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Abstract 

Consumer cameras are indispensable tools for 

communication, content creation, and remote work, but image and 

video quality can be affected by various factors such as lighting, 

hardware, scene content, face detection, and automatic image 

processing algorithms. This paper investigates how web and phone 

camera systems perform in face-present scenes containing diverse 

skin tones, and how performance can be objectively measured 

using standard procedures and analyses. We closely examine 

image quality factors (IQFs) commonly impacted by scene content, 

emphasizing automatic white balance (AWB), automatic exposure 

(AE), and color reproduction according to Valued Camera 

Experience (VCX) standard procedures. Video tests are conducted 

for scenes containing standard compliant mannequin heads, and 

across a novel set of AI-generated faces with 10 additional skin 

tones based on the Monk Skin Tone Scale. Findings indicate that 

color shifts, exposure errors, and reduced overall image fidelity 

are unfortunately common for scenes containing darker skin tones, 

revealing a major short-coming in modern-day automatic image 

processing algorithms, highlighting the need for testing across a 

more diverse range of skin tones when developing automatic 

processing pipelines and the standards that test them.  

Introduction  

The VCX Standard 

The Valued Camera Experience (VCX) WebCam 2023 

specification defines test procedures and metrics for a wide range of 

video quality concerns, including contrast, dynamic range, 

exposure, spatial frequency response, color accuracy, and white 

balance [1, 2]. We assess the performance of consumer web and 

smartphone cameras under various lighting conditions and scenes 

defined in Version 1.0 of the standard. Though the specification is 

intended for the testing of web cameras, including integrated laptop, 

stand-alone, and conference cameras, the same procedures and 

metrics can be applied to the testing of smartphone cameras. The 

VCX association has also developed a separate PhoneCam testing 

specification [1], but it is not considered in this study in order to test 

both web and phone cameras under identical conditions.  

Lab Setup 
The VCX WebCam specification proposes a comprehensive 

chart design to measure a variety of IQFs. A prototype chart 

designed by Imatest according to standard specifications is shown 

in two scenes in Fig. 1. The chart contains the Calibrite Classic 

ColorChecker, Siemens star, spilled coins/dead leaves texture, and 

slanted edge targets. Of particular interest is the use of two different 

mannequin heads—one with a dark skin tone (Richard) and a second 

with a light skin tone (Alexis), which are used to compare the 

behavior of auto white balance (AWB) and auto exposure (AE) 

algorithms under various conditions.  For this study, all scenes are 

captured with the chart and face mounted in front of a neutral gray 

backdrop. Videos are captured according to VCX procedures, and 

frames are extracted from a point in the video after convergence and 

averaged for analysis. Frames are analyzed using Imatest software 

and supporting scripts to obtain objective metrics quantifying auto 

exposure, white balance, and color accuracy performance.  

  
Figure 1. Example VCX test scene; Left: Alexis mannequin; Right: Richard 
mannequin; Both scenes captured under identical illumination conditions.  

Initial Results and Analysis Methods 
Initial results are obtained using three consumer webcams with 

a range of price points across the three scenes shown in Fig. 2—a 

control scene containing only the chart, a scene containing the 

Richard mannequin, and a scene containing the Alexis mannequin. 

The analyzed images are frames extracted from videos of the scenes 

captured under identical lighting conditions, with the default, out-

of-box camera settings. All frames depicted in Fig. 2 are captured 

under 6200K correlated color temperature (CCT) illumination 

(“cool white”, per VCX definition) at a brightness of 250 lux at the 

chart surface. It is important to note that Webcams 2 and 3 utilize 

facial recognition to adjust scene exposure, which becomes 

particularly evident for scenes containing darker skin tones. Only a 

small subset of VCX required metrics are calculated and discussed 

in this paper to emphasize the performance of AE, AWB, and color 

accuracy across various skin tones.  

 
Figure 2. Three webcams of varied price points were tested across three 

scenes, with and without mannequins. All scenes were captured under 6200K 
CCT illumination at 250 lux. 
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Figure 3. Simulated ColorChecker patches from each scene compare the 
target patch color against the corresponding average measured patch value. 
Bolded borders indicate saturation in one or more color channels.  

Color Error - E2000 
Assuming the camera under 

test has global performance (e.g., 

there is not local tone mapping), 

the ColorChecker in each of the 

captured scenes gives a basic idea 

of the color reproduction of scene 

content surrounding a face. 

Simulated ColorChecker patches 

for each scene are shown in Fig. 3. 

Each tile represents a split view of 

each patch on the ColorChecker, 

comparing the target color to the 

average measured value, as 

enlarged in Fig. 4. This is most meaningful when viewed on a 

calibrated display, but still of interest are the saturated patches, 

indicated by bolded red borders in Fig. 3. The two cameras with 

facial recognition—Webcams 2 and 3—show significant 

oversaturation of several patches in scenes containing the Richard 

mannequin. 

Calculating the average E2000 (CIEDE2000) error across all 

24 patches of the ColorChecker in each scene reveals that there is 

higher error in scenes containing the Richard mannequin captured 

with the face detection cameras. (See Fig. 5(a)). For example, the 

color error for Richard is 20 with Webcam 2, but only 3.5 for Alexis.  

