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Abstract 

Intelligence assistance applications hold enormous potential to 
extend the range of tasks people can perform, increase the speed 
and accuracy of task performance and provide high quality 
documentation for record keeping. However, the computational 
complexity of modern perception and reasoning techniques based 
on massive foundation model networks cannot run on devices at the 
edge. A remote server can be used to offload computation but 
latency and security concerns often rule this out. Distillation and 
quantization can compress networks but we still face the challenge 
of obtaining sufficient training data for all possible task executions. 
We propose a hybrid ensemble architecture that combines 
intelligent switching of special purpose networks and a symbolic 
reasoner to provide assistance on modest hardware while still 
allowing robust and sophisticated reasoning. The rich reasoner 
representations can also be to identify mistakes in complex 
procedures. Since system inferences are still imperfect, users can be 
confused about what the system expects and get frustrated. An 
interface which makes the capabilities and limitations of perception 
and reasoning transparent to users dramatically improves the 
usability of the system. Importantly, our interface provides feedback 
without compromising situational awareness through well designed 
audio cues and compact icon-based feedback. 

Introduction 
While the internet is full of knowledge, it is still not easy to get 
exactly the knowledge we need in the moment to solve practical 
physical tasks. Youtube is a great source of information about the 
details of removing, fixing and assembling devices such as phones 
or lawn equipment, but it can be hard to find a quality video and 
hard to search through a video to get what you need at a certain 
step. Perhaps our lawn mower will not start and we are not sure 
why. Finding a solution on the web often depends on situational 
variables: How do you describe the failure in terms of sounds or 
appearances? What is the type of mower? Is it gas or electric? 
What is the make and model? When was it last serviced and what 
was done? Once the user has located the relevant information, the 
user still has the problem of applying the knowledge to their 
situation. For obvious diagnostic steps such as checking if there is 
gas or a good electrical connection, the average owner might feel 
confident performing the required action, but the user may be 
hesitant to attempt maintenance steps such as checking for clogged 
filters or fouled plugs even though these are within the capabilities 
of the average owner using common tools. The tasks often require 
identification of parts and judgments about condition that are hard 
to make based on a couple of photos in a manual.  

In professional applications such as manufacturing, medical 
and military operations it may also be important to verify 

completion of steps and provide a record that can be signed off and 
referred to in the future to explain problems and formulate policy 
changes. 

Recent advances in large language models and multi-modal 
models hold out the promise of using contextual prompts such as 
an image or some free text spoken or typed into an app to pull out 
relevant knowledge from a user manual or internet. However, 
access to LLM based knowledge typically requires either a 
network connection or a powerful GPU equipped host to run the 
inference and it is not always clear how to ground this knowledge 
in the context of a real world (what does a fouled spark plug look 
like and how would I get to it and remove it?).   

Augmented reality systems can improve the usefulness of 
knowledge by using overlays on the performer’s view to highlight 
relevant parts. Augmented reality systems need a way of relating 
functional knowledge to appearance of objects in the real world 
and require real time performance to be usable. Latency from 
network services can be excessive making context relevant 
assistance difficult to achieve with devices in the field. A 
perceptive augmented reality system can also observe when tasks 
are complete and advance to the next step freeing the user’s hands 
and attention to focus on the task. 

Finally, a user might perform the procedure in a different 
order that is different from the manual. This ordering may still be 
valid but more appropriate if the user was waiting for a part to be 
delivered. It is not possible to write manuals or record videos 
covering all possible task orderings. Users may also occasionally 
make a mistake or leave out a step. The system needs to figure out 
if the mistake will compromise the task. Given a mistake, the 
system needs to be able to recommend how to recover from the 
error. Again, it is not practical to produce manuals or videos 
covering all possible mistakes and recovery actions and even if it 
was, it wouldn’t be practical for the user to locate the right version 
for their circumstance. 

SRI’s AMIGOS system is an autonomous augmented reality 
assistant which develops computationally tractable perception and 
reasoning capabilities that could elevate augmented reality from a 
passive display to an intelligent observing partner that understands 
the context and supplies information to the performer using modest 
hardware. This would require efficient perception, a rich 
representation of task and an interface that allows the performer 
and system to understand each other. 

