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Abstract 
Portraits are one of the most common use cases in photography, 

especially in smartphone photography. However, evaluating portrait 

quality in real portraits is costly, inconvenient, and difficult to 

reproduce. We propose a new method to evaluate a large range of 

detail preservation renditions on realistic mannequins. This 

laboratory setup can cover all commercial cameras from 

videoconference to high-end DSLRs. Our method is based on 1) the 

training of a machine learning method on a perceptual scale target 

2) the usage of two different regions of interest per mannequin 

depending on the quality of the input portrait image 3) the merge of 

the two quality scales to produce the final wide range scale.  

On top of providing a fine-grained wide range detail preservation 

quality output, numerical experiments show that the proposed 

method is robust to noise and sharpening, unlike other commonly 

used methods such as the texture acutance on the Dead Leaves chart.  
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Introduction 

In the ever-evolving field of photography, portraits have become a 

prominent focus of interest, especially with the rise of smartphone 

photography. Traditionally, objective evaluation of detail 

preservation has mainly centered on non-statistical methods. These 

methods often use synthetic content, such as edges or patterns that 

can simulate, in some cases, properties of natural images, as seen in 

the Dead Leaves chart [3][5]. 

When dealing with synthetically generated visual charts, captured in 

controlled laboratory conditions, measures such as Noise Power 

Spectrum (NPS) and the Modulation Transfer Function (MTF), have 

been used to evaluate image quality attributes (e.g., noise, texture, 

and sharpness). Studies done on raw images captured with DSLRs, 

in manual mode [1][3] show satisfactory results. However, these 

measures correlate relatively poorly with human perception when 

including nonlinear camera processes such as multi-image fusion or 

deep learning-based image enhancement [6], which are widely 

known to be used by today's cameras. 

The acutance, which combines the Modulation Transfer Function 

(MTF) and the contrast sensitivity function (CSF), is known to 

reflect the rendering of the quality of the photographic device. Early 

methods use charts containing a blur spot or a slanted edge to 

compute the MTF.  Cao et al. [3] using the Dead Leaves chart, 

propose a more appropriate method for describing fine detail 

rendering. The MTF is then computed using the ratio of the 

reference chart and the respective Power spectral density (PSD) of 

the photographed image. This MTF is referred to as "Texture MTF" 

since it was computed from a textured area. However, this method 

assumes a linear optical system model. This is no longer a plausible 

assumption given the highly nonlinear processing done by current 

smartphone cameras, by, for instance doing sophisticated noise 

reduction processing.  

 

Moreover, current smartphone’s ISPs (Image processing pipelines) 

adapt to the content of the scene, especially when it involves people.  

Consequently, relying solely on synthetic visual content to assess 

camera devices, is not sufficient to capture the intricate behavior of 

modern imaging systems. 

 

 
FIGURE 1 REALISTIC MANNEQUINS COVERED ON THE PROPOSED MODEL 

To address these limitations, realistic mannequin setups (see Figure 

1) were proposed [1,4] to allow a closer to natural scene content that 

would activate the portrait-mode, that is, the complex behavior of 

cameras when treating faces. This approach not only brings us closer 

to real-world content but also provides a robust foundation for 

automating image quality assessment through the application of 

Machine Learning (ML) methods.    

Contributions: This paper proposes a new method for extending 

the detail preservation image quality scale of a database considering 

two main ingredients: 1) The target region of interest of a scene and 

2) an algorithmic pipeline for merging independent scores. We train 

a ML model for evaluating texture on three different realistic 

mannequins (see Figure 1), and two different regions of interest per 

mannequin. The produced final scale covers cameras from low 

quality video conference up to high end DSLRs. Moreover, we show 

that our method, unlike other texture measures such as texture 

acutance on the Dead Leaves chart, is robust to noise and 

sharpening.  

Novelty 
The study expands upon previous work on detail preservation 

assessment in realistic mannequin setups [4]. It extends the range of 

image quality by introducing the separation of low-quality (LQ) and 
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high-quality (HQ) datasets. This approach was inspired by the 

method proposed to evaluate the perceptual noise in this setup [1]. 

Additionally, we introduce an innovative and robust pipeline for 

merging these two datasets, each of which focuses on different 

regions of interest (ROI) in the image. Compared to previous works 
on texture evaluation using machine learning [4], the proposed 

pipeline proves to be more robust in terms of correlation.  

 

Having a single model, and scale, that covers a large range of 

cameras, and a large range of framing, from video conference to 

DSLRs, specifically for face content, is something that has not been 

addressed before. Moreover, the idea of merging datasets can be 

extrapolated to other perceptual evaluation attributes, where 

different areas of interest or perceptual annotations are required. 

