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Abstract
Domain Adaptation (DA) techniques aim to overcome the do-

main shift between a source domain used for training and a tar-
get domain used for testing. In recent years, vision transformers
have emerged as a preferred alternative to Convolutional Neu-
ral Networks (CNNs) for various computer vision tasks. When
used as backbones for DA, these attention-based architectures
have been found to be more powerful than standard ResNet back-
bones. However, vision transformers require a larger computa-
tional overhead due to their model size. In this paper, we demon-
strate the superiority of attention-based architectures for do-
main generalization and source-free unsupervised domain adap-
tation. We further improve the performance of ResNet-based un-
supervised DA models using knowledge distillation from a larger
teacher model to the student ResNet model. We explore the effi-
cacy of two frameworks and answer the question: is it better to
distill and then adapt or to adapt and then distill? Our exper-
iments on two popular datasets show that adapt-to-distill is the
preferred approach.

Introduction
Domain adaptation methods using deep learning aim to mit-

igate the effects of the domain shift between the source domain
where training takes place and the target domain used for test-
ing. We consider the task of unsupervised closed-set Domain
Adaptation (DA), where the target domain is unlabelled and the
same classes are present in both the source and target domains.
The de-facto backbone for domain adaptation methods has been
ResNet [11]. However, vision transformers have emerged as pop-
ular architectures for computer vision that are replacing Con-
volutional Neural Networks (CNNs). Transformer architectures
achieve state-of-the-art results across many tasks, including do-
main generalization and unsupervised domain adaptation where
there are no labels in a target domain. The self-attention mecha-
nism in transformer architectures has proven to be effective in ex-
tracting robust features across different parts of the image. How-
ever, the drawback of vision transformers is that they require a
much larger computational overhead and memory footprint com-
pared to CNNs.

In this paper, we explore leveraging these attention-based
models to help the CNN model better adapt to the target domain.
We consider various self-attention models as teachers and per-
form knowledge distillation to a smaller ResNet student model.
In this paper, we enhance the performance of a ResNet-50 stu-
dent model throught knowledge distillation by different attention-
based models for domain generalization and adaptation tasks. Our
work makes the following contributions:

• We use knowledge distillation to leverage the feature extrac-
tion power of a larger attention-based model as a teacher and

improve the adaptation capacity of a smaller ResNet-50 stu-
dent model.

• We explore transformers and attention-based convolutional
models to serve as teachers and help the student model adapt
to the target domain.

• We compare two different adaptation-distillation methods
for source-free unsupervised DA and determine that it is bet-
ter to adapt the teacher model first and then distill to the
smaller student model, as opposed to distilling first and then
adapting the smaller model.

Related Work
Source-Free Domain Adaptation

The domain shift or domain gap occurs when there is a distri-
bution shift between the source domain data used for training and
the target domain data used for testing. The domain gap signif-
icantly reduces the performance of source-trained models during
deployment in the target domain. Domain adaptation methods
try to align the features of the source-trained model to the target
domain and mitigate the domain shift. Multiple DA approaches
exist, such as adversarial and source-free adaptation. Adversarial
methods use the source data in the adaptation process to adversar-
ially align the features in the source and target domains. Source-
free DA methods do not require the source data during adaptation,
and use information from the source-trained model to align the
features of the source and target domains. A popular source-free
DA method is Source HypOthesis Transfer (SHOT) [9], which
combines pseudo labels generated with the deep cluster method
and information maximization.

Attention-based Architectures
The success of transformers for natural language processing

(NLP) has popularized the attention mechanism leading to vision
transformer architectures. The attention mechanism allows the
model to extract better global features by capturing long-range
dependencies between words in a sentence. Inspired by trans-
formers for language, Vision Transformers (ViT) [13] were intro-
duced for various image tasks. ViT splits an image into patches, to
mimic words in a sentence, before processing each patch though
the transformer encoder. However, ViT is quadratic in complex-
ity and doesn’t properly aggregate features across different parts
of a patch. The Shifted Window Transformer (SWIN) [10] was
designed to overcome some of the issues with ViT by splitting the
image into smaller patches. By doing so, SWIN can aggregate
features across the smaller patches and extract long-range global
features across the image.

