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Abstract
In this paper, we present a deep-learning approach that uni-

fies handwriting and scene-text detection in images. Specifically,
we adopt adversarial domain generalization to improve text de-
tection across different domains and extend the conventional dice
loss to provide extra training guidance. Furthermore, we build
a new benchmark dataset that comprehensively captures various
handwritten and scene text scenarios in images. Our extensive ex-
perimental results demonstrate the effectiveness of our approach
in generalizing detection across both handwriting and scene text.

Introduction
Image-based text detection is one essential task with a wide

range of applications. Its importance lies in its ability to extract
and locate textual information within images and videos. Many
critical downstream tasks can then be enabled, such as text recog-
nition [20], document understanding [1], and text image genera-
tion [2].

Building upon the significance of text detection, our objec-
tive is to develop a robust model capable of accurately localizing
both handwritten and printed text within real-world contexts. Text
detection has been intensively studied in the scene text domain,
while it remains to be explored further in the handwritten domain,
and even less attention has been provided to detect both scene text
and handwriting simultaneously. Hence, we develop a unified text
detection model that is generalizable across both handwriting and
scene text domains.

To improve cross-domain generalization, we adopt an ad-
versarial learning scheme [5]. This learning process involves a
discriminator and a backbone network, where the discriminator
classifies the domain of features extracted from the backbone net-
work by minimizing the domain classification loss. The back-
bone network, on the other hand, is trained to maximize the do-
main classification loss. In this way, the backbone network is
learned to extract domain-invariant features as it is encouraged to
extract features that are not distinguishable by the domain clas-
sifier. We further improve the model’s detection capabilities by
devising additional loss functions and synthesizing handwriting
images to augment training data. We collect a new benchmark
dataset that reflects real-world scenarios. By improving model
cross-domain generalization, we observe a significant increase in
detection accuracy on both handwriting and scene text domains.

Related Works
There has been significant recent exploration of deep con-

volutional network-based techniques within the field of text de-
tection. These approaches can be broadly categorized into two
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groups: 1) methods reliant on anchors, and 2) methods that oper-
ate without anchors. In the following section, we provide a brief
overview of the previous methods within each of these categories.
Anchor-based text detectors are the approaches that are exten-
sions of standard region-based object detectors [21, 15]. Based on
Faster R-CNN [21], [17] proposed RRPN that is capable of gen-
erating inclined proposals with angle information that fits more
accurately to the ground truth text regions. TextBoxes [12] is a
fully-convolutional text detection model that extends SSD [15]
with different designs of default box and different convolutional
kernel sizes to be more applicable to the word aspect ratios that
are different from the general objects. The methods mentioned
above have demonstrated impressive improvement from the exist-
ing methods, however, a significant drawback is that the majority
of these methods depend on predefined anchor designs, and are
inherently limited in detecting texts in arbitrary shapes.
Anchor-free text detectors formulate text detection as a text seg-
mentation problem. EAST [25] proposed a pipeline that adopts
fully convolutional networks (FCN) [16] to directly predict text
regions to eliminate redundant steps. [11] proposes PSENet
which adopts the FPN [13] structure to generate fused feature
maps of various scales, then expand predicted kernels to obtain
final text detection results via progressive scale expansion algo-
rithm.

Unlike anchor-based detectors, anchor-free detectors are
more capable of detecting texts of arbitrary shapes, but most of
the approaches suffer from heavy overhead. To overcome this
issue, [23] proposes an efficient segmentation-based framework
that can detect texts in arbitrary shapes, with little decrease in
performance. Considering the importance of the model being ef-
ficient to be deployed in real-world scenarios, we chose [23] as
our baseline model.

Proposed Approach
Our detection model is built from Pixel Aggregation Net-

work (PAN) [23], which is an efficient and accurate arbitrary-
shaped text detector equipped with a low computational-cost seg-
mentation head and learnable post-processing. To generalize the
detection capability across both scene text and handwriting im-
ages, we deploy an adversarial learning scheme [5] to encourage
the backbone network to extract domain-invariant features from
images. Furthermore, we devise a new loss function, called in-
verted dice loss, which further boosts the performance of the de-
tection network. We first briefly summarize our adopted baseline
model [23].

