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Abstract 

Nowadays, the quality of low-light pictures is becoming a 

competitive edge in mobile phones. To ensure this, the necessity to 

filter out dark defects that cause abnormalities in dark photos in 

advance is emerging, especially for dark blemish. However, high 

manpower is required to separate dark blemish patterns due to the 

low consistency problem of the existing scoring method. This paper 

proposes a novel deep learning-based screening method to solve 

this problem. The proposed pipeline uses two ResNet-D models with 

different depths to perform classification and regression of visibility, 

respectively. Then it derives a new score that combines the outputs 

of both models into one. In addition, we collect the large-scale 

image set from real manufacturing processes to train models and 

configure the dataset with two types of label systems suitable for 

each model. Experimental results show the performance of the deep 

learning models trained and validated with the presented datasets. 

Our classification model has significantly improved screening 

performance with respect to its accuracy and F1-score compared to 

the conventional handcraft method. Also, the visibility regression 

method shows a high Pearson correlation coefficient with 30 expert 

engineers, and the inference output of our regression model is 

consistent with it.  

Introduction 
With the development of smartphone camera performance, the 

quality of pictures captured in low-light conditions is becoming a 

competitive edge. Consequently, more and more phone settings are 

adopting high gain for low-light shooting. However, the high gain 

is applied not only to pure signals but also to defects and noises. As 

a result, very small defective signal may be amplified and 

recognizable. We call these kinds of defects, which are problematic 

in dark conditions, as dark defects. Dark blemish is one kind of these 

dark defects. It is generated during the manufacturing process and 

has a random shape and position. If we use an image sensor module 

with dark blemish, your picture of the night sky may show some 

stain, which significantly drops the image quality. Therefore, it is 

important to screen modules containing dark blemishes in advance. 

Figure 1 shows examples of amplified dark images and a picture of 

the night sky from a module with dark blemish patterns. 

There is an existing method to screen dark blemishes using 

image processing algorithms. First, the dark image is enhanced so 

that the hidden patterns can be seen. Then the patterns are separated 

and scored by subtracting the min value of the pattern from the max 

value of the pattern. After that, the sets of scores and enhanced 

images are passed to engineers. Engineers inspect them and decide 

the threshold at which the dark blemish could be visible on the 

display of phones. We call this threshold spec. However, this 

conventional method has a few problems. First, the score has a low 

correlation to actual visibility. Because the enhanced dark images 

are noisy, so it is hard to separate and score pure patterns only. 

Second, the range of score distribution varies by product because of 

 
Figure 1. Examples of amplified dark images. (a) Normal image which only 
has temporal noise. (b) Defective image with dark blemish. Low-light picture 
taken by the sensor with dark blemish may show stains. 

 
Figure 2. Distribution of scores by sensors. Most of them have Gaussian-like 
distributions but with different means and variances  

the different features of them. (Figure 2) This leads to the third 

problem that engineers have to repeat all inspection process and 

decide the specs for every product. This handcrafted method is 

inefficient since it requires a lot of manpower and results may vary 

depending on the experience of the engineers. [1] 

To handle these problems, we present a deep learning pipeline 

for dark blemish detection in this paper. Figure 3 represents the 

suggested pipeline. It is composed of two deep learning models, a 

classification model and a visibility regression model, and one 

decision rule. The classification model detects abnormal patterns in 

images based on shape information, and the visibility regression 

model scores the pattern’s intensity. Then the decision rule is 

applied to combine two outputs from each model into a final 

decision. 

In method section, we will explain how we compose a large-

scale dataset to train and evaluate presented pipeline and how the 

models are trained. Then in the result section, we will show the 

performance of suggested models compared to conventional method. 

 

 
Figure 3. Proposed deep learning pipeline for dark blemish detection. There 
are two deep learning models and a final decision. 
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Method 

Dataset Construction 
To train and evaluate the proposed deep learning pipeline, we 

construct datasets with images taken in the electrical die sorting 

(EDS) stage where tests are conducted during the manufacturing 

process. It is known that data imbalance is a common problem in 

defect datasets due to the properties of mass production. However, 

we need well-balanced and clean class-image dataset to achieve 

high performance with a deep learning model. [2] Therefore, we 

gathered high-score images especially to get enough defective data. 

The obtained raw images were pre-processed to enhance the 

visibility of defects by stretching. The enhanced images are used to 

make both the classification dataset and the regression dataset.  