Following the emergence of transformer architectures in
computer vision, ConvNeXt [12] was proposed as a convolutional
network alternative to vision transformers. ConvNext modernized
the ResNet architecture by mimicking the attention mechanism.
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By patchifying the convolutional layer and using an inverted bot-
tleneck, ConvNeXt showed that convolutional models can per-
form comparably to the vision transformer architectures.

Transformer models have demonstrated better generalization
properties than CNNs under domain shift [5] and are an attrac-
tive alternative as a powerful backbone for source-free domain
adaptation [5], [17]. However, they are larger and computation-
ally more expensive than CNNs, which is not well-suited for edge
computing or mobile platforms. In this paper, we seek to leverage
the power and robustness of transformer architectures by distilling
their knowledge to a smaller ResNet-50 model for more effective
adaptation to the target domain.

Knowledge Distillation in Domain Adaptation
Knowledge distillation was introduced in [6] for model com-

pression by transferring knowledge from a larger teacher model
to a smaller student model. In domain adaptation, the work in
[7] proposed knowledge distillation as a way to replace source
training for an adapting model. This approach harnesses the gen-
eralization capability of a ViT model and distills its knowledge
of the target domain to the adapting ResNet model. The ResNet
model adapts to the target domain by exploiting the information
maximization loss to diversify its outputs. In a different approach,
[8] first adapted a larger model to the target domain using unsu-
pervised domain adaptation and then distilled the knowledge to a
smaller model. They showed that the smaller distilled model can
perform better than the larger adapted model.

In this paper, we consider two approaches for unsupervised
domain adaptation with knowledge distillation presented in the
next section. In both cases, we begin with source-training of a
larger transformer-based backbone and perform knowledge distil-
lation to a smaller CNN backbone for deployment to the target
domain.

Methodology
We investigate two frameworks for domain adaptation with

knowledge distillation. First in the distill to adapt framework il-
lustrated in Figure 1, we distill a larger source-trained backbone
to a smaller CNN model that is subsequently adapted to the target
domain. Second, in the adapt to distill framework illustrated in
Figure 2, we adapt the larger model to the target domain and then
distill it to the smaller CNN model.

In a closed-set unsupervised DA setting, training the source
model is performed with ns labeled samples {(xs,ys) ∈ (Xs,Ys)}
from the source domain Ds. Adaptation is based on nt unlabeled
samples {xt ∈ Xt} from the target domain Dt . The domain adap-
tation task involves determining a mapping ( ft : Xt → Yt) to the
corresponding labels {yt ∈ Yt} for the target domain. Under the
closed-set setting, we assume that the same classes are present in
the source and target domains, namely that Ct =Cs.

Source Training
The models for the teacher and student networks include a

feature extractor backbone and a classification head. The teacher
and student networks are trained on the source data {(xs,ys) ∈
(Xs,Ys)} in the source domain Ds. The feature extractors for the
teacher and student networks are denoted as Gs and gs, respec-
tively. Likewise, the classification head for the teacher and student
as Hs and ht respectively. The source teacher predictions are Fs,

where Fs =Hs(Gs) and the source student inferences are fs, where
fs = hs(gs). The feature extraction module includes a feature ex-
traction backbone and a batch normalization layer. The classifier
hypothesis module includes a weight normalization layer.

Figure 1. Distill to adapt framework. A larger source-trained backbone is

distilled to a smaller ResNet model, which is adapted to the target domain.

Figure 2. Adapt to distill framework. A larger source-trained model is

adapted to the target domain and after adaptation it is distilled to the smaller

ResNet model.

Using the features extracted from the image, the classifier
head returns K logits, where K = Ct = Cs is the total number of
classes within the dataset. We train on the source data by mini-
mizing the cross-entropy loss using label smoothing for the source
training procedure. Label smoothing increases the model’s ability
to generalize across multiple classes by improving the clustering
of samples. Smoothed labels help to decrease the gaps between
the predictions and prevent the model from being overconfident
by softening the one-hot encoding.

