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Abstract
Event-based vision Sensors (EVS) utilize smart pixels ca-

pable of detecting whether relative illumination changes exceed
a predefined temporal contrast threshold on a pixel level. As
EVS asynchronously read these events, they provide low-latency
and high-temporal resolution suitable for complementing conven-
tional CMOS Image Sensors (CIS). Emerging hybrid CIS+EVS
sensors fuse the high spatial resolution intensity frames with low
latency event information to enhance applications such as deblur
or video-frame interpolation (VFI) for slow-motion video cap-
ture. This paper employs an edge sharpness-based metric-Blurred
Edge Width (BEW) to benchmark EVS-assisted slow-motion cap-
ture against CIS-only solutions. The EVS-assisted VFI interpo-
lates a CIS video steam with a framerate of 120 fps by 64x, yield-
ing an interpolated framerate of 7680 fps. We observed that the
added information from EVS dramatically outperforms a 120 fps
CIS-only VFI solution. Furthermore, the hybrid EVS+CIS-based
VFI achieves comparable performance as high-speed CIS-only
solutions that capture frames directly at 480 fps or 1920 fps and
incorporate additional CIS-only VFI. These, however, do so at
significantly lower data rates. In our study, factors ∼ 2.6 and
∼ 10.5 were observed.

Introduction
Video Frame Interpolation (VFI) generates synthesized in-

termediate frames between two consecutive keyframes to produce
smooth and visually appealing videos (see Figure 1). The qual-
ity of the intermediate synthesized frame relies on the amount of
motion between the two successive keyframes. The motion blur
present in the keyframes is another factor impacting the quality of
interpolated frames. Hence, mobile phone cameras capture videos
of fast-moving objects with high frame rates to limit the amount
of motion blur. Capturing high frame rates produces smoother
videos but leads to high data and power consumption.

Hybrid camera sensors include image and event pixels.
Event pixels report continuous intensity changes when they ex-
ceed a predefined contrast threshold [2]. Consequently, these
novel hybrid sensors provide additional low-latency event in-
formation that can mitigate the two significant issues in video
frame interpolation by deblurring keyframes and providing addi-
tional intensity information between the two consecutive captured
frames, which is useful for VFI.

Data-driven techniques built for fusing events with intensity
frames mainly depend on deep learning, contain millions of pa-
rameters, and thus are computationally expensive and, therefore,
challenging for use in mobile platform applications. We utilize
a low-computation, inexpensive, mathematical-based technique
called an Event-Double Integral algorithm (EDI) to fuse an im-

age with its corresponding events [5]. The EDI algorithm can
deblur the keyframes and interpolate frames between two consec-
utive deblur keyframes; thus, we anticipate achieving high-quality
video frame interpolation.

Figure 1. Schematic of video frames interpolation mode in mobile phones.

This work compares the VFI performance of a hybrid
CIS+EVS VFI solution to a CIS-only solution. For this, we con-
sider a use-case where we upscale a CIS key framerate of 120 fps
to 7680 fps. To evaluate the quality of interpolated frames, we
use Blurred Edge Width (BEW) metric that quantifies the sharp-
ness of edges. Moreover, we compare the VFI performance of a
hybrid CIS+EVS sensor with two phones offering high key fram-
erates of 480 fps and 1920 fps. We observed that VFI using hy-
brid CIS+EVS provides comparable performance to high fram-
erate phone cameras but with significantly lower data rate and
potentially power consumption.