Exposure – Lightness (L*) 
Though the consistency of the E2000 errors across all three 

scenes captured by Webcam 1 is desirable, when faces are taken into 

consideration, there is a conflict between this objective metric and a 

subjective analysis of a scene. Fig. 6 shows crops of the mannequin 

faces captured under identical illumination conditions using the 

three webcam devices. The Richard mannequin, when captured by 

Webcam 1, is severely underexposed in comparison to captures by 

Webcams 2 and 3. The Alexis mannequin appears adequately 

exposed across all devices.  

 

 
Figure 6. Close-up of mannequin faces captured under identical illumination 
by three devices. Boxes indicate the region used to calculate the average L* 
and C* values.  

Webcams 2 and 3 make use of face detection to automatically 

adjust exposure to prioritize a face in the scene, which is arguably 

more desirable for webcam applications, where the primary content 

in a frame is a face. A major drawback of using global exposure in 

face-present scenes is that for darker skin tones, the camera either 

adjusts the exposure based on the scene as a whole, risking 

underexposure of the face, or it can adjust the exposure based on a 

detected face, which risks overexposure of other scene content. With 

the inclusion of facial recognition in modern image processing 

pipelines, there is now a major flaw in using flat color patches to 

measure skin tone reproduction for some devices. As shown by the 

oversaturated patches in the ColorChecker in Fig. 3, it is no longer 

Figure 4. Example simulated 
ColorChecker split patch 
comparing target and averaged 
measured patch colors 

     (a)          (b)         (c) 
 

Figure 5. Errors for three primary metrics calculated for each webcam across each of the three scenes, including mean E2000 (a) of the ColorChecker, mean L* 

error (b) of the face ROI, and mean C* error (c) of the face ROI. 
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accurate to judge color reproduction from the ColorChecker alone 

when a detectable face is present in the scene.  

The average lightness, or L* value of a region of interest (ROI) 

containing the face, as depicted by the bounding boxes in Fig. 6, is 

one indication of whether a face is properly exposed in a scene. 

Exposure accuracy of the surrounding scene is based on the 

lightness of patch #21 (neutral 6.5) of the ColorChecker. In this 

paper, we use the average L* of patch #21 to examine exposure 

accuracy in control scenes, and face ROIs to examine exposure for 

face-present scenes. In a full VCX dataset, both are analyzed for all 

scenes. VCX provides a target average L* range for each of the 

mannequins. We use the central value of these ranges to calculate 

the relative error in the measured average L* value of each face ROI. 

The relative error for ColorChecker patch #21 is calculated using 

the corresponding reference L* value of 66.766.  L* errors are 

plotted in Fig. 5(b), where we see expectedly higher errors in the 

Richard scene captured by Webcam 1, and fair performance across 

all scenes by Webcams 2 and 3.   

White Balance – Chroma (C*) 
White balance is analyzed similarly to exposure, but by looking 

at the average C* value across the face (or patch #21 of the 

ColorChecker) after convergence. This value indicates how 

saturated colors appear in the captured scene. Again, we calculate 

the relative error based on central VCX and ColorChecker target 

values and plot the results in Fig. 5(c). Webcam 2  shows the least 

deviation from target C* values across all scenes. Interestingly, 

Webcam 3 performs better in scenes containing a face than in the 

control scene. Looking at all of these metrics in Fig. 5, we can see 

that no single metric, scene, or skin tone can provide a complete 

understanding of system performance or image/video quality. 

Though this may not be surprising, it does highlight that image and 

video processing algorithms can and do perform very differently 

depending on whether there are faces in the scene, and what the 

characteristics of those faces are. 

 

Testing Diverse Skin Tones 
 The noticeable differences in performance based on the 

primary skin tone in the scene point to a limited understanding of 

camera performance by testing only two skin tones. Beyond VCX, 

the industry is looking closely at ways to better understand the  

Figure 7. Ten simulated faces with a range of skin tones based on the Monk 
Skin Tone Scale are created using generative AI and printed for data capture 

impact of a broader range of skin tones, and we can apply these 

solutions to image and video testing.  

Monk Skin Tone Scale 
The Monk Skin Tone (MST) Scale was developed by Dr. Ellis 

Monk at Harvard and is comprised of 10 different tones [3]. The 

scale is currently being used by Google Research and is designed to 

represent a broader range of geographic communities [4] than the 

commonly used Fitzpatrick scale [5], which is skewed towards 

lighter skin tones due to its dermatological background. 