We use q as the one-hot encoding of the output, where q is
defined to be ’1’ for the intended class and ’0’ for any other class.
For the k-th element, the true label is qk and the smoothed label is
qls

k , defined as:

qls
k = (1−α)qk +α/k (1)

where α is the label smoothing parameter that is set to 0.1. We
use the softmax probability

δk(a) =
exp(ak)

∑i exp(ai)
(2)

where δk(a) denotes the k-th element in the softmax output of a K-
dimensional vector a. We incorporate this into the cross-entropy
loss function which becomes

Lsrc( fs;Xs,Ys) =−E(xs,ys)∈{Xs,Ys}
K

∑
k=1

qls
k log δk( fs(xs)) (3)
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Clustering for Pseudo-Labels
To generate pseudo-labels for target adaptation, we first de-

termine the initial centroids, c(0)k , using the softmax output of the
target samples,

c(0)k =
∑xt∈Xt

δk(pt(xt)) (Ft(xt))

∑xt∈Xt
δk(Ft(xt))

(4)

where pt describes the previously learned target hypothesis and
Ft are the current predictions. We use the cosine distance function
and minimize the distance between samples where D(a,b) is the
cosine distance function and a and b are the two samples.

ŷ(0)t = argkmin(D(Ft(xt),c
(0)
k ) (5)

After extracting the initial pseudo-labels, the cluster centers are
recomputed as follows.

c(1)k =
∑xt∈Xt

1(ŷt = k) (Ft(xt))

∑xt∈Xt
1(ŷt = k)

(6)

The final pseudo-labels are then computed with the updated clus-
ter centers using

ŷ(1)t = argkmin(D(Ft(xt), c(1)k ) (7)

where the y(1)t are the pseudo-labels extracted from the input tar-
get data Xt .

Adaptation Objective Function
During the adaptation process, the classifier head is frozen

to improve the feature extraction head. As shown below, we use
the pseudo-labels from the clustering algorithm to minimize the
cross-entropy loss, LT ce, for the adapting model using the target
samples.

LT ce(Fs;Xs,Ys) =−E(xt ,ŷt )∈{Xt ,Ŷt}

K

∑
k=1

1[k=ŷt ] log δk(Ft(xt))

(8)

Additionally, following [14], we adopt the Information Maxi-
mization (IM) loss which aims to increase the diversity among in-
ferences of the model during adaptation. Information Maximiza-
tion(IM) is a combination of entropy loss Lent [15] and diversity
loss Ldiv [9]. We define Lent and Ldiv as follows:

Lent( ft ;Xt) =−E(xt )∈{Xt}
K

∑
k=1

δk( ft(xt)) log δk( ft(xt)) (9)

Ldiv( ft ;Xt) =
K

∑
k=1

qk log (qk) (10)

We denote ft to be some target model adapting to the target data
and qk as the mean softmax output of the target data seen by the
model. The equal diversity loss Ldiv aims to make network pre-
dictions diverse for all classes to prevent similar one-hot encod-
ings of the observed target data. We then define IM loss as LIM ,
where

LIM( ft ;Xt) = Lent +Ldiv (11)

Using the model’s cross-entropy loss, LT ce, with the IM loss,
LIM , our final adaptation objective function becomes,

LFt = LT ce +LIM (12)

Distillation Step
In order to distill the knowledge from the larger attention-

based architecture to the ResNet-50 model, we use the Kullback-
Leibler loss or Lkl [16] defined as follows.

Lkl(Ft(xt)|| ft(xt)) = ∑
xt∈Xt

Ft(xt) log
(

Ft(xt)

ft(xt)

)
(13)

We treat the labels from the teacher model as strong labels and
use the following consistency loss,

LKD( ft ;Xt ,Ft) = Ext∈Xt Lkl (Ft(xt) || ft(xt)) (14)

The issue with using this consistency loss is that KD is often
used in a supervised setting. However, with unsupervised DA,
the teacher outputs for some target instances may be inaccurate.
Inspired by [7], we use Adaptive Label Smoothing (AdaLS) to
generate a revised output of p̂. We have the teacher Ft revise the
output p with the top-r values. We consider T r

p as the set of the
top-r labels of classes in the original output p.

p̂(r) =


pi, i ∈ T r

p

(1− ∑
j∈T r

p

p j) / (K − r), otherwise (15)

We empirically select r = 1 to choose the top class and smooth out
the remaining labels. We use these refined pseudo-labels to reduce
the noisiness of the labels extracted from the teacher and impose
a uniform distribution on the labels similar to label smoothing.
Smoothing to highlight the most confident classes allows the stu-
dent to learn from the samples that the teacher is confident about
rather than learning from noisy labels that may occur with the do-
main shift.