Related Work
We are unaware of a CIS-only VFI method with low com-

putational cost. We consider RIFE (Real-Time Intermediate Flow
Estimation) being a state-of-the- art CIS-only VFI method for fur-
ther comparison against hybrid EVS+CIS VFI. Similar to other
state-of-the-art methods, RIFE uses a deep learning network for
bidirectional optical flow between intensity frames for VFI [4].
Deep learning (data-driven) methods based on hybrid CIS+EVS
like Time Lens and Adhoc Deburring outperform VFI based on
CIS-only [6]. However, these methods are deep learning-based
and computationally expensive. The Event Double Integral (EDI)
method combining frame and event information enables VFI with
low computational complexity [5]. It can deblur the captured in-
tensity frames and provide high-quality synthesized interpolated
frames.
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Figure 2. (a) front-view of the apparatus. (b) schematic of the appartus

setup

Experimental Setup
A motorized disk surface is used to depict and rotate a

Siemens star chart in a controlled manner (see Figure 2). The
rotation of the target provides a repeatable evaluation of motion
blur as a function of object speed and illuminance. A fixture is
used to displace a camera at a controlled distance from the tar-
get to yield comparable FOV between different cameras. Instead
of using a two-camera system with a collocated CIS and EVS
camera, we utilize a dedicated hybrid EVS+CIS sensor [3]. This
mitigates spatial and temporal alignment, avoids optical artifacts
from occlusion/parallax, and reduces package size and cost. To
compare hybrid EVS+CIS versus CIS-only at a comparable base
framerate, we utilize the CIS channel of the hybrid sensor to em-
ulate the CIS-only performance. For comparison with high-speed
CIS-only solutions, we swap the hybrid sensor against commer-
cial mobile phones implementing such sensors.

We used a hybrid CIS+EVS sensor with a CIS key fram-
erate of 120 fps and a resolution of 1080p. To compare with
high-framerate cameras, we used two flagship Phones: Phone
A (480 fps, 720p, and 2x frame interpolation) and Phone B
(1920 fps, 720p, and 4x frame interpolation).

The rotation speed of the color chart can be controlled in the
range of 0 rpm to 300 rpm. The setup has two light-emitting diode
(LED) floodlights with a 5600 K color temperature, placed at a
45 degree angle relative to the test chart. The illuminance at the
test chart can be controlled from 0 to 12.000 lx. In the experiment
setup, the camera remains stationary while the color disk rotates.

Blurred Edge Width Calculation by Curve Fit-
ting

The blurred edge width method scans the intensity profile
along an edge and measures the number of pixels it takes to
change the intensity from 10 % to 90 % of its local range (see
Figure 3) [1]. A sharper edge leads to lower BEW and vice-versa.
The presence of noise in actual data creates challenges in calcu-
lating the accurate BEW Value. To solve the mentioned issues,
we fit a sigmoid function that matches the curve, and then we cal-
culate the BEW of the fitted curve. The fitted sigmoid function is
shown below as S(x):

S(x) = |Y1 −Y2|
1

1+ e−(ax+b)
+min(Y1,Y2) (1)

Here, Y1 and Y2 are the minimum and maximum luma values,

Figure 3. (a) Color chart with edges detected. (b) pixels valued scanned at

particular locations at the edges. (c) A sigmoid function fitted to pixel values

and calculated BEW.

|Y1−Y2| is the edge contrast, and min(Y1,Y2) controls the up/down
shift of the fitting curve. The fitting parameters a and b are intro-
duced to control the slope and position of the edge obtained by
regression among sampled edge points.

Event Double Integral Method for hybrid
CIS+EVS

The Event Double Integral algorithm fuses intensity images
with event information to deblur captured frames and interpolate
the frames between newly deblur frames. Here, we briefly explain
the outline of the EDI algorithm: an event can be described as
a direct delta function, e(t) = p · δ (t), and based on the sum of
events, we get proportional change in intensity between reference
time f and t as E(t) =

∫ t
f e(s)ds. Here, p is polarity and can be

+1 or −1 based on event generation with an increase or decrease
in luminance. Using E(t), we can get a latent image sequence
at any time t as L(t) = L( f )exp(cE(t)). Here, c is the contrast
threshold, which means the pixel will trigger an event if there is a
change in intensity above c. L( f ) is the latent frame at reference
time f that can be easily calculated using a blurry image and the
sum of events information. Using L(t), we can calculate video
frames at any time t between two captured frames.