Unlike traditional strictly feed forward systems, we use the 
task structure to actively guide the perception system computation 
to focus on perception of things relevant to the current task. Where 
many systems use either a probabilistic, neural or logical 
framework, we use a combination of machine learning and 
symbolic hierarchical task networks (HTNs) to reduce the time to 
define tasks while preserving the ability to deal with the 
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combinatorics of multiple valid execution orderings with minimal 
training data. 

Method 
The system (see Figure 
1) uses several 
perceptual modules to 
identify the state of the 
task. Task reasoning 
relates observations 
from the perception 
system to steps in tasks 
and decides when a step 
has been achieved. The 
guidance manager takes 
into account the user’s 
state and level of 
expertise to decide 
when and how to 
provide guidance to the 
user. The dialog manager chooses specific language for 
interventions and can respond to questions from the user. An AR 
interface delivers speech, auditory prompts and visual aids such as 
text, diagrams and animations. 

Perception 
The perception system provides the context to the assistant about 
the state of the workspace and the changes the user is making. 
Perception is difficult in systems based on head-mounted ego-
centric cameras as the view changes erratically as the operator 
moves around and looks at different parts. This leads to fleeting 
glimpses of the scene and motion blur. Explicitly introducing 
varying amounts of motion blur (not Gaussian blur!) into the 
computer vision training pipeline improves recognition of objects. 
Key parts of the scene can also be occluded by the hands or tools 
or clipped at the edges of the camera frame. We augment the data 
with artificial occlusions to handle this. It is also important to 
optimize the framerate of the vision pipeline to maximize the 
stability of object tracking. 
To provide context to the reasoning system, the perception system 
must identify objects (e.g., air filter), attributes of those objects 
(e.g., clean or dirty), relationships between objects (e.g., the air 
filter is removed from the engine). In physical tasks it also 
important to track specific instances of objects. The clean air filter 
to be installed on the machine might look similar to the dirty filter 
already removed from the machine when sitting on the work 
bench, but the system should identify the correct instance to install.  

Because of the transient nature of the camera view, any one 
frame may or may not reflect relevant properties leading to errors 
in perception. It is also important to be able to detect negative 
evidence. The fact that the filter is not on the engine is suggested 
by observing the absence of the relationship between the filter and 
the engine. 

In computer vision datasets, multi-modal transformer 
approaches have shown high performance in offline competitions 
[1], but in our experiments these approaches fail to provide high 
frame rates for real-time assistance applications and require 
significant training data on many sequences. We therefore use a 
lighter weight approach that exploits factorization to improve 
generalization. Factoring recognition into detection of isolated 
objects and then calculating relationships between the objects 

allows the system to be trained on less data and to robustly 
recombine object models for new tasks (See Figure 2). 

To integrate the sparse information from camera frames, the 
system maintains a persistent set of objects that are updated based 
on the vision system. A light weight YoloX [2] based detector 
finds domain specific objects in frames. The augmented reality 
headset also produces a depth map. For each detected object, we 
determine a sampling region inside the object detection borders 
and then use the corresponding sampling region to estimate the 
distance of the object to the camera. We discard depth points 
where the depth is invalid and use the median of the remaining set 
to get a robust estimate. If the percentage of valid points falls 
below 20%, we discard the observation as unreliable.  

This method is heuristic and can fail for objects with a large 
central hole (e.g., tire). The method also only provides information 
about one point on the front surface of the object and can be 
thrown off by occluding items in front of the object. Because we 
see the same object many times, these errors are generally 
averaged away. We extract telemetry about the 6-DOF position 
and orientation of the user’s head from the augmented reality 
system localization. We then align the telemetry to the image 
frames using temporal interpolation and then project the depth 
from the camera frame into a 3D world position. We then use a 
database of object meta data to associate the points with a spatial 
extent which is approximated by a cylinder with the appropriate 
height and diameter. Once the candidate objects have a cylindrical 
spatial extent and are in a 3D world frame, they can be matched to 
stored persistent instances with the same object class using a 
Hungarian algorithm and the 3D Euclidean distance for similarity. 
If the detection is too far from an existing instance, a new instance 
is created. The notion of “too far” is defined relative to the spatial 
extent definition so that large objects need to be farther apart than 

smaller ones. The framework can also merge instances that appear 
to be the same object. The persistent instances create a stable world 
view. If the user turns their head away and then back again, new 
detections of the object will be associated with the old persistent 
instance since the new object will be projected back to the original 
3D location. Using the object’s 3D location and spatial extent, we 
can compute relationships such as above, in front of inside, etc. 
These relationships will be used by the reasoning system to infer 
the current state and what the user has done. Object instances and 
relationships based on them also keep track of time since first seen 
and the number of observations since being seen. Detection 
confidence is also recorded. The extra information is used to the 
determine confidence and relevance of the extracted information. 