Experimental Setup
Adapt-To-Distill Models

For the teacher networks in the two configurations shown in
Figures 1 and 2, we consider transformer architectures ViT and
SWIN as the backbone. We also utilize the ConvNeXt convolu-
tional architecture. For the student model in both frameworks, we
use the popular ResNet-50 backbone for a direct comparison to
other domain adaptation methods based on ResNet-50. For both
the teacher and the student models, we use an image size of 224
× 224. A comparison of the number of parameters in each of the
backbones is presented in Table 1.

Table 1. Information about each backbone architecture used.

Model Image Size Parameters
ResNet 224×224 23M
ConvNeXt 224×224 89M
ViT 224×224 86M
SWIN 224×224 88M

Datasets
In order to benchmark and analyze the Adapt-To-Distill

and Distill-to-Adapt frameworks, we conduct our experiments
on two popular domain adaptation datasets: OfficeHome and
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DomainNet-126. OfficeHome [1] is a domain adaptation dataset
containing 15,500 images and 65 object classes from 4 different
domains: Art (Ar), Clipart (Cl), Real World (Rw), and Product
(Pr). Some samples of the images from the dataset are shown
below in Figure 3.

Figure 3. Sample Images from OfficeHome [1] Dataset

DomainNet-126 [2] is a subsection of the DomainNet
dataset. The DomainNet dataset consists of 600,000 images
across 6 domains: Clipart, Infograph, Painting, Quickdraw, Real,
and Sketch. Following [3], we use 126 classes from 4 of the 6
domains: Real (R), Clipart (C), Painting (P), and Sketch (S) for
evaluation. Shown in Figure 4 are 16 of 126 classes across those
4 domains.

Figure 4. Sample Images from DomainNet [2] Dataset

Experimental Setup
In order to keep consistency across all the models, the image

size is kept at 224 × 224 pixels. We use PyTorch and Timm (Py-
Torch Image Model Library) [4] to load the models for analysis,
training, and testing. We use a stochastic gradient descent (SGD)
optimizer for the teacher and student and use a learning rate of
1e-3 for the teacher model and student model. The layers after
the feature extraction backbone have a learning rate of 10 times
the learning rate of the backbone. We run the model for source
training and target adaptation for 20 epochs each.

To understand the difference between the adaptation with
distillation frameworks in Figures 1 and 2, we compare two adap-
tation recipes: adapt-to-distill and distill-to-adapt. We first test
the adapt-to-distill method, where we adapt the attention-based
model using SHOT adaptation with different backbones. The
adapted teacher model is then distilled to the ResNet-50 model.
For the distill-to-adapt experiments, we distill the source-trained
teacher’s knowledge to the ResNet-50 model and then perform
adaptation using SHOT.

Results and Discussion
In this section, we present the results of our experiments

using different backbones for knowledge distillation and unsu-
pervised domain adaptation. We evaluate the efficacy of differ-
ent teacher backbones relative to the performance of the student
model. The primary metric that we use to compare the models is
classification accuracy. This metric is calculated by dividing the
total number of correct predictions by the total number of predic-

tions of the model. In our results, we report the ”mean percent
accuracy” as the classification accuracy.

Tables 2 and 3 present the results for the generalization and
adaptation performance on the OfficeHome dataset. For the gen-
eralization results in Table 2, the model is trained on the source
data and then tested on the target data without any adaptation. For
the results in Table 3, we use the SHOT [9] framework with differ-
ent backbones adapt the source-trained model to the target domain
and test the adapted model on the target data. For brevity, the de-
tailed results in the tables show the performance from Art to the
other domains, and for overall performance the average accuracy
for all domain transfer pairs is reported.