Analysis of Experimental Results
We implemented the EDI algorithm on hybrid CIS+EVS

with a CIS framerate of 120 fps to deblur the keyframes and
interpolated 63 synthesized intermediate frames (120×64 =
7680fps)(see Figure 4). We observed that the interpolated frames
have higher BEW than the deblurred keyframes (see Figure 6).
Moreover, we noticed that the BEW of actual keyframes is higher
than that of deblurred keyframes, and the difference in BEW be-
tween them increases with increasing motion speed. Furthermore,
we compared the hybrid CIS+EVS VFI performance versus CIS-
only VFI. At a significantly higher motion speed, we observe
that the CIS+EVS VFI-based low computation cost EDI algo-

259--2
IS&T International Symposium on Electronic Imaging 2024

Image Quality and System Performance XXI



Figure 4. Data samples collected from hybrid CIS+EVS sensor with various

exposure times and the rotation speed of the color disk.
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Frame Rate
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Data Rate 

(Mb/s/pixel) 5.72 × 10−4 22.8 × 10−4 2.16 × 10−4

Figure 5. The figure depicts the key framerates, interpolated framerate, and

the data rate normalized to pixels of Phone A, Phone B, and hybrid CIS+EVS

sensor.

rithm outperforms the CIS-only VFI method based on the com-
putationally expensive deep learning-based algorithm RIFE (see
Figure 6).

To compare the VFI performance of the hybrid CIS+EVS
with CIS framerate of 120 fps against high frame rate cameras,
we study the BEW of Phone A, Phone B, with hybrid CIS+EVS
sensor with various exposure times and motion speeds. We ob-
served that the BEW of the hybrid sensor increases with an in-
crease in exposure time. Moreover, we discovered that at high
motion speed, the hybrid sensor outperforms Phone A (480 fps)
as the BEW of Phone A increases sharply (see Figure 7). In con-
trast, the BEW of the hybrid sensor slowly rose with increasing
motion speed. Furthermore, we noticed that even with the in-
crease in motion speed, there was little change in the BEW of
Phone B (1920 fps).

Various parameters, such as exposure time and lens design,
affect the BEW of key and interpolated frames of Phone A,
Phone B, and the hybrid CIS+EVS sensor. For a fair comparison
between the BEW of phone cameras and hybrid CIS+EVS
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Figure 6. The figure shows the BEW of CIS-only based interpolated

frames versus interpolated frames based on CIS+EVS at different motion

speeds. The figure also depicts the BEW of CIS+EVS keyframes and CIS-

only keyframes.
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Figure 7. The figure compares the BEW of Phone A, Phone B, and the

hybrid CIS+EVS sensor at different motion speeds. The exposure time of the

hybrid sensor is manually set to: 0.5, 1, and 2 ms, while the exact exposure

times of Phone A and Phone B are unknown. We estimate the maximum

possible exposure time of Phone A (< 2ms) and Phone B(< 0.5ms) based on

their framerates.

sensor, we calculated the ratio of BEW of interpolated synthe-
sized frames to keyframes, thus only evaluating the quality of
interpolated frames relative to the keyframes (see Figure 8). The
ratio of BEW interpolated frames w.r.t captured frames is almost
1 for Phone A and Phone B. The probable cause of the constant
relative ratio is that Phone A and Phone B only interpolate 2 and
4 times, respectively. For the hybrid CIS+EVS sensor, the ratio
is larger than 1 at low motion speed. As can be seen in Figure 6,
at low temporal contrast hybrid EVS+CIS VFI based on the EDI
method struggles to generate interpolated frames with low BEW.
At high motion speed, however, the ratio reduces below 1 as
hybrid deblur and VFI reduce the BEW of both the deblurred key
frames as well as the interpolated frames.

