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Abstract
In this paper, we address the task of detecting honey bees in-

side a beehive using computer vision with the goal of monitoring
their activity. Conventionally, beekeepers monitor the activities
of honey bees by watching colony entrances or by opening their
colonies and examining bee movement and behavior during in-
spections. However, these methods either miss important infor-
mation or alter honey bee behavior. Therefore, we installed sim-
ple cameras and IR lighting into honey bee colonies for a proof
of concept study whether deep-learning techniques could assist
in-hive observations. However, the lighting conditions across dif-
ferent beehives are diverse, which leads to varied appearances
of both the beehive backgrounds and the honey bees. This phe-
nomenon significantly degrades the performance of detection us-
ing Deep Neural Networks. In this paper, we propose to apply
domain randomization based on motion to train honey bee de-
tectors for inside the beehive. Our experiments were conducted
on the images captured from beehives both seen and unseen dur-
ing training. The results show that our proposed method boosts
the performance of honey bee detection, especially for small bees
which are more likely to be affected by the lighting conditions.1

Keywords: Object Detection, Honey Bee Detection, Domain
Randomization.

Introduction
Beekeeping contributes over $15 billion to the United States

economy, through both honey production and plant pollination
[3]. Multiple threats can kill a honey bee colony quickly [20].
Therefore, regular monitoring of hives and their activity levels
is essential. Hives can be monitored at their entry [26, 31], by
opening the hive [15], or by using sensors in the hive. In this
paper, we consider a camera system that is installed inside the
beehive, combined with automated image processing, to monitor
honey bees in their natural environment.

Previous approaches to image and video analysis for honey
bees have considered honey bee tracking [2, 14], but these have
used a specially designed observation hive to expose the interior
of the hive. Additional approaches have considered honey bee
re-identification [4] and detecting Varroa mites on honey bees,
each by observing honey bees entering or exiting the hive. A hive
architecture that was optimized to make video recordings was de-
signed in [27] to detect specific behaviors.

1This research was supported by a grant from the National Science
Foundation STTR Phase I: Automated Continuous Varroa Mite Monitor
for Honey Bee Hive Health, Grant #2127468.

In this paper, we explore automated honey bee detection,
deep inside any generic, intact hive. We deploy a camera sys-
tem designed to transform any colony into an observation hive.
The inside of a beehive is dark, and honey bees will seal their
colonies from any lights they can see. In addition, white (natural)
light may excite the honey bees, which could alter the very be-
havior we are trying to observe. Therefore, our camera system is
designed with its own illuminators. We selected an infra-red illu-
minator that operates at a wavelength of 830 nanometers (nm) for
our system, which is notably longer than the upper limit of honey
bee vision at 650 nm [12].

While our camera system enables real-time monitoring in-
side the hive, the infrared illumination creates additional chal-
lenges. The hue, contrast, and brightness of all objects are al-
tered relative to their appearances in natural light. Moreover, each
level of each beehive has a distinct appearance, and their diversity
makes object detection more challenging. Figure 1 shows several
collections of images captured from different beehives under 830
nm illumination. Each row of images corresponds to a different
level of three different hives. It is clear that each scenario has a
distinct background, and that the different strains of honey bees
in the second row, relative to the first and third rows, will create
additional challenges for a typical machine learning object detec-
tor.

One solution to design effective object detectors across di-
verse environments is to create manual annotations, or labels, for
a sufficient amount of data for every scenario. However, data col-
lection and data labeling are laborious and time-consuming. In
this paper, we would like to design a machine learning image
analytics method that can cope with the diverse environments,
without requiring multi-environment annotations. Therefore, we
develop and present a method called motion-based domain ran-
domization (MBDR) to apply the principles of domain random-
ization [5, 29] to real-world non-synthetic data. We demonstrate
that this method requires only a single well-annotated dataset, and
that it can improve the performance of honey bee detection in en-
vironments for which it was not trained.