Table 2. Generalization performance (mPA) with different
backbones on the OfficeHome dataset.

Backbone Ar → Cl Ar → Pr Ar → Rw Avg.
ResNet-50 44.5 65.6 74.1 60.0
ConvNeXt 72.9 86.0 89.3 82.0
ViT 50.5 82.5 86.8 74.0
SWIN 70.1 85.2 89.0 81.6

Table 3. Adaptation performance (mPA) using SHOT with
different backbones on the OfficeHome dataset.

Backbone Ar → Cl Ar → Pr Ar → Rw Avg.
ResNet-50 48.9 72.0 75.5 69.2
ConvNeXt 79.2 92.4 92.2 87.7
ViT 69.8 89.6 90.0 83.4
SWIN 76.2 91.5 91.7 87.1

As expected, the attention-based architectures outperform
the smaller ResNet-50 model. Comparing the average accuracy
across both tables shows an interesting trend: the generalization
capability of the attention-based models outperforms the adaptive
capabilities of the ResNet-50 model.

Table 4. Generalization performance (mPA) with different
backbones on the DomainNet-126 dataset.

Backbone C → P C → R C → S Avg.
ResNet-50 47.7 61.3 48.8 56.4
ConvNeXt 74.1 83.4 72.7 77.0
ViT 70.8 80.7 67.5 72.3
SWIN 74.2 83.7 71.6 76.7

Table 5. Adaptation performance (mPA) using SHOT with
different backbones on the DomainNet-126 dataset.

Backbone C → P C → R C → S Avg.
ResNet-50 61.2 77.4 60.0 67.4
ConvNeXt 79.2 90.1 76.5 81.6
ViT 76.3 86.9 71.9 78.0
SWIN 79.8 90.1 75.0 81.7

Tables 4 and 5 show the generalization and adaptation per-
formance for different backbones on the DomainNet-126 dataset.
Again, we observe the same pattern where the generalization
scores of the attention-based models surpass the performance of
the adapted ResNet-50 model. From these results, we can con-
clude that the generalization capabilities of attention-based ar-
chitectures are much better than the adaptive capabilities of the
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ResNet-50 model. Therefore, we leverage these attention-based
architectures with knowledge distillation to improve the ResNet-
50 performance in the target domain.

The following experiments determine whether it is better to
distill-to-adapt or adapt-to-distill. Using the frameworks shown in
Figures 1 and 2, SHOT adaptation with different backbones was
performed before or after distillation from the larger teacher net-
work to the smaller student ResNet-50. The results are reported
in Tables 6 and 7 for OfficeHome and DomainNet-126 respec-
tively. The results are consistent for both datasets and show that
Adapt-to-Distill gives the best results for all of the teacher back-
bones considered. we consistently find that ConvNext and SWIN
are the best performing.

Table 6. Results (mPA) using SHOT with knowledge distillation
and various teacher backbones on the OfficeHome Dataset.

Teacher Distill-to-Adapt Adapt-to-Distill
ViT 74.8 80.0

SWIN 76.2 82.4
ConvNeXt 76.2 82.3

Table 7. Results (mPA) using SHOT with knowledge distillation
and various teacher backbones on the DomainNet-126 dataset.

Teacher Distill-to-Adapt Adapt-to-Distill
ViT 73.5 78.0

SWIN 74.3 80.1
ConvNeXt 74.5 80.1

Conclusion
In this work, we utilize knowledge distillation as an effec-

tive method to improve the performance of source-free DA using
SHOT with a ResNet-50 backbone. Within the SHOT source-free
DA framework, we use ConvNeXt, SWIN, and ViT backbones to
serve as the teachers for the ResNet-50 student adaptation to the
target domain. Our results show that adapting the teacher model
and then distilling its knowledge to the student model is a more ef-
fective method for domain adaptation. The attention-based mod-
els generalize better on the target data, and can better adapt to the
target data. By leveraging the generalization and adaptive capa-
bilities of these architectures, the ResNet-50 model adapts to the
target domain better than if it had adapted on its own.

