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Abstract
In this paper, we introduce a unified handwriting and scene-

text recognition model tailored to discern both printed and hand-
written text images. Our primary contribution is the incorpora-
tion of the self-attention mechanism, a salient feature of the trans-
former architecture. This incorporation leads to two significant
advantages: 1) A substantial improvement in the recognition ac-
curacy for both scene-text and handwritten text, and 2) A notable
decrease in inference time, addressing a prevalent challenge faced
by modern recognizers that utilize sequence-based decoding with
attention.

Introduction
Image-based text recognition encompasses the identification

and interpretation of printed and handwritten text from images.
While printed text recognition has seen vast improvements over
the years [1, 2, 26, 32, 39], handwritten text recognition con-
tinues to pose significant challenges due to its inherent variabil-
ity, styles, and deformations. This discrepancy has driven re-
search to devise models to bridge the gap between scene-text
and handwriting recognition, aiming for robust recognizers that
perform commendably on both fronts. The majority of mod-
ern text recognizers are rooted in sequence-based decoding meth-
ods, most notably those that leverage the attention mechanism.
While these models have substantially elevated the state-of-the-
art, they suffer from prolonged inference times, which poses lim-
itations especially in near real-time or large-scale applications
[3, 4, 5, 6, 7, 9, 22, 36, 40, 42, 43]. Furthermore, despite the
successes in recognizing printed text, there is still ample room
for improvement in the handwritten domain. This paper focuses
on developing a unified handwriting and scene-text recognition
model, proficient in discerning printed and handwritten text im-
ages with striking precision. Drawing inspiration from the pio-
neering transformer architecture [34], our model integrates a self-
attention mechanism. First, we observe a significant improvement
in the accuracy of recognizing scene text and handwritten text.
Second, our model also improves the inference time of the recog-
nition model, making it more suitable for near real-time scenario
cases. By addressing the challenges associated with sequence-
based decoding, we present a system that is not only more accu-
rate but also markedly inculcates faster inference time.

Related Works
High-performance convolutional neural networks (CNNs)

and recurrent neural networks (RNNs) have aided Scene-Text

recognition. Convolutional-Recurrent Neural Network (CRNN)
[37] was the first use of CNN and RNN for scene-text recognition.
The CNN features are extracted from the input text image and re-
configured with an RNN for robust sequence prediction. Several
versions [3, 4, 22, 29, 36, 42] have been proposed to increase per-
formance following CRNN. For example, transformation modules
to normalize text images have been proposed for rectifying arbi-
trary text geometries [9, 15]. Furthermore, improved CNN feature
extractors [8, 20, 30] have been incorporated for treating compli-
cated text images with high intrinsic variability, for example, font
style and cluttered backdrop. The adopted recognition model can
be divided into 3 stages of operations namely, Feature Extraction,
Sequence Modeling, and Prediction, as shown in Figure 1.

Methodology
Current state-of-the-art CNN-based text/handwriting recog-

nition systems employ a sequence-to-sequence framework. They
encode CNN image features using a sequence model, either
LSTM or GRU, and then decode the final hidden state through
an attention-based auto-regressive method [1]. Although this
methodology is widely adopted, its sequential unrolling of the de-
coder model and prediction of each character individually make
it relatively slow, limiting its use in real-time or near real-time
applications. An alternative to this sequential decoding is the
connectionist-temporal classification (CTC) [11]. The CTC di-
rectly produces a fixed sequence of probability distributions, al-
lowing us to select the character with the highest probability at
each time step and decode it into a string. However, directly us-
ing the CTC decoding sacrifices the sequential context that the
attention-based decoder provided. To reintroduce this sequential
context while leveraging the speed of CTC decoding, we integrate
‘self-attention’ inspired by the widely recognized transformer net-
works [34]. By applying CTC to the features extracted post self-
attention layers, we incorporate contextual modeling and benefit
from the speed of CTC decoding. This approach reduces infer-
ence time during decoding while minimally increasing the param-
eter count, yielding results superior to those from attention-based
decoding. The architecture of a typical text-recognition system is
illustrated in Figure 1.

Feature Extraction
At the foundational layer of the recognition model lies the fea-
ture extraction phase. In this stage, an input image, denoted as
X , is abstracted through a Convolutional Neural Network (CNN),
resulting in a visual feature map V = {vi}, i = 1, ..., I, where I
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Figure 1. Block diagram depicting the different modules present in the text recognition system.
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Figure 2. Sequence modeling stage block diagram.

represents the column count within the feature map. Intriguingly,
each column of this map correlates with a unique receptive field
spanning the horizontal axis of the input image. It’s noteworthy
that the character present within each receptive field is ascertained
using its corresponding column vectors. For this purpose, we em-
ploy the ResNet architecture [13] — a profound CNN design en-
riched with residual connections, facilitating the efficient training
of considerably deep networks. We develop a network architec-
ture inspired by FAN [8], which seamlessly integrates the ResNet
module [13]. This architecture comprises of 29 trainable layers.
Furthermore, we incorporate dropout layers to inherently enforce
regularization, as suggested by [33].