Related Work
Object Detection

The state-of-the-art object detection methods can be catego-
rized into two areas: one-stage methods that emphasize inference
speed, such as YOLO series [1, 21–23] and SSD [18], and two-
stage methods that emphasize detection accuracy, such as Fast
R-CNN [8], Faster R-CNN [24], and Mask R-CNN [11]. Specifi-
cally, one-stage detectors merge the tasks of object localization
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Figure 1: Images collected from various levels of various hives. All the images are collected under illumination with a wavelength of
830 nm wavelength. The appearance of the honey bees and the backgrounds are quite varied. In addition, the honey bees appear both
ventrally and dorsally.

and image classification into a regression problem by predict-
ing class probabilities and bounding box coordinates simultane-
ously. These methods can be further categorized into anchor-
based [8, 9, 24] and anchor-free methods [6, 21, 28, 32], which
characterize whether there is a predefined set of bounding boxes
for the model to adapt to or not. Specifically, anchor-based ap-
proaches leverage predefined multiple-sized anchor boxes to de-
tect objects with different scales and aspect ratios, while anchor-
free detectors truncate anchor boxes and directly detect the vital
keypoints, such as centers and corners of the object [7,21,28]. Re-
cently, [34] points out that one difference between anchor-based
and anchor-free detection is the method of defining positive and
negative training samples during training. They propose a new
method to adaptively select positive and negative samples accord-
ing to statistical characteristics of objects. However, the perfor-
mance of one-stage object detectors is lower than the two-stage
object detectors. Therefore, we apply a classical two-stage detec-
tor Faster-RCNN as our object detector.

Pre-training in AI
The desired approach is to train a neural network using data

that is statistically identical to the data for which we want to do
inference. This approach is possible if we can guarantee the dis-
tribution of data is identical between the training dataset and the
evaluation dataset. However, it is not always plausible to col-
lect a large amount of labeled data for all the environments one
might encounter. A popular approach is to pre-train a model us-
ing similar (but not identical) data that is readily available, and
only fine-tune the network using the specific hard-to-obtain data.
However, even with this approach, the fine-tuned model can per-
form poorly if the evaluation environment is too different from the
training data.

Another popular solution to enlarge the training data is data
augmentation, which randomly adjusts the contrast, brightness,
and size of an image using a predefined amount of randomness.
However, we found for our application that the foreground (honey
bees) and the background of the captured pictures in the beehive

have different amounts of variations in the lighting. Therefore,
a straightforward application of data augmentation to the entire
image may not be effective.

Domain Shift, Domain Adaptation and Domain
Generalization

Deep learning typically imposes a strong, implicit assump-
tion that training data and evaluation data samples are from the
same statistical distribution data. However, when they are not
from the same distribution, we call this domain shift [19,33]. The
source domain refers to the training data, and the evaluation data
is refered to as the target domain, or equivalently, as being out-of-
distribution (OOD). When domain shift occurs, the performance
of the model may be significantly degraded.

There are two mainstream approaches to address domain
shift: domain adaptation and domain generalization. Domain
adaptation [13,30,36] requires well-annotated source domain data
and either labeled or unlabeled target data during the training pro-
cess. This allows the model to learn the difference between the
distribution of the source domain and the target domain. How-
ever, since the target domain has to be provided before training,
and we are unable to obtain data in advance from all the beehives
where we would like to deploy our camera system, this approach
cannot be applied to our situation.

Another method is domain generalization [10, 16, 25, 35],
which requires multiple related source domains during training.
This enables the model to learn the common patterns among the
domains, and then generalize effectively to OOD data. Neverthe-
less, collecting and thoroughly labeling multiple source domains
is still time-consuming and laborious. Therefore, we consider an-
other approach, domain randomization, which also aims to gener-
alize well on OOD data.

Domain Randomization
Domain Randomization (DR) creates training data that ex-

pands the variability of the distribution space [5, 29]. Its goal is
to expose a machine learning model during training to many dif-
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Figure 2: An overview of our proposed method to create training data, motion based domain randomization (MBDR).

ferent data domains. Ideally, DR exposes the model to so many
domains in the set of possible distributions, that the model learns
to become robust to any unseen distribution, because any new do-
main it might encounter is just one more domain. As such, train-
ing data need not be limited to the accessible physical environ-
ment.

In the reinforcement learning and robotics communities, do-
main randomization approaches have become popular because the
complexity of real-world environments makes it difficult to col-
lect data from every environment. Instead, data is synthetically
generated separately for the target object, distractor objects, and
the environment and its lighting. The shape, texture, position,
and orientation of objects are varied, as is the lighting of the en-
vironment. However, these variations must be generated using
simulators [5, 29]. This requires that simulators for the desired
environment already exist; unfortunately, as yet there are no sim-
ulators for honey bees or their beehives. To circumvent the dis-
advantages of leveraging expensive simulators and also to avoid
the reality gap, we propose a new method called motion based
domain randomization (MBDR).