Classification Dataset 
We perform a 2-stage classification for our dataset. First, the 

images are divided into OK and NG. OK corresponds to normal 

images, and NG contains images with dark blemish patterns. NG 

images are subdivided into Spot, Diagonal, and Error again 

depending on the shape of the patterns. (Figure 4) The reason we 

subcategorize defective images is we found that various 

morphological characteristics in the NG class cannot be sufficiently 

learned using one class. At the same time, we tried to divide them 

roughly because too diverse classes may lead to too sparse data per 

class, which intensifies the data imbalance problem. We 

experimentally confirmed that using a 4-class scheme for the 

training phase and summarizing the output into OK and NG for the 

testing phase works better than leveraging simple 2-classes.  

Based on this strategy, we conduct labeling on 40,276 images 

collected. To give a clean label for defects with a wide spectrum, 3 

engineers with background knowledge worked together and cross-

validated the labels. The labeled classification dataset is divided into 

7:2:1 ratios for training, validation, and testing. The numbers of 

images for each class and split are shown in Table 1.  

Regression Dataset 
Instead of using the class labels as it is for our regression 

dataset, we relabel images with 11 levels based on their intensity of 

pattern. By giving numerical levels instead of discontinuous classes, 

it is possible to estimate real number intensity through the regression 

model. We set the leveling criteria as follows: 

• Normal images: 0-2 

• Ambiguous images: 3 

• Defective images: 4-9 

• Capture-failed images: 10 

 

We give a twice longer range for defective images than normal 

images as we focus on separating how bad the pattern is in detail. 

Scoring was also carried out by 3 engineers, but with many more 

iterations to have consistent levels. Nevertheless, it is still 

complicated to score images relying on cognitive senses. Therefore 

we verified the levels with a qualitative evaluation by 30 engineers, 

and the comparison result is shown in the result section.  

To maintain some balance in the number of data for each level, 

6,514 images, a subset of the whole dataset, are used for the 

regression dataset.  

Deep Learning Model 
After the datasets are ready, we build deep learning models. 

We use ResNet-D [3] structure for both classification and regression 

models. It was presented in the early phase but still one of the most 

powerful models. We take different model depth, loss function, and 

optimization function based on each model’s purpose. For the 

classification model, we use ResNet101-D which is relatively deep, 

to learn shape information accurately. Weighted cross entropy is 

adopted as a loss function so that the feature of minor classes can be 

well-trained despite data imbalance. [4] In particular, we increased 

the weight of Diagonal class because the number of data is relatively 

small and their characteristics are not clear. For the regression model, 

we use ResNet18-D model. We intend our model to learn from 

integer levels and output the levels in real numbers. Therefore by 

using a shallow model, we prevent our model from overfitting and 

get the output level in a general manner. Also, we trained the model 

with Huber loss [5], which is a robust loss function used for a wide 

range of regression tasks. The optimization function for each 

training is selected by comparing various candidates. SGD and 

Adam show the best performance. 
 

 
Figure 4. Sample images of each class 

 
Figure 5. Sample images of levels 

Table 1. Distribution of Classification Dataset 

Split Total OK Spot Diag. Error 

Train 28,201 24,343 3,456 161 241 

Validation 8,029 6,929 986 45 69 

Test 4,046 3,501 485 24 36 

Total 40,276 34,773 4927 230 346 

Table 2. Distribution of Regression Dataset 

Split Total Lv. 0 Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8 Lv. 9 Lv. 10 

Train 5,224 835 994 569 284 294 335 264 406 760 289 194 

Val 644 100 113 75 29 43 40 50 45 78 48 23 

Test 646 93 109 81 40 41 48 37 36 102 30 29 

Total 6,514 1,028 1,216 725 353 378 423 351 487 940 367 246 
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Although we build two separate models for classification and 

visibility regression, we need to consider both how clear the shape 

is and how strong the stain is for the final decision comprehensively. 

Therefore, we combined the output of the classification model and 

the regression model with the following equations: 

Pclf(𝑖𝑛𝑝𝑢𝑡|𝑁𝐺) =  ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑙𝑓(𝑖𝑛𝑝𝑢𝑡)[𝑖])𝑖∈𝑁𝐺  (1) 

𝐼𝑟𝑒𝑔 = 𝑟𝑒𝑔(𝑖𝑛𝑝𝑢𝑡)/10 (2) 

𝑆𝑐𝑜𝑟𝑒 =  𝑃clf(𝑖𝑛𝑝𝑢𝑡|𝑁𝐺) ∗ 𝐼𝑟𝑒𝑔 (3) 

where 𝑐𝑙𝑓  is the classification model and 𝑟𝑒𝑔  is the regression 

model. In equation (1), the clarity of shape is presented by the 

probability that an input is classified as NG. It is calculated by 

adding up the softmax of the classification output of NG subclasses. 