Identifying objects and tracking their position and 
relationships gives the system a crude idea of what resources are 
available and how they are being manipulated. In many cases, 
more detailed kinds of knowledge are required. For instance, to 
verify that the correct amount of a substance is used, the system 
might need to be able to read the display of a scale. Running 
optical character recognition continuously would be too expensive. 

 
 

   
 

Figure 1 AMIGOS System Architecture 

Figure 2 The left hand image shows object detections and the depth 
sampling windows. The right hand image shows generated 3D instances 
with cylindrical spatial extents. 
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The task structure can be used to make perception more efficient or 
reliable [11]. In our case, instead of conditioning perception on the 
previous step, we condition on the current step to select specific 
perceptual modules. The task-informed switching framework uses 

explicit knowledge about the step the system is on to determine 
when OCR is required and enables a previously loaded network to 
accept the camera feed to process characters.  Enabling allows the 
system to switch networks in real time to read characters off the 
scale without waiting to load the network or access remote servers. 

In some cases, actions do not have observable effects on the 
world. A person might press a button or kneed some dough 
resulting in a change to the environment that is not readily 
perceptible. For this case, we fine-tuned a heavy weight 
transformer based action model called MViT2 [3]. The system 
used knowledge of the step in the task being performed to 
dynamically enable this preloaded network to detect critical actions 
relevant to that step but leaving the network disabled otherwise. 

Task Reasoning  
The task reasoning component accepts input from the perception 
system and uses it to infer what the user is doing. If the user brings 
the water pitcher over the kettle, the user is likely working on a tea 
or coffee making task and likely on the step where the kettle is 
being filled with water so that it can be heated. The reasoner relies 
on having a formal representation of the task. Our system employs 
Hierarchical Task Networks (HTNs) [4][5] to represent tasks, 
substasks and specific steps in a procedure (See Figure 4). Each 
sub-step specifies the objects involved as inputs and outputs, and 
any pre-conditions and post-conditions that must apply to those 
objects (See Figure 3). Additional temporal ordering constraints 
can be imposed between sub-steps. While HTNs are typically 
employed for planning, in this instance they are compiled out into 
a special optimized form used for plan recognition [6]. The 
ordering constraints can be hard or soft. Hard constraints require a 
previous step. For instance, water needs to be in the kettle before it 
is set to boil. In other cases, there might be a soft constraint, but it 
is not absolute. It is better to place the teabag in the cup before 
pouring water to create more agitation, but you can leave the tea to 
steep longer if you forget.  

 Meta action analysis was performed on thousands of recipes 
to mine good action primitives [7] to use as the basis for 
representing recipes. The procedure steps were then translated into 
these action primitives. We experimented with some methods of 
automatically translating procedure descriptions into action 
primitives but they are not fully reliable at this time, especially 
when a high level task such as “measure coffee beans” needs to be 
broken into substeps by common sense (e.g., get out the scale, 
place container on scale, zero scale, add beans until weight is 
achieved). For this reason, the results here are based on manual 
construction of HTN representations. 

 
Matching the real-time, transient, noisy observations at 25 Hz 

to the logical world of hierarchical networks is challenging. 
Temporal stabilization is used to filter out observations that are 
unreliable (e.g., only seen a small number of times, or haven’t been 
seen in a long time) and to convert a continuous stream of 
observations to discrete changes in the environment. So repeated 
observations of kettle on table followed by observations of kettle 
over mug are just translated into a single event “The kettle has 
moved from the table to over the coffee mug”.  

