 𝑘 of each false color to assign one of inlier 

colors to each false color pixel. Therefore, we generated the pseudo-

reference by coloring 𝐺𝑐  with the RGB values of the assigned colors. 

As 𝑓𝑘 represents the mapping function in the prediction, a pseudo-

reference image 𝑅 is defined as: 

𝑅 = {𝑖(ℎ,𝑤) ∈ ℝ3|(ℎ, 𝑤) ∈ 𝐺} ∪ {𝑓𝑘(𝑖(ℎ,𝑤)) ∈ ℝ3|(ℎ, 𝑤) ∈ 𝐺𝑐  },

𝑓𝑘: 𝑖 → 𝑘 ∈ {𝑘1, 𝑘2, … , 𝑘32} (9) 

where (ℎ, 𝑤) represents the coordinated of the image, and 𝐺 is the 

set of inlier pixels. In other words, we inferred a pseudo-reference 

(Fig. 5b) by repainting false color pixels with adaptively predicted 

inlier colors. 

 
Figure 5. An example result: (a) input, and (b) pseudo-reference. 

3. Score Calculation 
After detecting false color pixels and generating the pseudo-

reference, we measured the color difference between the input and 

pseudo-reference. The difference between two images, calculated 

with Delta E formula of CIEDE2000 [7], indicates how much colors 

are distorted in false color pixels. When aggregating the color 

differences into the score, we considered several features to reflect 

the characteristics of false color artifact. First, we added up the color 

differences using power mean formula [11] with exponent 𝑝  to 

increase sensitivity to intense artifacts than minor frequent artifacts. 

To assign higher weight to significant color distortions, we 

suggested that the exponent 𝑝 should be greater than 1, possibly 2 

or higher. Furthermore, as most false color artifacts occur 

dominantly on the edge, we used the edge image of grayscale image 

(𝑌’ ) [9] as a weighted map. This map was obtained with Sobel filter 

[12], and we combined two directional edge maps with l-2 norm. 

Finally, we formulated the false color score equation as: 

𝑆𝑐𝑜𝑟𝑒 = [
∑ ΔE(x,y)pedge(x,y) 

∑ edge(x,y)
]

1

p
, where 𝑝 > 1 (10) 

where ΔE(𝑥, 𝑦) is the color difference of each pixel between the 

original image and the pseudo-reference image R. 

Experiment Designs for Analysis 
False color, unlike general image quality components (e.g., 

sharpness, resolution, etc.), could not be evaluated enough by 

general image quality metrics. Therefore, we verified our proposed 

score by figuring out the correlation with qualitative scores. In order 

to gather the qualitative scores, we conducted an investigation for 

human visibility of false color artifact, categorizing the visibility 

factors of false color into two main aspects: strength and quantity. 

Considering these factors, we constructed a subjective IQA survey 

that enabled us to analyze the impact of each factor on human 

perception. 

Mean Opininon Score (MOS) Investigation 
To gather the qualitative scores, we conducted a subjective 

IQA survey and obtained the mean opinion scores (MOS). For the 

survey, we generated a dataset using false color simulation, in which 

color dot noises were added to undistorted images along the edges. 

With the two main aspects of false color previously defined, we 

independently varied these factors in the simulation across 4 

different levels. Each of the 16 combinations of factors was then 

applied in 5 sample references, resulting in 80 distorted images were 

created (Fig. 6a). 

To assess how sensitive human sight is to strength and quantity 

factors separately, we reorganized 80 images in respect of each 

artifact factors and repeated for twice to constitute two types of test 

subsets (Fig. 6bc). We designed each subset consisting of 20 

conditions of tests with 4 quality levels of images per test. For 
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instance, in the strength test subset (Fig. 6b), 4 different strength 

levels of images were assigned in a test and there were totally 20 

different tests. In the MOS score survey, we presented those 4 

images in a sequence to 36 IQA experts, requesting them to rate each 

image in the range from 1 to 3. A rating of 1 indicates good image 

quality with no visible artifacts, 2 represents a marginal level, and 3 

signifies that the image quality is definitively poor. This survey 

structure allowed us to collect MOS values under specific false color 

factors. 

 

 
Figure 6. Structure of mean opinion score (MOS) survey dataset: (a) false 
color dataset, (b) strength test subset, and (c) quantity test subset. 

T test for Liner Correlation 
In our experiments, Pearson correlation coefficients (PCC) 

were calculated to measure the linear relationship between MOS and 

our suggested metric score. We calculated a single PCC from 20 

images for each individual artifact levels within a single test subset, 

resulting in 8 PCC values, (Fig. 7). Furthermore, to confirm that a 

certain PCC proved the high correlation, we employed the 𝑡 -test for 

the correlation coefficients [13]. In [13],  the 𝑡–statistic for PCC 

evaluation is denoted as follows: 

𝑡 = 𝜌√(
𝑁−2

1−𝜌2) , degrees of freedom (d.f.)= 𝑁 − 2 (12) 

where 𝜌 is a Pearson correlation coefficient and 𝑁 is a sample size, 

which was 20 in our experiments. If the absolute value of 𝑡 derived 

from a certain PCC was greater than the critical, we could conclude 

that the PCC was sufficiently high to prove the linear relationship of 

our scores and MOS values. In other words, each |𝑡| indicates a 

confidence level of the linear relationship under the specific false 

color quality condition.  