Proposed Method
In this section, we describe our proposed method to detect

honey bees using motion-based domain randomization (MBDR).
We are motivated by the observation that the appearance of the
honey bees in different domains are more similar to each other
than is the appearance of the backgrounds. Therefore, to train a
honey bee detector that is effective across different beehives, we
would like to generate training images with additional variability
in the backgrounds relative to the honey bees themselves. We de-
scribe our proposed MBDR method, and then describe our honey
bee detector using MBDR.

Motion-based domain randomization (MBDR)
We apply domain randomization to our real-world situation

by using motion to segment each image into foreground objects
and background. With this segmentation, it is now possible to
apply different random augmentations to the objects and to the
backgrounds. This has the advantage of only requiring a single
well-annotated dataset so that our model can generalize well to

unseen domains. In particular, we can supplement the existing
data without the need to create a simulator for either the target
objects, or for the background and its lighting.

To segment the video into objects and background, we apply
two foreground-background segmentation algorithms: the mix-
ture of Gaussians (MOG) [37] and the k-nearest neighbor al-
gorithms (KNN). The MOG motion detector classifies the fore-
ground and the background based on the mixture of 3 Gaussian
distribution models of each background pixel. The weights for
each Gaussian model are proportional to the duration that the
color stays on the pixel. Therefore, if the weights of the Gaus-
sian models for a given pixel are low, the pixel is categorized as
foreground. The KNN motion detector computes updated weights
of the Gaussian mixture model iteratively by computing the Eu-
clidean distance of each element in the segmentation map; it then
selects the pixels that belong to each foreground.

Fig. 2 illustrates the overall pipeline of our proposed method.
The video is processed by both background segmentation algo-
rithms. Because the motion maps from each are rather noisy, we
apply a Hadamard (pixel-wise) product to the two binary motion
maps to obtain a more accurate segmentation. Thus, we decide a
pixel belongs to the foreground only if each algorithm estimates it
to be a foreground pixel. Synthetic training data is then produced
by applying different amounts of random augmentations to the
identified foreground and background. In particular, stronger aug-
mentations are applied to the background than to the foreground.

Bee detection using MBDR
We create an image-based honey bee detector using Faster-

RCNN, where the training is supplemented by MBDR. Weaker
random augmentations are applied to the honey bees, and stronger
augmentation is applied to the background. The detector uses
ResNet-50 as its backbone feature extractor. The loss function
for training is a combination of a classification loss and a regres-
sion loss. Since there are only two classes (honey bee and back-
ground) in our setting, the classification loss is the binary cross
entropy loss, Lbce, which is defined for each sample as

Lbce =−(y log(p)+(1− y) log(1− p)). (1)
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Here if y = 1 indicating the sample is a honey bee, then p denotes
the predicted probability this sample is a honey bee; similarly if
y = 0 indicating background, then p denotes the predicted prob-
ability the sample is background. The regression loss computes
the mean square error loss Lreg of the prediction of the x and y
coordinate of the bounding box, and also its width w and height
h:

Lreg =
D

∑
i
(i− î)2,D ∈ {x,y,w,h}. (2)

Finally, the overall objective loss function L for our training is
defined as L = Lbce +Lreg.

Experiment and Results
In this section, we describe our experimental setup, including

data collection, training, evaluation metrics, and results.

Parameter Settings
In our experiments, we compare the honey bee detection re-

sults of MBDR with the results both without data augmentation
and with data augmentation. For the data augmentation approach,
we augment the entire image with the same randomness, where
brightness, contrast and saturation are between 0.8 to 1.2, and hue
is between −0.1 to 0.1. For MBDR, we leverage different ran-
domness on the foreground and the background since we find that
the backgrounds are more complex than the honey bees. There-
fore, we set a higher randomness for the background with bright-
ness, contrast and saturation between 0.8 to 1.2, and hue between
−0.2 to 0.2. For the foreground, we set brightness, contrast and
saturation from 0.9 to 1.1, and hue from −0.1 to 0.1.

Datasets
We record videos from two beehives at the Purdue Apiary

during August and September 2022. Colonies were kept queen-
right and maintained in double-deep Langstroth boxes with 10
frames each and a super. We use the data from September for
both training and testing, and use the data gathered in August for
testing only. Hence, we consider September to be our source do-
main, and both September and August to be our target domains.
In September, video was recorded for 55 hours, and we extracted
one frame every 500 frames to obtain 1200 image frames. We also
computed the foreground-background segmentation as described
above and sampled this at the same rate. Images were also ex-
tracted at a similar rate from the August videos, to create a similar
number of testing images.