 

Moreover, we show the pertinence of the measure when compared 

to other standard texture measures such as the acutance on the Dead 

Leaves chart. The proposed method shows robust results to 

degradations due to the addition of noise or sharpening, unlike the 

acutance.   

Proposed method 
 

Current public consumer cameras extend from very low-resolution 

low-quality videoconference devices up to high-end DSLR cameras. 

To compare detail preservation rendering in a way that is robust to 

changes in the object scale, we need to define a common meaningful 

region of interest (ROI) with a predefined size. Given the difference 

in empirical resolution, this can be challenging. Small crops in high-

quality cameras provide granularity to distinguish details for high-

end devices but are not meaningful for low-quality cameras. On the 

other hand, big ROIs which give granularity for low-quality devices, 

do not give enough resolution to distinguish higher-end cameras. To 

overcome these issues, we propose the following pipeline: 

 

Definition of ROIs: The areas with more details within the image 

are selected for high-quality assessment. The beard and the 

eyebrows are the regions of interest (ROI) for male and female 

mannequins, respectively. As for low-quality evaluation, the entire 

face serves as the ROI for every mannequin. (see Figure 2). 

 
FIGURE 2. TWO ROIS WERE DEFINED ON EACH MANNEQUIN TO CAPTURE 

DIFFERENT DETAIL LEVELS (A) ROI FOR LOW-QUALITY CAMERAS AND (B) ROI 

FOR HIGH-END CAMERAS FOR FINE DETAIL EVALUATION. 

Image dataset construction: The database comprises images 

from 3 different mannequins (An old white male, a young Asian 

woman, and a deep-skinned woman, see Figure 1), annotated under 

two different conditions. With 1869 images, sourced from over 200 

devices, we guarantee a comprehensive representation of the 

market’s quality range. To enhance dataset diversity, we include 

shots with multiple framings, various lighting conditions (low light, 

indoor, outdoor), and camera types (main, selfie, video cam), 

covering both photo and video formats. 

 

Perceptual annotations and JOD quality scale 

construction: To obtain a ground truth for the dataset, perceptual 

annotations are conducted with a predefined specific question under 

a pairwise mode, as illustrated in Figure 3. The annotation task was 

done under controlled conditions: no direct illumination on the 

screen. The displays were calibrated (D65 white point with peak 

luminance at 120cd/m2). The viewing condition was also fixed:The 

image was viewed with a cutoff frequency of 30 cycles per degree, 

at a distance to the eye of 65cm, on a 32’’16:9, UHD 4K screen, 

thus, with a pixel pitch of 0.185. 

 

The annotation task was done by 20 different people, with up to 1.5 

standard trials per scene, where 1 standard trail equals all the 

possible comparisons for a n-image set: n(n−1)/2 pairs.  

 

After finishing the pairwise annotations, the psychometric scale is 

constructed by statistically encoding all annotators' preferences, 

adhering to Thurstone's Case V model, as outlined in Perez-Ortiz et 

al.'s research [2]. In Thurstone's model, each image score is 

considered a normal random variable with a mean and standard 

deviation, representing the true mean quality score. 
 

 
FIGURE 3. EXAMPLE OF A PAIRWISE COMPARISON TASK DONE BY ANNOTATORS . 

   

 

The results of paired comparisons are scaled into Just Objectionable 

difference (JOD). The final continuous scale represents the average 

opinions across multiple observers when they choose based on  

"which one is closer to the perfect quality reference?".  Two stimuli 

are 1 JOD apart if 75% of observers can see the difference between 

them, and a random guess (i.e., probability of 50%) results in a JOD 

distance of 0 between the images.  

Note that scaling method involves using the inverse Gaussian 

cumulative distribution to map probabilities to distances on the JOD 

scale. This mapping is unstable for high distances, therefore the JOD 

scale is most meaningful for distances below 2 JOD.  

 

261--2
IS&T International Symposium on Electronic Imaging 2024

Image Quality and System Performance XXI



 

The pairwise comparison task is done on images on the same 

content, therefore each ROI has its own scale. The scales are shift 

invariant. Without loss of generality, we center all scales at 0. 

 

 

Machine Learning model for quality prediction: To address 

the difference in image sizes and quality scales between the datasets, 

we implement a multitask learning approach. In this approach, the 

prediction of the quality score is supported by the classification of 

the dataset type as an auxiliary task. The combination of the two 

tasks allows for a more comprehensive model capable of 

generalizing across different mannequin types, shooting conditions, 

and ROIs. 