Experience has shown that articulating the exact conditions 
required to recognize a procedure step using the presence of 
objects, the relationships between these objects and confidence 
factors such as detection confidence, time since last seen, etc. are 
difficult to manually articulate in a general way. For this reason, 
we employed a hybrid framework which used a hierarchical task 
network (HTN) to represent the structure of the task and a machine 
learned classifier trained on high-level features from the perception 
system to recognize common objects and relationship relevant to 
recognizing subtasks in the procedure. The task and step classifiers 
were trained on a half a dozen or so recordings of executions for 
each task, where the timestamps for the start and end of the steps 
were hand-labeled.  The HTN allows flexibility of execution due to 
its ability to represent multiple ways of decomposing a task. The 
learned classifier simplified the definition of conditions to identify 
steps and can be trained on a very small number of examples 
because the hard part of recognizing objects from pixels is done by 
another pretrained network.  

Specifically, the stabilized perceptions of instances and types 
of objects observed, object co-ordinates and attributes, and 3D 
spatial relations between objects (over, near, etc.) together with 
confidence scores are turned into feature vectors for input to (1) a 
task classifier, and (2) step classifiers, one for each task. The 
dimensions of the vectors correspond to objects and selected 
attributes and spatial relations (e.g., kettle present, measuring cup 

 

pouroverCoffeeRecipe 
 1

GetWater 
 1.1

PlaceWS1 
 1.2

PrepareFilterCone 
 1.3

GetGroundCoffee 
 1.4

CheckWS1 
 1.5

WetWS1 
 1.6

PourWS1 
 1.7

DrainWS1 
 1.8

MeasureOutIntoWS 
 1.1.1

TransferWS 
 1.1.2

FoldInHalfWS 
 1.3.1

InsertWS 
 1.3.3

PlaceWS2 
 1.4.1

ZeroWS1 
 1.4.2

WeighWS1 
 1.4.3 & 1.4.3.3

TransferWS1 
 1.4.4

GrindWS1 
 1.4.6

TransferWS2 
 1.4.7

PourCoffeeBeans 
 1.4.3.1

CheckWeight 
 1.4.3.2

PourFirstWater 
 1.6.1

WaitBloom 
 1.6.2

Drain 
 1.8.1

RemoveDripper 
 1.8.2

{"id": "pouroverCoffeeRecipe_getWater_transferWater", 
   "utensils": [ "water2", "liquidMeasuringCup1",  "kettle1"    ], 
   "preconditions": { 
          "expr": { 
                "predicate": "relative_location", 
                "arguments": ["water2",     "liquidMeasuringCup1"] } 
}, 
 
   "postconditions": { 
          "expr": { 
               "predicate": "relative_location", 
              "arguments": [    "water2",       "kettle1",  } } 
 
   "duringconditions": null      } 

Figure 4 A fragment of a hierarchical task network for making pour over 
coffee shows how the main task is decomposed into subtasks which 
are decomposed into primitive actions. 

Figure 3 A fragment of a hierarchical task network (HTN) for transferring 
water from measuring cup to kettle showing pre and post conditions. 
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is over kettle). Each value in the vector represents a temporal 
duration of the respective variable: if negative, the duration 
represents how long since that feature was last observed, if positive 
the duration represents how long that feature has continuously 
been observed, and if zero the feature has never been observed. 

The task tracker is initialized with compiled out HTNs for all 
known tasks. The stabilizer and classifiers translate perceptions 
into preconditions for the HTN reasoner. As preconditions are 
satisfied, the tracker checks off subtasks in the procedure whose 
preconditions are satisfied.  

It was discovered that using the temporal feature values 
encoding how long something had been seen rather than just binary 
present/not-present values significantly increased the accuracy of 
the classifiers (see results) as well as producing smaller models. It 
is hypothesized that this is because the temporal values capture 
some of the preceding run up to each step. For example, a step like 
“stirring a mixture” begins when the stirring occurs but is typically 
preceded by picking up the stirring implement and moving it 
toward the mixture. A simple snapshot would not capture this 
preparatory transition. 

Unfortunately, the high accuracy of the task and step 
classifiers does not directly translate into accurately recognizing 
the exact start times and especially the end times of steps. For the 
starts of steps there is a danger of brief false positives, and it is 
prudent to wait for a few successive high confidence predictions 
that the step is in progress before deciding it has started. For the 
ends of steps, absence of prediction is not necessarily prediction of 
absence. Particularly in a multi-task setting some steps can be 
paused in the middle while a step from a different task is worked 
on. And in a single task setting users can also pause the step to 
consult instructions.  