Baseline Model
PAN [23] is a segmentation-based model that enables text

detection in arbitrary shape. It consists of a lightweight backbone
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Figure 1. Overview of the proposed model. In addition to the detection loss,

our model is trained with a domain classification loss, which significantly im-

proves generalization capability across different domains. Additionally, we

incorporate the inverted dice loss, which further augments our training pro-

cess by providing valuable guidance.

network (ResNet-18 [7]), and a segmentation head comprised of a
Feature Pyramid Enhancement Module (FPEM) and Feature Fu-
sion Module (FFM). FPEM follows the backbone network and is a
cascaded U-shaped module. It consists of upscale and downscale
enhancement processes that improve the representation power by
combining feature maps in different scales. FFM is a module fol-
lowing the FPEM, that combines the feature pyramids at differ-
ent cascading stages. To avoid the text lying close to each other
to be recognized as the same text instance, PAN [23] proposes a
learnable pixel aggregation algorithm as post-processing. The de-
tection head of PAN not only predicts the text region, but also the
kernels that act as a cluster center of each text instance (Fig. 1).
Starting from the predicted kernel region, it progressively expands
up to the predicted text region. To ensure that the text region and
the kernel of the same instances are aggregated, the following loss
is deployed [23],

Lagg =
1
N

N

∑
i=1

1
|Ti| ∑

p∈Ti

log(Distpk(p,Ki)+1), (1)

where Ti is the ith text instance, N is the batch size, Distpk is the
distance between the text pixel and the kernel of the same text
instance. This is defined as follows [23],

Distpk(p,Ki) = max(||Sp(p)−Sk(Ki)||−δagg,0)2, (2)

where δagg is a constant set to 0.5, and Sp is the similarity vec-
tor of pixel p, and Sk is the similarity vector of kernel Ki. The
similarity vector of kernel Ki is defined as [23],

Sk(Ki) = ∑
p∈Ki

Sp(p)/|Ki|. (3)

To keep the kernel of different text instances to maintain distance
from each other, kernel discrimination loss Ldis is also defined
[23],

Ldis =
1

N(N −1)

N

∑
i=1

N

∑
j=1, j ̸=i

log(Distkk(Ki,K j)+1), (4)

Distkk(Ki,K j) = max(δdis −||Sk(Ki,Sk(K j)||,0)), (5)

where Distkk is the distance between kernels from different text
instances, and δdis is a constant set to 3. Also, the text loss Ltext ,
and the kernel loss Lker are formulated as [23],

Ltext = 1− 2∑i Ŷt(i)Yt(i)

∑i Ŷt(i)2 +∑i Yt(i)2
, (6)

Lker = 1− 2∑i Ŷk(i)Yk(i)

∑i Ŷk(i)2 +∑i Yk(i)2
, (7)

where Ŷt and Ŷk are the predicted text segmentation results and
kernel segmentation results of ith pixel, respectively, and Yt and
Yk are the ground truth. The two losses are originally from [19].
Here, following [11], the ground truth of the kernels is generated
by proportionally shrinking the polygon spanning the text region
by the ratio of r.

Text Detection Improvement
Most of the existing text detection works have been focused

on improving the performance of either scene-text or handwriting-
only, while less attention has been provided to detecting both the
scene-text and handwriting well. In this work, we design a way to
generalize on both scene text and handwriting domains. Specif-
ically, we adopt an adversarial domain generalization learning
scheme [5] so that the model can extract domain-invariant fea-
tures that are useful for both scene-text and handwriting detec-
tion. Specifically, we deploy a domain discriminator that tries to
distinguish the domain of input images by minimizing the domain
classification loss, while the encoder is adversarially optimized to
extract domain-invariant features by maximizing the domain clas-
sification loss. We empirically observe significant model perfor-
mance improvement after adopting the adversarial learning.
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Figure 2. The gradient reversal layer (GRL) of the proposed model. The

GRL layer is inserted between the backbone network and the discriminator

network. During backpropagation, we multiply the gradient from the discrim-

inator by −1 to reverse the sign of the gradient. In this way, the backbone

network is trained to maximize the loss of the domain loss, which results in

domain invariant feature extraction of the backbone network, and improved

generalization capability.

Domain Generalization for Text Detection. Existing text de-
tection methods typically assume that training and test data are
sampled from similar distributions. When this assumption no
longer holds, detection models may fail to produce reliable pre-
dictions. This is due to the shift in data distribution. In Domain
Generalization (DG), several different but related domain(s) are
given to be generalized to unseen target distribution by minimiz-
ing the shifts among given domains. To achieve this, we deploy
a domain discriminator that is trained to minimize the domain
classification error. To encourage the backbone network to ex-
tract domain-invariant features, a gradient reverse layer (GRL) [5]
is inserted between the backbone network and the discriminator
(Fig. 2), to reverse the sign of the gradient while backpropagating
the gradient originated from the domain classification loss, which
is formulated as,

Ldomain =−E

[
∑

d∈D

1[d=k] logσ(Disc(Enc(Ik))

]
, (8)
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where D is the domains, Disc, Enc denote discriminator and
backbone network, respectively, and 1 is an indicator function
which equals 1 if Image Ik is from domain d = k, and σ is the
softmax function.