Evaluation Metrics
Object detection is typically evaluated using the Average

Precision (AP) metric. AP computes the fraction of predicted
bounding boxes that are true; for a bounding box to be true, it
must have an Intersection over Union (IoU) that is greater than
a given threshold. While a typical IoU threshold is 0.5, here we
create a more stringent requirement by setting our IoU threshold
to be 0.7 in our experiments. This is motivated by our application.
We anticipate that once a honey bee is detected, further process-
ing will be applied to the detected honey bees. With a higher IoU
threshold, more of the bounding box pixels will correspond to an
actual honey bee.

In addition, we also report AP results based on the size of
the detected object. We follow the definitions of the MS COCO
dataset [17], which computes AP small, AP medium, and AP
large for bounding boxes with area smaller than 32 ∗ 32 pixels,
from 32 ∗ 32 to 96 ∗ 96 pixels, and larger than 96 ∗ 96 pixels, re-
spectively. Note that for our data, there are no honey bees that are
categorized as small; therefore, we only report results for medium
and large bounding boxes.

Within-domain results
In this experiment, we trained our honey bee detector using

the September training data with three different approaches. The
first uses the training data from September with no data augmen-
tation. The second incorporates traditional data augmentation into
the training by applying a single strength of randomness to both
foreground and background. For the third approach, we apply our
proposed MBDR, where stronger data augmentation is applied to
the background and weaker to the foreground.

The results are shown in Table 1. First, we see that data aug-
mentation improves performance by only a small fraction. This
improvement is slight because data augmentation alone cannot
alleviate the wide variations across the different beehives. Next,
considering the AP of our proposed MBDR, we see that we obtain
solid improvements of 0.0282 and 0.0268 relative to a detector
trained both without and with data augmentation, respectively.

Our experiments also analyze the performance of the detec-
tor for honey bees of different sizes. For medium-sized honey
bees, the MBDR approach outperforms the other methods by a
significant margin, with improvements of 0.0676 and 0.0572, re-
spectively. For large honey bees, the improvement of the MBDR
approach relative to the other methods is 0.0081 and 0.0064.
Smaller honey bees are generally more difficult to detect than
larger honey bees; however, our proposed method is highly effec-
tive at improving the detector for these smaller honey bees even
in the within-domain scenario.

Table 1: Honey Bee Detection Results: for September source do-
main

No data aug. With data aug. MBDR
AP (all) 0.9062 0.9076 0.9344

AP (medium) 0.6949 0.7053 0.7625
AP (large) 0.9563 0.9580 0.9644

Across-domain results
Next, we explore the performance of our method when we

evaluate on the target domain, which is to say, when we train on
the September dataset and evaluate on the August dataset. Results
are shown in Table 2. As can be seen, our proposed method in-
creases performance by greater than 0.0122. For medium-sized
honey bees, our proposed method outperforms no data augmenta-
tion by 0.0318, which verifies that MBDR can significantly boost
the performance of detecting smaller honey bees, identical to our
earlier findings. With the experiments conducted in Table 1 and
Table 2, since the precision of large honey bees is already reason-
ably high even without MBDR, the improvement of our method
is limited. However, for the more challenging task of detecting
smaller honey bees, our method provides significant cross-domain
improvements.
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No data aug. MBDR
AP (all) 0.8756 0.8878

AP (medium) 0.4933 0.5251
AP (large) 0.9585 0.9576

Conclusion
In this paper, we presented a camera system that operates

inside a beehive without disruption. Infrared light that is invis-
ible to the honey bees was used for illumination; however, that
reduced the contrast of the captured images. Because our sys-
tem can be placed in any hive, we were able to obtain videos from
multiple levels of the hive, and from hives with different strains of
honey bees. This created the challenging task of detecting honey
bees despite their highly varied appearance and the varied back-
grounds.

To this end, we presented a novel method called motion-
based domain randomization (MBDR), which designs a detector
that performs well across multiple environments. We leverage
the motion information in the videos to partition the honey bees
from the background, and apply stronger data augmentation to
the backgrounds to mimic the greater variations we observe. We
demonstrated the method improved performance, particularly for
smaller honey bees, when applied to out-of-distribution data.
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