Sequence Modeling
After the feature extraction stage the ouptut is reshaped to have
a sequence of features V . That is, each column in a feature map
vi ∈V serves as an individual element in the sequence of frames.
This sequence, however, may suffer from a lack of contextual in-
formation. As a result, some prior studies [8, 29, 30] have used
Bidirectional LSTM (BiLSTM) to improve the sequence, V , using
a sequence model as H = Seq(V ), following the feature extraction
step, where, Seq(.) denotes the sequence modeling function.

In our model, while the BiLSTM layer captures sequential
information, the subsequent integration of the Transformer en-
coder [34] brings substantial enhancements. This encoder, il-
lustrated in Figure 2, introduces a sophisticated attention mech-
anism on the input sequential features (H) that excels at recogniz-
ing long-range dependencies, something BiLSTM might struggle
with. By employing a stack of n = 2 identical transformer lay-
ers, we ensure deeper and refined sequence representations. Each
of these layers incorporates a Multi-Head Attention mechanism,
enabling the model to focus on multiple sequence segments con-
currently. This translates to a more versatile and comprehensive
understanding of the input. Complementing this, the position-
wise Feed-Forward Network ensures that the positional context
of tokens is well-respected, enriching the overall sequence inter-
pretation beyond what a standalone BiLSTM layer could achieve.

Transformer Encoder Layer

• Attention in the context of Transformers. The mapping of
a query and a set of key-value pairs to an output can be char-
acterized as an attention function, where the query, keys,
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Figure 3. Transformer encoder layer. Here n and h denote the number of

transformer encoder layers and number of heads in the self-attention step,

respectively.

values, and output are all vectors. The result is a weighted
sum of the values, with the weight allocated to each value
determined by the query’s similarity to the relevant key [34].

• Scaled Dot-Product Attention. The input consists of three
vectors as inputs, namely, queries, keys and values of di-
mensions dq, dk, and dv, where dq = dk. In practice, the
attention function computes simultaneously on a series of
queries, which are grouped into a matrix Q. In matrices K
and V , the keys and values are also grouped together. The
output matrix is computed in the following way,

Attention(Q,K,V ) = Softmax

(
QK⊤
√

dk

)
V. (1)

• Multi-Head Attention. The Multi-Head Attention linearly
projects the queries, keys, and values h times with separate,
learned linear projections to dk, dk, and dv dimensions, re-
spectively. The attention function is applied in parallel on
each of these projected versions of queries, keys, and val-
ues, providing dv-dimensional output values. Multi-head
attention allows the model to simultaneously attend to in-
formation from various representation subspaces at various
locations.

Multi-Head(Q,K,V )=Concat(head 1,head2, . . . ,headn)W O,

(2)

head i = Attention(QW Q
i ,KW K

i ,VWV
i ), (3)

where, W Q
i ∈ Rdmodel×dq , W K

i ∈ Rdmodel×dk , and WV
i ∈

Rdmodel×dv , and W O
i ∈ Rhdv×dmodel are the projection parame-

ters. In our implementation, we employ h = 2 parallel atten-
tion layers or heads, and the values dk = dv = dmodel/h =
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128. A schematic architectural summary of the Scaled Dot-
Product Attention and the Multi-Head Attention is provided
in Figure 3.

Prediction
In the Prediction stage, the module predicts a sequence of char-
acters from the input H (i.e., Y = y1,y2, ...). We use the Con-
nectionist temporal classification (CTC) [11] decoding to get the
final machine-readable text. Even though a fixed number of fea-
tures are given, CTC allows for predicting a non-fixed number of
sequences. CTC’s main approach is to predict a character for each
column (hi ∈ H) and to change the whole character sequence into
a non-fixed stream of characters by eliminating repeated charac-
ters and blanks.
Connectionist Temporal Classification (CTC). CTC takes a in
sequence of features H of a fixed length T and produces a proba-
bility of an hypothesis π , defined as,

p(π|H) =
T

∏
t=1

yt
πt
, (4)

where, yt
πt

denotes the probability of predicting the character at
the t-th time step. After that, a mapping function M maps π to Y
by removing repeated characters and blank spaces. due to many-
to-one nature of the mapping function M, the conditional proba-
bility of Y is defined as sum of the probability of all π that map to
Y ,

p(Y |H) = ∏
π:M(π)=Y

p(π|H), (5)

at test time, we use greedy selection. We take the highest proba-
bility character πt at each time step t to map π to Y ,

Y ∗ ≈ M(arg max
π

p(π|H)). (6)

Recurrent architecture such as Attention-based LSTM, while
adept at capturing sequential details, face computational bottle-
necks due to their sequential nature, slowing down inference
times—a major limitation for real-time or near real-time applica-
tions. Conversely, transformer models, using self-attention, pro-
cess multiple sequence features concurrently, leveraging matrix
multiplication’s parallelism for faster inference. As a result, trans-
formers outperform LSTMs in both computation speed and pre-
diction (decoding) accuracy.