Acknowledgements
This research was partly supported by the Air Force Of-

fice of Scientific Research (AFOSR) under SBIR grant FA9550-
22-P-0009 with Intelligent Fusion Technology, AFOSR grant
FA9550-20-1-0039 and the Empire State Development’s Division
of Science, Technology and Innovation through the University of
Rochester Center of Excellence in Data Science. The authors
would like to thank RIT Research Computing for making com-
puting resources available for experimentation.

References
[1] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and

Sethuraman Panchanathan. Deep hashing network for unsuper-
vised domain adaptation. IEEE Conference on Computer Vision
and Pattern Recognition, Proc. pg. 5018. (2017)

[2] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko,
and Bo Wang. Moment matching for multi-source domain adapta-
tion. IEEE/CVF international conference on computer vision, Proc.
pg. 1406. (2019).

[3] Jian Liang, Dapeng Hu, and Jiashi Feng. ”Domain adaptation with
auxiliary target domain-oriented classifier.” IEEE/CVF conference
on computer vision and pattern recognition, Proc. pg. 16632.
(2021).

[4] Ross Wightman. ”Pytorch Image Models.”
https://github.com/huggingface/pytorch-image-models. (2019).

[5] Rajat Sahay, Georgi Thomas, Chowdhury Sadman Jahan, Mihir
Manjrekar, Dan Popp, and Andreas Savakis. On the Importance of
Attention and Augmentations for Hypothesis Transfer in Domain
Adaptation and Generalization. Sensors, 20, 8409. (2023).

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv preprint arXiv:1503.02531.
(2015).

[7] Jian Liang, Dapeng Hu, Jiashi Feng, and Ran He. Dine: Do-
main adaptation from single and multiple black-box predictors.
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, Proc. pg. 8003. (2022).

[8] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi.
Contrastive test-time adaptation. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, Proc. pg. 295. (2022).

[9] Jian Liang, Dapeng Hu, and Jiashi Feng. ”Do we really need to ac-
cess the source data? source hypothesis transfer for unsupervised
domain adaptation.” International Conference on Machine Learn-
ing, pg. 6028. (2020).

[10] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vi-
sion transformer using shifted windows. IEEE/CVF International
Conference on Computer Vision. Proc. pg. 10012. (2021).

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
Mappings in Deep Residual Networks. Computer Vision–ECCV
2016: 14th European Conference, Proc. pg. 630. (2016).

[12] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichten-
hofer, Trevor Darrell, and Saining Xie. A ConvNet for the 2020s.
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. Proc. pg. 11976. (2022).

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. arXiv preprint arXiv:2010.11929
(2020).

[14] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and
Masashi Sugiyama. Learning Discrete Representations via Infor-
mation Maximizing Self-Augmented Training. International Con-
ference on Machine Learning. Proc. pg. 1558. (2017).

[15] Yves Grandvalet, and Yoshua Bengio. Semi-supervised Learning
by Entropy Minimization. Advances in Neural Information Pro-
cessing Systems 17. (2004).

[16] Solomon Kullback, and Richard A. Leibler. On information and
sufficiency. The Annals of Mathematical Statistics 22, 79 (1951).

[17] Abu Md Niamul Taufique, Chowdhury Sadman Jahan, and An-
dreas Savakis. ConDA: Continual unsupervised domain adaptation.
IEEE Trans. Artificial Intelligence. (2023).

Author Biography
Georgi Thomas received his BS and MS degrees in computer en-

IS&T International Symposium on Electronic Imaging 2024
Imaging and Multimedia Analytics at the Edge 2024 238--5



gineering from Rochester Institute of Technology (2023) and is currently
with Boeing. His research interests include domain adaptation, novel deep
learning architectures and creating efficient deep learning models.

Andreas Savakis is a professor of computer engineering and direc-
tor of the Center for Human-aware AI (CHAI) at Rochester Institute of
Technology. His research interests include computer vision, deep learn-
ing, domain adaptation, robust and efficient learning and human pose
estimation. He is SPIE Fellow.

238--6
IS&T International Symposium on Electronic Imaging 2024

Imaging and Multimedia Analytics at the Edge 2024