By reversing the gradient, the backbone network is trained to
maximize this loss while the discriminator is trained to minimize
it simultaneously; hence, the discriminator and the backbone net-
work are adversarial to each other. As the training progresses, we
empirically observe that the discriminator fails to minimize the
domain loss, implying that the backbone network succeeded in
extracting features that the domain of features could not be dis-
cerned by the discriminator.
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Figure 3. Conceptual difference between the conventional dice loss [19]

and the inverted dice loss.

Inverted Dice Loss. The adopted dice loss (Eqn. 6) encourages
a high overlap of the predicted foreground region with the ground
truth. In this work, we introduce an additional training guidance
by extending the dice loss. Specifically, we train the model to
predict the ground truth background region as well. This can be
done by simply inverting the ground truth foreground text region
(Fig. 3). The inverted dice loss is formulated as follows,

Linv = 1− 2∑i Ŷb(i)Yb(i)

∑i Ŷb(i)2 +∑i Yb(i)2
, (9)

where Ŷb and Yb are the predicted segmentation of background
and ground truth background.

Overall Training Objective Function
Our model is trained in a multi-task learning fashion where

the overall training objective is formulated as follows:

min
Enc,Head

Ltext +αLker +β (Lagg +Ldis)+Linv, (10)

min
Disc

max
Enc

γLdomain, (11)

where α , β , and γ are the hyperparameters, and Enc and Head de-
note the backbone network and the detection head, respectively.
Here the encoder and the discriminator are optimized adversari-
ally, where the encoder tries to fool the discriminator by maxi-
mizing the domain loss. As the training progresses, we observe
that the discriminator fails to minimize the domain loss, and this
can be interpreted as the encoder succeeding in generating domain
invariant loss.

Handwriting Data Synthesis
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Figure 4. The handwriting dataset synthesis process.

The number of publicly available data on handwriting im-
ages is relatively scarce compared to the scene text images. In this
regard, we augment our handwriting training data by synthesizing
them (Fig. 4). The overall process is done by rendering the text
on text-free background images [6]. Given a handwriting word
image [18], we first threshold the word image to obtain the fore-
ground mask image where the threshold is empirically determined
here. After obtaining the mask, we color the foreground mask in
random colors, then we perform the perspective transform on the
foreground mask to be blended into text-free background images.

Specifically, we compute the transformation matrix between
the coordinates of the rendered word in the synthetic scene-text
image and the colored foreground mask, then apply the transfor-
mation matrix to blend the foreground mask into a text-free back-
ground image. Note that [6] provides the text-free background
version of the text-rendered images and the coordinates of the ren-
dered words. We re-use the coordinates of the rendered scene-text
words and place the handwriting words by performing perspective
transform. The overall process can be considered as a replacement
of the scene text words with the handwriting words.

Experiments
Implementation Details

We mostly follow the same hyperparameter settings from
[23]. We set α , β , and γ as 0.5, 0.25 and 0.05, respectively.
ResNet [7] pre-trained on ImageNet [4] is adopted as the back-
bone. The dimension of the similarity vector is set to 4. We use
Adam Optimizer [9] to train our model, with the learning rate of
10−3 for 50,000 iterations on a single GPU. The batch size is set
to 13. We use GeForce RTX 2080 Ti for every experiment. We set
the kernel shrinkage ratio r as 0.5. The input images are resized to
a width of 640 pixels on the shorter side while maintaining their
original aspect ratio by proportionally adjusting the longer side.

Datasets
Training Dataset. We use a merged set of the publicly avail-
able datasets, ST [6], GNHK [10], COCO [14], IC15 [8],
and the synthesized handwriting datasets. We use the text-
free background image provided from ST [6], and the fore-
ground word images are obtained from IAM [18]. We con-
sider each image set as an element of domain set D =
{ST, GNHK, COCO, IC15, SynthHand}. SynthHand here de-
notes the synthesized handwriting dataset. Thus, the domain clas-
sifier is a five-way classifier.

HP-Open Course Ware Dataset (HP-OCW). To evaluate the
performance of our system, we manually collect and annotate
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them using the open-source annotation tool, LabelMe [22]. We
collected 433 videos from various institutes that provide YouTube
video lectures. Among them, we extracted 10 consecutive frames
from 50 video clips and manually annotated them which amounts
to 500 images. In this dataset, both the handwriting and scene-text
words are included.

HP-Notepad Whiteboard Dataset (HP-NW) . We use ran-
domly sampled 50 handwriting images from the test set of GNHK
[10], and we collect an additional 51 images from the web and
YouTube videos, where the handwritten words are written on ei-
ther the whiteboard or notepad (Fig. 5).

Table 1. Comparison of the baseline with the existing meth-
ods.