The data rate of the phone cameras based on CIS-only is
calculated as data rate = frame rate × raw image size. The camera
raw image size is the same irrespective of the scene and depends
on the pixel count. Phone A, with a framerate of 480 fps, has a
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Figure 8. The figure compares the ratio of BEW of interpolated to keyframes

at different motion speeds of Phone A, Phone B, and Hybrid CIS+EVS sen-

sor. The exposure time of the hybrid sensor is manually set at different expo-

sure times: 0.5, 1, and 2 ms, while the exact exposure times of Phone A and

Phone B are unknown. We estimate the maximum possible exposure time of

Phone A (< 2ms) and Phone B(< 0.5ms) based on their framerates.

four times lower data rate than Phone B operating at 1920 fps, as
they have the same resolution of 720p. In hybrid CIS+EVS, the
data rate is the sum of the data rate coming from intensity frames
and events. The data rate of events is scene-dependent as each
event pixel independently outputs events based on local changes
in intensity. Consequently, the data rate of Hybrid CIS+EVS is
scene-dependent. We compared the data rate of the hybrid sensor
with different motion speeds and the event rate (see Figure 9). We
observed that even with significant motion present in the scene,
the data rate coming from events is significantly lower than that
of the CIS-only solution.
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Figure 9. The hybrid CIS+EVS sensor data rate consists of the data rate

of the CIS framerate and the number of events generated per second. The

number of events depends on the amount of motion; with more motion, the

number of events increases, and thus, the total data rate increases. In this

figure, the events are originating from a rotating color disk.

We compared the data rate of Phone A, Phone B, and the hy-
brid sensor (see Figure 5). As Phone A, Phone B, and the hybrid
sensor have different resolutions, we normalized the data rate to
pixel count for a fair comparison. At significant motion speed, the
data rate of the hybrid CIS+EVS sensor is ∼ 2.5 and 10.5 times
lower than of Phone A or B. Furthermore, we compare the data
rate with the BEW of the phones and the hybrid CIS+EVS sen-
sor. The hybrid CIS+EVS sensor achieves a lower data rate (less
than 2.5 times) and lower BEW than Phone A (480 fps) (see Fig-
ure 10). Similarly, for Phone B, the hybrid CIS+EVS achieves a
significantly lower data rate (less than 10.5 times) but at a com-

BEW Data Rate 

(Mb/s/pixel)

Phone A

(960 frames, 2x Interpolation) 30 5.72 × 10−4

Phone B

(7680 frames, 4x Interpolation) 16 22.8 × 10−4

Hybrid Sensor (CIS+EVS)

(7680 frames, 64x Interpolation) 24 2.16 × 10−4

Figure 10. The figure compares data rate with the BEW of Phone A, Phone

B, and the hybrid CIS+EVS sensor. Here, BEW is calculated as the average

over different motion speeds.

paratively higher BEW.

Conclusion and Discussion
In this work, we compared the performance of Video Frame

Interpolation of hybrid CIS+EVS versus CIS-only cameras. We
studied a hybrid image sensor that provides a CIS framerate of
120 fps as well as EVS information. We found that at significant
motion speed, VFI using hybrid CIS+EVS generates sharper im-
ages than the CIS-only method. Also, we observed that the EDI-
based method deblurs the captured frames with substantial mo-
tion, and the BEW of deblurred keyframes itself is significantly
lower than that of blurred keyframes. Our results show that EDI,
a low computational algorithm based on hybrid data, outperforms
CIS alone VFI based on complex deep learning state-of-the-art
methods in the presence of significant motion blur.

In addition, we compare the performance of hybrid
CIS+EVS with two high frame rate flagship cameras: Phone A
with a key framerate of 480 fps and Phone B with a key framer-
ate of 1920 fps. The hybrid sensor achieves higher quality VFI
results with a lower 2.5 times data rate compared to Phone A.
Phone B achieves a lower BEW than the hybrid sensor but with a
10.5 times increased data rate compared to the hybrid CIS+EVS
sensor. Our results show that VFI using a low-framerate hybrid
CIS+EVS sensor achieves comparable BEW to high-frame cam-
eras with very low data rates and potentially low power consump-
tion. In the future, we plan to compare the VFI results of hybrid
CIS+EVS sensor at higher motion speeds and different luminance
levels. Moreover, we intend to compare VFI between phones and
the hybrid sensor using different image quality metrics.
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