Objective Function
Let T = {(Xi,Yi)}N

i=1, denote the training dataset, where Xi is the
training image and Yi is the corresponding word label. The train-
ing is done by minimizing the negative log-likelihood of the con-
ditional probability of word labels as the objective function as
follows,

L =− ∑
(Xi,Yi)∈T

log(p(Yi|Xi)). (7)

The modules of the framework are trained end-to-end using the
above-described objective, which calculates a cost given an im-
age and its word label. Additionally, while training the recogni-
tion model, we used data-augmentation to impose variations to

the images such that the trained model is robust and generalizes
efficiently. We use random Linear Contrast, Gaussian Blur, Crop-
ping, Sharpening, Affine transforms, etc.

Training dataset
We utilize a combination of synthetically generated, real-world

scene-text and handwriting datasets to train our model.
Synthetically Generated Dataset. To augment the variability of
the dataset, we use SynthTIGER [41] to create text-images us-
ing handwriting and printed text fonts. The recognition model
is trained using synthetically generated data. Figure 4 displays
several illustrations of synthetic word images that are generated
and indicate SynthTIGER and other contemporary synthetic text-
image generator MJ [14] and ST [12]. Real-world Scene Text

Figure 4. Example images synthesized from MJ [22], ST [23], and Syn-

thTIGER [24].

Datasets. Additionally, we utilize a blend of pre-existing datasets
that represent printed or non-handwritten text, named RealSTR.
The details of the dataset composition in RealSTR are as follows:

• Street View Text (SVT) [38]: Consists of images from
GoogleStreet View where the texts were embedded in street
pictures. It includes 257 training images and 647 evaluation
images.

• IIIT5k-Words (IIIT) [24]: The data was gathered by
querying Google image searches for terms like ”billboards”
and ”movie posters.” It includes 2,000 training and 3,000
evaluation images.

• ICDAR2013 (IC13) [17]: The dataset was produced for the
ICDAR Robust Reading competition in 2013. It includes
848 training images and 1,015 evaluation images.

• ICDAR2015 (IC15) [16]: Many of them have perspective
texts and some of them are hazy, as they were collected by
persons wearing Google Glass. It has a total of 4,468 train-
ing images and 2,077 evaluation images.

• COCO-Text (COCO) [21]: The MS COCO dataset was
used to construct this dataset. COCO contains many oc-
cluded or low-resolution texts due to the fact that the MS
COCO dataset was not designed to capture text.

• RCTW [31]: The dataset was created for Reading Chinese
Text in the Wild competition. Thus many are Chinese text.

• Uber-Text (Uber) [45]: Bing Maps Streetside is used to
collect Uber-Text (Uber). Many are home numbers, while
others are signs with text.

• MLT19 [25]: The dataset is designed to recognize text in
multiple languages. Arabic, Latin, Chinese, Japanese, Ko-
rean, Bangla, and Hindi are among the seven languages.

• ReCTS [44]: The dataset was created for the Reading
Chinese Text on Signboard competition. It contains many
irregular texts arranged in various layouts or written with
unique fonts.
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Table 1. Recognition Performance on Benchmark Datasets: Displayed values indicate the word-level accuracy (%). Notably, the
RealSTR dataset encompasses a compilation of several distinct benchmarks, including SVT [38], IIIT [24], IC13 [17] IC15 [16],
COCO-Text [21], RCTW [31], Uber-Text [45], MLT19 [25], and ReCTS [44] training set. Top-performing results are emphasized in
bold for clarity and ease of comparison.