Method Precision Recall F-measure FPS
CTPN 60.4 53.8 56.9 7.14
SegLink 42.3 40.0 40.8 10.7
EAST 78.7 49.1 60.4 21.2
CTD+TLOC 77.4 69.8 73.4 13.3
PSENet-1s 80.6 75.6 78.8 3.9
PCR 79.8 85.3 82.4 11.4
PAN (baseline) 84.6 77.7 81.0 39.8

Experiement Results of the Proposed Model
Comparison of baseline model with the existing methods.
We first compare the performance of the baseline model on a re-
cent challenging dataset for curve text detection dataset, CTW-
1500 [24] with the existing state-of-the-art models that were orig-
inally reported in the paper [23] (Table 1). Compared to the best
model in the table, PCR [3], our model achieved a slightly lower
F1 score by 1 percentage point (p.p). However, it’s important to
note that our model excels in terms of efficiency, running approx-
imately 3.5 times faster than PCR 1.

Evaluation Results on HP-OCW. We provide the evaluation
results of our model on the manually collected HP-OCW dataset
(Table 2). By adopting the domain generalization on our model,
we could achieve a 4.77 p.p increase in the F1 score from the
baseline.

Evaluation Results on HP-NW. We provide the evaluation re-
sults of our model on the manually collected HP-NW dataset (Ta-
ble 3). By adopting the domain generalization on our model, we
could achieve a 2.82 p.p increase in F1 score, and by adopting
inverted dice loss we could achieve an additional increase of 0.73
p.p.

Table 2. Evaluation results on HP-OCW Dataset. DG denotes
domain generalization.

Method Precision Recall F1
Baseline 84.59 56.68 67.87
Baseline+DG 82.88 64.65 72.64

Table 3. Evaluation results on HP-NW dataset. DG denotes
domain generalization, and ID denotes the inverted dice loss.

Method Precision Recall F1
Baseline 90.70 85.29 87.91
Baseline+DG 92.71 88.83 90.73
Baseline+DG+ID 92.86 90.20 91.51

Table 4. Evaluation results on IC15 dataset. DG denotes do-
main generalization, and ID denotes the inverted dice loss.

Method Precision Recall F1
Baseline 75.43 64.76 69.69
Baseline+DG 83.93 66.15 73.99
Baseline+DG+ID 84.68 68.13 75.51

Evaluation Results on IC15. We provide the evaluation results
of our model on IC15 (Table 4). By adopting the domain gener-
alization on our model, the model achieves a 4.30 p.p increase in
F1 score, and by adopting both the domain generalization and the
inverted dice loss, an additional improvement of 1.52 p.p could be
achieved.

Advantage of Adversarial Domain Generalization. In gen-
eral, the model achieved the improvements when domain gen-
eralization is applied to the baseline: achieving 4.77 p.p, 2.82
p.p, and 4.30 p.p improvements of F1 score from the baseline
when evaluated on the HP-OCW dataset, HP-NW dataset, and
IC15 dataset, respectively. Notably, the HP-NW dataset consists
mostly of handwritten words, whereas the IC15 dataset consists
mostly of scene-text images, and improvements were achieved in
both domains.

Advantage of Inverted Dice Loss. The proposed inverted dice
loss is advantageous as it further improves detection performance.
When tested on the HP-NW dataset, we could achieve a 0.73 p.p
improvement in F1 score when inverted dice loss is adopted on
top of the model with the domain generalization (Table 3). When
tested on the IC15 dataset, we could achieve 1.23 p.p improve-
ment in F1 score when inverted dice loss is adopted on top of
the domain generalization model (Table 4). This general trend in
improvement validates the effectiveness of our proposed inverted
dice loss.

Visualization Results
We provide the qualitative detection results of the proposed

model on the HP-OCW dataset HP-NW, and IC15 [8] dataset (Fig.
5). The results demonstrate that our model is capable of detect-
ing both the handwriting and scene (printed) text in real-world
scenarios.

Conclusion
In this paper, we proposed a text detection method that can

generalize to both handwriting and scene text images. Our model
adopts PAN as a baseline, and we further improve this by de-
ploying a domain discriminator. The deployed discriminator dis-
criminates the domain of an image originated from. We train the
backbone network to maximize the discriminator loss that results
in domain-invariant learning. We evaluate the performance of the
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Figure 5. The detection results on the HP-OCW, HP-NW, and IC15 datasets. The left two columns are from HP-OCW, and the right two columns are images

of HP-NW and IC15. The odd columns are input images and the even columns are the detected results. The top two rows of the right two columns are images

from HP-NW and the bottom two rows are from the IC15 dataset.

proposed method in diverse settings, and the results validate the
effectiveness of our method.
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