Then in equation (2), the intensity of an input image is presented by 

the output of the regression model. We divide the output level by 10 

to represent the intensity in [0, 1] range. Finally, the score for the 

decision is presented as the product of the probability that the input 

is NG and the intensity of the input in equation (3). Usually, the 

output of the deep learning model is deterministic after the training 

is done, and hard to change unless it is retrained. However, we can 

control the decision with this score by releasing or tightening the 

accepting threshold for the score.  

Result 
In this section, we present the performance of the classification 

model and the regression model trained with the proposed dataset 

and strategy. 

Classification 
Concerning classification performance, we compared our 

classification model to the conventional method for 6 image sensors. 

For the conventional method, we used the same specs as used in the 

production which are different for each sensor. On the other hand, 

we used one model trained with the proposed dataset and strategy 

for the classification model. The test was conducted based on our 

classification dataset which intentionally increased the defect rate. 

Thus, note that the result does not reflect real mass production yield. 

The results are shown in Table 3. It shows that the proposed 

model has equal or better accuracy and F1-score than then 

conventional method for all products. On average, we improved 

9.14 percentage points for accuracy and 14.6 percentage points for 

F1-score. These results confirm that the deep learning-based 

classification models can significantly improve the dark blemish 

classification performance without image sensor-specific detection 

criteria. 

Table 3. Classification performance 

Sensor # Images 
Conventional Proposed 

Acc. F1-score Acc. F1-score 

A 174 1.0000 1.0000 1.0000 1.0000 

B 253 1.0000 1.0000 1.0000 1.0000 

C 48 0.8750 0.9286 0.9583 0.9737 

D 704 0.7884 0.7950 0.9688 0.9753 

E 122 0.8197 0.7963 1.0000 1.0000 

F 646 0.9536 0.9038 0.9923 0.9825 

Total 1,947 0.8937 0.8332 0.9851 0.9792 

Regression 
For the regression performance, we did 2-phase verification. 

We checked whether the levels of the regression dataset are well 

assigned according to their visibility first. Then we confirmed the 

regression model can represent engineers’ evaluation.  

Regression Dataset Verification 
We verified if the levels of the regression dataset and the 

engineers’ judgments were consistent. Since conventional scores 

have low consistency with visibility, we conducted a quality 

evaluation test with 30 engineers who have experience in image 

quality verification. Then, we compared the mean opinion score 

(MOS) from the test and our levels. For the evaluation test, we 

exclude level 10, which is obvious. 

Figure 6 is the summary box-whisker plot of our levels versus 

MOS with whisker=1.5. We can see that every box is concentrated 

within the ±1 level range. In the case of level 3, it has relatively long 

whiskers, which means there were various responses compared to 

other levels. We interpret this result as being due to our assignment 

of ambiguous images to level 3. Still, its statistics such as quantiles, 

mean, and median are well aligned with MOS. Also, the Pearson 

correlation coefficient (PCC) between the level and the median of 

MOS is 1, which means a perfect positive correlation, and the PCC 

between the levels and the average of MOS is 0.99, which also 

means a high correlation. From this result, we confirmed that our 

dataset is aligned with the engineers’ opinions.  

 
Figure 6. Level vs. MOS. Each box that represents the range from the first 
quantile to the third quantile, the median, and the mean of MOS are centered 

to their level. 

Regression Model Verification 
Since we confirmed the authenticity of our regression dataset, 

we leveraged the dataset to train and test our regression model. The 

model was trained with the rain split of the regression dataset, and 

then the mean absolute error (MAE) of the level was measured with 

the test split of the dataset. Since the levels are designed as integers 

and our model infers the level as a real number, the MAE within 0.5 

is assumed as the correct answer considering rounding. 

The test result shows that the MAE of output levels from the 

test set is 0.67, which is close to 0.5. Also, only 7 images out of 646 

test images, which is equivalent to 0.46%, have differences 

exceeding 3 levels. From these results, we can say that the proposed 

regression model can decide the level of the image which is aligned 

with the engineers’ evaluation. 
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Conclusion 
For dark blemish detection, we had a few problems with the 

existing scoring system such as low correlation between 

conventional score and actual visibility, and varying distribution of 

scores depending on product, which leads to high human cost to 

determine the specs. To manage those problems, we propose a deep 

learning pipeline for screening dark blemish patterns as a solution. 

We build two models with different purposes, classification and 

regression, and create datasets with label category suitable for each 

model. Also, the outputs of the two models are combined into the 

proposed decision score. Through the experiments, we confirmed 

that our model can be used as a universal test model with high 

performance for all products. Moreover, we showed that our model 

can infer the visibility of defective images which is highly correlated 

with the level of human cognition through the qualitative test by 

experts.  
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