 

 
FIGURE 4. MULTITASK LEARNING APPROACH FOR QUALITY PREDICTION AND 

SCENE CLASSIFICATION 

 

As can be seen in Figure 4, 30 random patches are taken from the 

input ROI and passed through the shared CNN model. We use the 

backbone of a pretrained ResNet-18 [7]  to extract relevant features 

from the image. These extracted features from the input crop are 

then channeled into two separate fully connected heads – one for 

quality prediction and the other for class prediction. Each comprises 

three layers, ultimately resulting in the prediction of a float value for 

the texture quality and an integer value for the mannequin type. 

 

Implementation details. The model is trained with a frozen 

backbone during the first 10 epochs and then unfrozen for the 

remaining training process. We employ Adam optimizer, with an 

initial learning rate of 10−4. The loss is a sum of the Mean Squared 

Error (MSE) and Cross-entropy losses, ensuring proficiency in both 

tasks. 

 

Creation of a unified scale: Each mannequin has two scales 

centered at zero, one for each viewing condition. We would like to 

compute the shift factor between the two scales to have a single 

continuous scale. 

 

 
FIGURE 5. LQ AND HQ JOD SCALE ALIGNMENT PROCESS 

 

Given a set of images of each mannequin, we crop the two ROIs, 

one for the Low Quality (LQ) scale and another for the High Quality 

(HQ) scale (see Figure 5 for an example). On each crop, we apply 

the trained model from the previous section. By averaging the 

differences of these output values for all the images, we can estimate 

the shift factor “b” that aligns the two scales.  

Overall scale construction: These aligned scales yield 

comparable results, but each one of them is more precise in a region 

of the unified range. To avoid border effects, we propose an 

aggregated score computed as a smooth weighted average between 

low quality and high quality:  

 

𝑠𝑎𝑔𝑔𝑟 =
(𝑠𝐿𝑄∗𝑤𝐿𝑄+ 𝑠𝐻𝑄∗𝑤𝐻𝑄)

(𝑤𝐿𝑄+ 𝑤𝐻𝑄)
     (1) 

 

where 𝑠𝐿𝑄 and 𝑠𝐻𝑄are the measurements of the HQ ROI and LQ 

ROI, respectively. The weight for HQ 𝑤𝐻𝑄  increases with a higher 

HQ score, while the weight for LQ  𝑤𝐿𝑄, decreases proportionally, 

leading to a weighted average, as shown in Figure 6. 

 

  
FIGURE 6 WEIGHTS DISTRIBUTION FOR THE AGGREGATED SCORE COMPUTATION  

Results 
 

Our Deep Learning (DL) model shows a strong correlation with 

human perceptual evaluations. Table 1 presents the linear and rank 

correlations (LCC and SROCC), together with the Mean Absolute 

Error in JOD (MAE). The multitask training strategy gives a high 

performance individually on each dataset. This enables us to later 

merge their scales accurately. A very small MAE implies most 

points are inside our interval [-0.5, 0.5], below which a person (on 

average) cannot distinguish a change in quality. 

 

 

Dataset Regression metrics 

LCC SROCC MAE (JOD) 

High quality 
(HQ) 

0.978    

(± 0.005) 
 

0.975       

(± 0.001) 
 

0.318            

(± 0.001) 
 

Low quality 
(LQ) 

0.977    

(± 0.001) 
 

0.983       

(± 0.001) 
 

0.441            

(± 0.007) 
 

TABLE 1. DL MODEL AVERAGE PERFORMANCE ON HQ AND LQ DATASETS. IN 

PARENTHESIS, THE STANDARD DEVIATION OF 5 INFERENCE TRIALS COMPUTED ON 

THE TEST SET. 
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Using the model's predicted scores, we generated a unified scale of 

11 JOD, which represents a 5 JOD increase compared to the original 

HQ dataset. This enhancement not only represents the ability to 

evaluate more levels of quality but also to improve the precision of 

the resulting final scale. 

 

Model validation: Results on simulated degradations.  
 

Acutance on Dead Leaves vs Proposed model. The computation 

of the texture acutance on the Dead Leaves (DL) [3] chart has been 

widely used in the last years, and it is considered the standard 

procedure for measuring the camera texture quality rendition. In this 

section, we compare its performance to the proposed model. In all 

tests, the acutance is computed with fixed viewing conditions equal 

to the annotations on the realistic mannequins. 

 

Increasing noise. This classic texture acutance is well known to be 

extremely sensitive to noise. In this experiment, the fine-grain was 

added to the luma channel (Y’ in the Y’CbCR space). The variance 

of the noise depends linearly on the pixel intensity, and it is 

multiplied by a “noise gain” factor. The bigger the noise gain, the 

more visible the noise (see images in Figure 8 for an example). 