AI-Generated Diverse Human Faces 
To test how automatic image processing algorithms perform 

across a wider range of skin tones without access to a diverse group 

of real people, we used artificial intelligence (AI) to simulate 

humans instead. We worked with Generated Photos [6] to create 10 

AI-generated faces with skin tones based on Google's Monk Skin 

Tone Scale. This AI tool offers 16 default skin tone options, 120+ 

ethnicities, and custom AI prompt input. Initial parameters were 

chosen to achieve target skin tones (rather than focusing on specific 

ethnicities), followed by manual adjustments in Adobe Photoshop 

to match MST values more accurately and create a uniform 18% 

gray background.  The resulting faces are depicted in Fig. 7. Each 

Figure 8. Measured reflectance spectra of simulated skin from mannequin heads and printed face charts (left) compared to 100 sample reflectance spectra of 
actual human skin (right) measured by the National Institute of Standards Technology (NIST) [7].  
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face is printed at life-size scale using color-accurate printing 

methods and mounted individually.  

Spectral reflectance of simulated versus real skin 
A primary concern when using mannequins or printed targets 

in place of humans is the loss of the spectral nuances of actual skin—

simulated or printed skin will behave differently from real skin, 

which has unique absorption, reflection, and sub-skin scatter 

properties that are dependent on the amount of melanin present. 

Reflectance spectra of the mannequins and each of the 10 printed 

targets are measured using a spectrophotometer and are plotted in 

Fig. 8. These are compared with 100 sample reflectance spectra of 

actual human skin (right, in Fig. 8) measured by the National 

Institute of Standards Technology (NIST) [7]. As expected, the 

reflectance spectra of the simulated skin—both mannequin and 

print—do not directly match the spectra of actual skin. However, we 

do see comparable trends across the spectral properties of both 

simulated and real skin, including similar peaks in the range from 

500-600 nm. More research is required to better understand the 

impact of the differences between simulated and real skin, which is 

beyond the scope of this paper. 

Results across devices, targets, and lighting 
conditions 

Each of the 10 face charts is captured in a scene with the VCX 

chart by the same three webcams. The face is mounted on the same 

plane as the chart at a position comparable to the mannequins. 

Additionally, three common smartphones (which use face detection) 

are also tested for each skin tone under the same conditions using 

VCX WebCam procedures. This process is repeated across several 

lighting conditions. Frames extracted from videos captured by all 

six devices at 250 lux and 6200 CCT are shown in Fig. 9. Notice the 

visible increase in overall scene brightness as the skin tone of the 

face in the scene darkens for many of the devices, as seen 

Figure 9. Frames extracted from video clips captured by three webcams and three smartphones under 6200K 250 lux illumination. Note the gradual increase in 
overall brightness as the skin tone in the scene becomes darker, despite being captured under identical lighting conditions.   
 

Figure 10. Three metrics of interest—average E2000, L* error, and C* error—calculated across devices, skin tones, and select lighting conditions. Values are 

color-coded according to deviation from target values.  
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progressing from left to right. The only two devices that do not 

illustrate this phenomenon are Webcam 1 (which does not adjust 

exposure based on a detected face) and Smartphone 3.  

The same three metrics— average E2000, L* error, and C* 

error—are calculated for each skin tone scene across devices and 

lighting conditions. Results for all six tested devices at two select 

VCX-specified illumination conditions are summarized in Fig. 10. 

While these three metrics are by no means a comprehensive analysis 

for these scenes, they offer a high-level understanding of system 

performance across a greater range of skin tones than is required by 

most testing procedures.  

We tend to expect higher C* errors in modern non-scientific 

use cameras, especially in smartphones, due to human preference 

for more saturated colors, so these results are not particularly 

surprising. Perhaps more telling is the relationship between the 

E2000 and L* errors across the skin tones, plotted in Fig. 11. These, 

in a simplified way, compare how good the chart (or surrounding 

scene content) appears versus how good the face appears. 

 

 
Figure 11. Scatter plot of average chart E2000  error versus face L* error for 

each of the 10 skin tones tested across all six devices.  

Fig. 11 clearly shows that both E2000 and L* errors tend to be 
larger for scenes containing darker skin tones. It also shows how 
the handling of darker skin tones varies more drastically within and 
across devices than for scenes containing lighter skin tones, whose 
errors fall within a noticeably tighter range.  

Conclusion 
This paper seeks to illustrate the importance of testing a 

diverse range of skin tones for camera systems designed for human 
and face-present scenes. Industry efforts such as VCX and groups 
within the International Organization for Standardization (ISO) 
seek to better understand the appropriate range of skin tones that 
are tested in standards, but there is still much to be done to expand 
skin tone testing and performance requirements to be more 
inclusive of a wider range of human diversity, eliminating the 
trade-off between high-quality depictions of scene content or high-
quality depictions of faces. 

Future Work 
The presented findings merely scratch the surface of 

understanding how cameras perform in face-present scenes. There 

is additional work to be done in the future that would supplement 

this work: 

• Significant amounts of data were collected as part of this study, 

only a small portion of which is reflected in this paper. More 

than 100 videos were captured across 15+ illumination 

conditions, from which dozens of metrics can be derived. 

• Additional scenes containing multiple faces and skin tones 

should be captured to evaluate camera performance in more 

complex and diverse scenes.  

• Further investigate the effects of using simulated skin versus 

actual human subjects.  

• Consider and test the effects of dimensionality for 3D 

mannequins or human targets in comparison to 2D printed 

charts.  

• Investigate other color charts that have more focus on human 

skin tones.  
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