 
Figure 7. Pearson correlation coefficients (PCC) are gathered from each level 
and each subset of 20 images. Total 8 PCC results are obtained from the 
dataset. 

Experimental Results and Discussion 
Table 1. and Table 2. show the t-test results for linear 

correlation between MOS values and our proposed false color scores 

as described in the further section. This results demonstrate the 

linear relationship between MOS values and false color scores with 

various exponent 𝑝  values in the equation (10). Through these 

results, we selected the optimal value of 𝑝. 

In Table 2., all t results for the quantity test subset exceed 3.92, 

which is the critical value for α =0.0005 (Table 3.), and it means our 

metric has a linear relationship with MOS in a 99.9% confidence 

level. According to these results, our scores are well matched 

regardless of 𝑝 in terms of false color quantity. 

Table 1. T-test results for strength test subset. 

Strength 
level 

t 

p=4 p=3 p=2 p=1 p=1/2 p=1/3 

1 3.25 2.72 2.27 1.81 1.38 1.18 

2 4.40 4.37 4.01 2.98 2.10 1.75 

3 6.35 7.51 8.10 5.71 3.66 2.98 

4 6.09 7.13 7.44 5.03 3.02 2.36 

Table 2. T-test results for quantity test subset. 

Quantity 
level 

t 

p=4 p=3 p=2 p=1 p=1/2 p=1/3 

1 17.0 16.9 16.5 13.2 8.36 6.41 

2 14.7 15.0 15.3 13.0 8.41 6.45 

3 16.7 16.8 16.3 12.2 7.48 5.72 

4 16.1 15.6 14.2 10.0 6.14 4.68 

Table 3. T- critical value table for 2-sided distribution 

 

t (2-sided) 

 α =0.05 

(90.0%) 

α =0.0005 

(99.9%) 

d.f.=18 1.73 3.92 

 

In contrast, the results of the strength test subset in Table 1. 

show that it is difficult to confirm the linear relationship regardless 

of the score exponent parameter. Comparing the scatter plot of the 

strength test subset and another plot of the quantity test subset (Fig. 

8), it is evident that MOS values in strength subset varied more 

depending on strength levels than quantity levels. It demonstrates 

that the human sights are more influenced by the intensity of false 

color signals than the amount of them.  
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Figure 8. Scatter plots of mean opinion score (MOS) and false color score 
(p=2) results from (a) the strength test subset, and (b) the quantity test subset, 
with dots colored according to artifact levels. 

Therefore, we set 𝑝 to above 1 in the equation (10) to prioritize 

the strong artifact signal than other minor signals in the metric score. 

In Table 1., we can observe all 𝑡 (𝑝 > 1) results exceed 1.73 and it 

can confirm the linear correlation with 90.0% confidence level 

(Table 3.). That is the reason why we adopted the power mean 

formula and set the 𝑝 to the number above 1 in equation (10). In 

addition, we recommended setting 𝑝  to 2 because 𝑡–test results, 

each indicating a level of reliability, are generally high across most 

strength levels. As a result, we could confirm that our method scores 

are aligned well with the MOS in 90.0% confidence level as we 

verified our method with a statistical hypothesis test. 

Fig. 9 shows a part of the results in our experiments, while the 

object color N set to 1 and 𝑝 set to 2. It is evident that our method 

can quantify artifacts in context of human visibility. In Fig. 9e-h, the 

pseudo-references show that false color artifacts are well corrected 

through our method and result scores show an increase as the image 

quality degrades due to artifacts. It means that the scores exhibit a 

similar trend to human perception. In essence, the results 

demonstrate that our method successfully reflected subjective image 

quality opinions and quantified them to certain objective values 

effectively. 

 
Figure 9. Sample results of experiments: (a-d) input images, (e-h) pseudo-
references of (a-d), and false color scores, where a high score indicates poor 
image quality. 

Conclusion 
In summary, we proposed a no-reference IQA metric for false 

color to overcome the constraints of an input in false color IQA 

scenarios as being restricted to black-and-white charts or requiring 

real inferences. To achieve this, we inferred a pseudo-reference to 

substitute for the ideal sensor output. The pseudo-reference was 

generated using unsupervised clustering methods which detected 

outlier colors and replaced them with inlier colors. With our method, 

we could measure artifacts by comparison of an input and pseudo-

reference with regard to human visibility. Because the score is 

highly correlated with qualitative scores, our method would serve as 

an objective indicator for false color IQA in the CIS industry. 

Furthermore, when employed in various scenarios such as natural 

scenes, it is expected to contribute to ISP parameter optimization 

through the evaluations of ISPs 
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