 

As can be shown in Figure 8, given a high-quality image (DSLR 

60Mpx), if we degrade it by adding fine-grain grey noise, the quality 

texture estimation drastically increases. During the acutance 

computation, we can mitigate the impact of the noise by estimating 

it on grey patches placed on the scene. However, since this method 

is generally circumvented by nowadays denoising algorithms that 

perform very well on flat regions, we decided to not use this 

mitigation. 

 

In contrast, when taking an image of a Realistic mannequin on the 

same setup conditions as the DL chart, the ML-based model behaves 

differently. Unlike the acutance, a small quantity of fine noise tends 

to increase the texture perception. When the noise starts to look 

unnatural, the score decreases (see Figure 10). Thus, resulting in a 

significant correlation with human visual perception.  
 

  
FIGURE 7. IMPACT OF ADDING NOISE TO THE SAME IMAGE, ON THE ACUTANCE 

MEASURE ON DEAD LEAVES CHART (SEE TEXT FOR MORE INFORMATION ON THE 

‘NOISE GAIN’ PARAMETER) 

 

 
FIGURE 8. IMPACT OF ADDING NOISE TO THE SAME IMAGE, ON THE ML-BASED 

TEXTURE MEASURE ON REALISTIC MANNEQUINS 

  

Similar results can be observed when simulating sharpening, using 

an unsharp masking (see Figures 10 vs 11) with the radius fixed to 

10 pixels and varying strength (see “sharpening strength” in the 

Figures). As we increase the sharpening strength, the acutance on 

the DL augments, while the metric on the realistic mannequin 

decreases, as we expect by evaluating perceptually the images. We 

observe that the realistic mannequin measure is robust to sharpening 

while the acutance on the Dead Leaves is not. 

  
FIGURE 9. IMPACT OF ADDING SHARPENING TO THE SAME IMAGE, ON THE 

ACUTANCE MEASURE ON DEAD LEAVES CHART (SEE TEXT FOR MORE 

INFORMATION ON THE SHARPENING PARAMETER VALUES) 

 
FIGURE 10. IMPACT OF ADDING SHARPENING TO THE SAME IMAGE, ON THE ML-

BASED TEXTURE MEASURE ON REALISTIC MANNEQUINS (SEE TEXT FOR MORE 

INFORMATION ON THE SHARPENING PARAMETER VALUES) 

Finally, we make the same comparison by applying resolution 

changes (see Figure 12 vs 13). We downscale, using Lanczos 

interpolation, the respective reference image to common 

smartphone resolutions, indicated by the reference dotted lines (1, 

4, 6, 12, 24, 48, 60 Mpx). As expected,  both metrics decrease with 
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the image resolution (i.e. increasing the downscaling factor). 

However, the Acutance on the DL chart saturates very fast, while 

the RM provides better quality resolution along the scale. The 

acutance computation is dependent on the viewing condition and 

distance, thus the plot in Figure 12 could be adapted to the LQ 

viewing conditions, but it implies having two different measures.  

 
FIGURE 11. IMPACT OF CHANGING RESOLUTION TO THE SAME 

IMAGE, ON THE ACUTANCE MEASURE ON DEAD LEAVES CHART. 

 
FIGURE 12. IMPACT OF CHANGING RESOLUTION TO THE SAME 

IMAGE, ON THE ML-BASED TEXTURE MEASURE ON REALISTIC 

MANNEQUINS. 

 

This underscores the model’s robust performance, sustained not 

only numerically through the high correlation between model 

predictions and ground truth but also perceptually in stress test 

scenarios. These scenarios, not included in the training, affirm that 

the model has learned the intrinsic nuances of natural texture 

rendering, in alignment with human perception. 

Conclusions 
 

This study introduces a new Texture quality estimation for Realistic 

mannequins with the following key attributes:  

 

- Comprehensive scope: The method expands seamlessly from 

very low-quality inputs (e.g., video conference and doorbell 

images) to high-end captures from top-tier smartphones and 

DSLRs. The incorporation of a merging strategy, between 

high-quality and low-quality images, allows us to extend the 

evaluation range in a robust and precise way. 

 

- Diverse model testing: Thorough evaluations were conducted 

on diverse models, including representatives of various 

demographics such as an old white male, a young Asian 

woman, and a deep-skinned woman. The results demonstrate 

consistently high performance across Regions of Interest 

(ROIs) when compared to perceptual annotations. 

 

- Robustness: Notably, our proposed solution exhibits 

remarkable resilience to common challenges like noise and 

sharpening addition. This robustness addresses a classic 

problem encountered by other texture quality estimation 

methods, such as acutance on the Dead Leaves, strengthening 

the reliability and practicality of our approach in real-world 

applications.  
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