Training Data Combination
Scene-Text/Printed Text Datasets Handwriting Datasets

IIIT SVT IC13 IC15 SVTP CUTE IAM LVDB HP-OCW HP-NW

Notepad Whiteboard

SynthTiger 80.56 81.60 91.72 64.60 70.23 75.69 43.54 61.84 60.67 63.73 71.84
GNHK 18.10 7.41 26.60 7.69 3.87 5.55 46.68 43.96 31.70 57.94 55.24
SynthTiger + GNHK 78.43 75.42 87.68 59.25 65.73 66.66 55.35 64.34 60.09 74.61 73.45
SynthTiger + GNHK + RealSTR 84.16 85.16 94.29 75.61 76.28 78.81 60.94 69.42 66.24 80.50 79.50

Figure 5. Examples of end-to-end frame-level recognition using a web camera, adjacent to detection results [18] on a white backdrop we embed the recognized

text

Real-world Handwriting Dataset. We also utilize the Good-
Notes Handwriting Collection (GNHK) dataset [19]. This dataset
comprises unrestricted camera-captured images of handwritten
English text sourced from diverse regions globally. It contains
87 document images, encompassing 172,936 characters, 39,026
texts, and 9,363 lines.

Evaluation Dataset
In addition to SVT [38], IIIT [24], IC13 [17], IC15 [16] test

set, we evaluate on SVTP [27], CUTE (CT) [28] for scene-text
and printed text. For handwriting we evaluated on IAM [23], Lec-
tureVideoDB [10] and our in-house collected datasets HP-OCW
and HP-NW. The details of the dataset used for evaluation are as
follows:

• SVTP [27]: Similar to SVT, SVTP is gathered via Google
Street View. Unlike SVT [38], SVTP has a large number of
texts from different view points. It includes 645 images for
testing.

• CUTE (CT) [28]: The dataset pertains to curved text. The
images were taken with a digital camera or downloaded
from the internet. It includes 288 cropped images for evalu-
ation.

• IAM [23]: This English handwritten text dataset, which
was divided into writer-independent training, validation, and
test, included 657 different writers.

• LectureVideoDB (LVDB) [10]: The dataset comprises of
over 5000 frames from lecture videos annotated for text de-
tection and recognition. The dataset is benchmarked using
existing state-of-the-art methods for scene text detection and
scene text/ handwriting recognition.

• HP-Open Course Ware Dataset (HP-OCW): We manu-
ally collected and labeled Lecture videos from MIT Open
Course Ware using the free and open-source annotation ap-
plication LabelMe [35] to assess the performance of our sys-
tem. We gathered 433 lectures from different institutions’
video lectures. Then, from 50 video clips, we took 10 con-
secutive frames and labeled them.

• HP-Notepad Whiteboard Dataset (HP-NW): Addition-
ally, we collected 50 image frames from GNHK test set and
50 from YouTube videos that feature handwritten text on
whiteboards or notebooks. The text regions are annotated
with word-labels and used for evaluation. The majority of
the words in this dataset are handwritten.
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Table 2. Evaluation results on word level accuracy (%) on the
current SOTA TRBA [1] and our method for inference speed
and parameter comparison.

Method
Test Set

Inference Time (ms) No. of Parameters (M)
IAM LVDB HP-OCW

TRBA [1] 70.13 68.94 53.45 1.006 49.60
Ours 83.43 75.08 63.90 0.685 49.66

Experiments and Observations
Quantitative Observations. The strategic use of self-attention
layers into our model architecture significantly enhances the
model’s performance, enabling to surpass the results achieved by
the existing state-of-the-art CNN backbone SOTA method, TRBA
[1]. A noteworthy aspect of our model’s enhancement is not just
the improvement in accuracy but also its efficiency. We markedly
reduce the time it takes for the model to make a prediction (in-
ference time) by about 38%, while only slightly increasing the
model’s size by about 0.12%, in terms of a number of parameters.
To provide a clear and detailed comparative analysis, we detail our
findings in Table 2. This table displays the word-level accuracy
(expressed in percentages) of the models when evaluated on the
IAM [23], LVDB [10] and HP-OCW datasets. The inference time
of the recognition model is computed on an Nvidia RTX 2080
GPU.

Qualitative Observations. In Figure 5, we present a compre-
hensive visual representation showcasing the end-to-end recogni-
tion capabilities of our proposed method for both handwriting and
printed text recognition. This includes both handwritten, which
can vary widely in style, structure, as well as printed text images
that encompass a range of fonts, layouts, and complexities. These
example images serve to demonstrate the efficacy and versatility
of our the the proposed method. The images of handwritten and
printed texts captured in Figure 5 are taken using the Logitech
C920x HD Pro webcam.

Conclusion
In this paper, we examined the limitations of current CNN-

based text and handwriting recognition systems that hinge on
sequence-to-sequence frameworks. We presented an approach
that amalgamates the rapidity of CTC decoding with the contex-
tual modeling provided by the self-attention mechanisms, deriva-
tive of transformer networks. The resultant methodology, as evi-
denced, not only reduces inference time considerably but also sur-
passes the performance metrics of conventional attention-based
decoders. Our system’s architecture showcases a promising av-
enue towards near real-time text-recognition applications, merg-
ing efficiency with accuracy.
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