To ameliorate this, a second set of step transition classifiers 
were trained. These used a combination of features from the first 
set of classifiers (e.g. step confidence, precision/recall for the step 
classification) plus features derived from the current HTN-based 
task state (e.g. if there is a step currently in progress; is it one that 
has already been marked as completed?; if the step is not in 
progress, is it the one that is expected to occur next?; or is it one 
that could legitimately occur next but is not the expected one?; if 
the step is for a task that is not in progress, is it a reasonable first 
step for the task?). Classifiers to predict start-of-step, end-of-step, 
and start-of-task are trained from the same labeled data as the step 
classifiers. These transition classifiers in effect combine purely 
observational data with expectations derived from reasoning about 
the HTN task state to produce a hybrid form of task tracking. 

The HTN representation also allows detection of errors that is 
difficult to do with hidden-Markov model-based trackers [8][9] 
that simply assign low probabilities to events not in the procedure. 
In HMMs it can be difficult to discriminate between task irrelevant 
activities and erroneous steps that affect the task outcome. Training 
neural network sequence recognition models is currently popular 
[10] but training requires recording many possible error scenarios 
to cover all of the things that could be done incorrectly or out of 
order. With an HTN, errors in task execution can be detected when 
sub-steps violate obligatory constraints and warnings can be 
triggered when sub-steps violate optional constraints. 

Guidance Manager 
The task tracker provides information about how the user’s 

behavior matches or departs from the formal model captured by the 
HTN. The guidance manager determines whether to intervene 
during the user’s performance. The guidance manager takes into 

account the seriousness of departures and uses a model of the 
user’s expertise level and communication preferences. Messages 
that rise above the threshold are sent on to the user interface, along 
with positional information about the objects involved in the 
message. 

 
Figure 5 AMIGOS Augmented Reality interface showing multitask 
assistance and status bar 

User Interface  
Figure 5 illustrates the view a user sees when performing two 
distinct tasks: making coffee, and making tea. A master task dialog 
can be used to manage tasks by creating new tasks or deleting 
existing ones (Figure 5 left). These tasks were displayed through 
an Augmented Reality (AR) interface on the user's AR glasses 
(Figure 5 right). Upon starting a task, a task panel appears in the 
user's field of view. The panel has a task specific icon and is 
anchored to the initial key object for the task (see Figure 6). In this 
case, the mug serves as an anchor. Physically localizing assistance 
dialogs to task objects keeps tasks separate in space so that it is 
easy to keep track of which task is at which step.  

 

 
 
 

 

Figure 6 Once a recipe is selected, the instructions automatically 
anchor to a focal object for the recipe in the user's view (e.g., mug). 
When multiple tasks are in progress, the task bar shows an icon for 
each task and the dialog for the non-focal task can be compressed to 
just its icon. The background color of the task icon shows its status. 
 

To simplify the management of multiple tasks, a compact task 
bar appears at the bottom of the users view (Figure 5 right). The 
task bar shows the status of all tasks using compact graphical 
status icons. Active tasks are displayed with full-color icons and 
inactive tasks are displayed with non-filled outlines.  

Instruction panels may optionally include text instructions, 
sample images, a timer to time key events (e.g., grind beans for 20 
seconds) and 3D animations to explain complex steps. When the 
user needs to wait during a task or decides to switch to a different 
task, the system cleverly shrinks the currently active panel into a 
small icon. This efficient design saves visual space and lowers 
cognitive load, aiding the user in focusing on the next tasks. The 
process of moving between tasks is designed to keep the user's 
concentration focused. 
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The perception system and task tracker keep track of the 
user's progress and automatically advance the instructions as long 
as the user is correctly executing the task. Auto advance 
technology enables hands-free interaction which is critical when 
users are executing complex tasks. When the user completes a step 
in the task, the system will flash the task icon and set its 
background green to reassure the user they have successfully 
completed the step before automatically moving forward to the 
next step (Figure 8 left).  When immediate attention is needed 
(e.g., the user has made a critical error) the system employs multi-
modal alerts that combine auditory signals from the AR glasses 
with visual cues like red blinking icons to ensure the user’s 
attention is drawn to the relevant task (Figure 8 right). To 
accommodate user’s with color blindness, a chime, blinking and a 
unique icon symbol provide an alternate method of drawing the 
user’s attention. 

In addition to specific instructions provided on panel, the 
system also included audio prompts to provide hints to the user 
about what objects the system had seen and what the system was 
expecting next. For instance, the system might say, “I am looking 
for the teabag in the mug”. This helps the user understand the 
condition the system is looking for. The user quickly learns that 
moving a bit closer so the system can see over the edge of the mug 
to reveal the teabag inside can advance the system to the next step. 
By ensuring the system clearly communicates its expectations, the 
user learns to work effectively with the system.  

Results 
Factoring of the perception system into multiple modules 
dramatically increased the performance while maintaining the 
ability to perform advanced perceptual tasks when required. Using 
a large foundation model was taking on the order of 200-300 ms 
reducing frame rates to 3-5 frames per second. This made it more 
difficult to associate objects to persistent instances as the objects 
move a lot between distantly spaced frames. Using YoloX and 
occasionally relaying frames to separate networks for tasks such as 
digit recognition on displays or action recognition allowed us to 
get frame rates in the mid to high 20s allowing smooth tracking of 
objects. Before implementing task switching, the system required 
multiple GPUs to run and experienced significant latency. With 
intelligent task switching, a single modest GPU allowed real time 
operation without significant lag in the application. 

Experiments showed that the use of high-level classifiers on 
the temporally stabilized features were effective in identifying both 
tasks and the steps within tasks. As shown at the bottom of Figure 
7, a classifier trained on a dozen example runs achieved 84% 

accuracy. Other task domains (e.g., Tea) showed similar 
performance. 
 

 

 

Figure 7 Precision, recall and F1 score for recognition of the 9 steps of 
the coffee recipe using values of extracted relationships  
 
Subsequent experiments showed that including the context 
information about how long it had been since the object or 
relationship had been observed dramatically increased accuracy 
into the high 90s. In Figure 9, tracking on the steps of the Coffee 
task reached 98% accuracy.  

 

 

 

Figure 9 Precision, recall and F1 score of the 9 steps of the coffee 
recipe with the addition of time since last seen used as a proxy for 
confidence. Including time since last seen significantly decreases 
confusion and increases recognition from 84% to 98%. 
 
As show in Figure 10, it was more difficult to estimate the exact 
start and end times of the steps within a procedure with accuracies 
dipping into high 70s and low 80s. In many steps, the onset may 
not be clearly and unambiguously signaled. 
 

 

 

Figure 10 Detecting the exact begin and end point of a step is more 
difficult and somewhat subjective, but the system is able to generate 
reasonable estimates. 
 
The hybrid HTN and machine learning based classifier was much 
easier to configure and get running than explicitly articulating the 
conditions for each task step. This holds out the potential to 
increase the rate at which new tasks could be added to the system. 

The user interface feedback significantly increased the 
usability of the system. When users were able to understand what 

     
Figure 8 Active perception provides feedback when steps are 
completed correctly with a momentary green check and chime before 
auto advancing to the next step enabling hands free operation. When 
an error is detected (step skipped, or wrong ingredient used), a red 
error icon and audio alert are presented. 
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system had seen and not seen they could modify their behavior to 
make it more observable or if appropriate, confidently override the 
system when they understand why something was not observed. 
This kind of adaptation also occurs in human-human systems 
where a second inspector needs to check off tasks. Humans learn to 
communicate to make difficult to observe actions observable. 
These observations were confirmed by a third party evaluator for 
an initial version of the system that found the feedback 
significantly improved the usability over systems that did not 
provide feedback about the state of the system and the system’s 
expectations about what needed to happen next. 

Conclusions 
Pure learning approaches based on continuous video recognition 
have the potential to learn very rich representations but require 
enormous amounts of training data to handle variation in context, 
execution variations and the ability to detect common errors. 
Factoring the problem into object detection and digit recognition 
with separate networks using task state to schedule networks 
accelerates performance. Formal models with plan recognition 
enable the system to handle a wider variety of task execution 
orders and explicit inference about possible errors without 
exhaustively recording all possible executions. This paper shows 
that machine learning, symbolic computation and interface 
transparency used together can enable a practical and effective 
design for physical task execution at the edge. 
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